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SUMMARY

Autoimmune diseases (ADs) are at a significantly higher risk of cancers with un-
clear mechanism. By searching GWAS catalog database and Medline, susceptible
genes for five common ADs, including systemic lupus erythematosus (SLE), rheu-
matoid arthritis, Sjögren syndrome, systemic sclerosis, and idiopathic inflamma-
tory myopathies, were collected and then were overlapped with cancer driver
genes. Single-cell transcriptome analysis was performed in the comparation be-
tween SLE and related cancer.We identified 45 carcinogenic autoimmune disease
risk (CAD) genes, whichweremainly enriched in T cell signaling pathway and B cell
signaling pathway. Integrated single-cell analysis revealed immune cell signaling
was significantly downregulated in renal cancer compared with SLE, while stem-
ness signature was significantly enriched in both renal cancer or lymphoma and
SLE in specific subpopulations. Drugs targeting CAD genes were shared between
ADs and cancer. Our study highlights the common and specific features between
ADs and related cancers, and sheds light on a new discovery of treatments.

INTRODUCTION

Autoimmune diseases (ADs), such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjӧgren
syndrome (SS), systemic sclerosis (SSc), and idiopathic inflammatory myopathies (IIM), are severe public

health threats around the world, affecting 3%–10% of the world population (Thomas et al., 2010; Cross

et al., 2014), besides cancer is also one of the major causes of disability and mortality worldwide (Li

et al., 2019; Teng et al., 2020). Each of these problems independently represents a major burden on the

health-care systems, and their co-occurrence complicates the diagnosis and treatment. ADs and cancers

are frequently concomitant in humans, and the epidemiological relationship between ADs and cancers

has been well established (Franks and Slansky, 2012; Giat et al., 2017). In general, 1) patients with RA

have higher risks of lymphoma, leukemia, lung cancer, and non-melanoma skin cancers; 2) patients with

SLE have increased risks of developing hematological malignancies and cancers in female reproductive

system, nasopharynx, and kidney; 3) patients with SS have higher risk of lymphoproliferative disorders; 4)

patients with SSc have higher rates of concurrent cancers of lung, skin, esophageal, and liver; 5) patients

with IIM have higher risks of ovarian, lung, and gastric cancer (Giat et al., 2017; Franks and Slansky, 2012;

Hemminki et al., 2017; Bayaert et al., 2013). Notably, certain types of lymphoma tend to be more common

in people with systemic ADs, especially when their ADs have high cumulative activity levels. For example,

among patients with RA, those with higher disease activity had a 60- to 70-fold increased risk of lymphoma

compared to patients with lower disease activity (Mercer et al., 2017; Yadlapati and Efthimiou, 2016). Six

cohort studies comprising a total of 6,641 patients with SSc from United States, Australia, Northern Europe,

and Taiwan revealed a pooled standardized incidence ratio of 1.41 for cancer (Onishi et al., 2013). However,

mechanisms underlying the positive relationship between autoimmunity and related cancers remain

unclear.

The GWAS/meta-GWAS and candidate gene studies have successfully identified a considerable list of

candidate genes for five ADs including RA, SLE, SS, SSc, and IIM (Okada et al., 2014; Morris et al., 2016;

Lessard et al., 2013). Moreover, previous GWAS studies have reported associations between hematologic

cancers and various ADs such as RA, multiple sclerosis, and ulcerative colitis (Sud et al., 2017; Okada et al.,

2014), raising the possibility of common genetic susceptibility and hence common biological pathways
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Figure 1. Discovering procedures of carcinogenic autoimmune disease risk genes

The carcinogenic autoimmune disease risk genes (CAD genes) refer to the genes where five autoimmune diseases (ADs)

risk SNPs are located in or nearby overlapped with cancer driver genes. GWAS: genome-wide association studies; SNP:

single nucleotide polymorphism; cis-eQTL: cis-expression quantitative trait loci; RA: rheumatoid arthritis; SLE: systemic

lupus erythematosus; SS: Sjogren’s syndrome; SSc: systemic sclerosis; IIM: idiopathic inflammatory myopathies.
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between ADs and related cancers. Furthermore, single-cell profiling techniques have delineated the

cellular and molecular landscapes that dominate the tumors in cancer (Young et al., 2018; Gaydosik

et al., 2019) and the targeted organs in ADs (Arazi et al., 2019; Der et al., 2019), shedding light on potential

pathogenic mechanisms. In this study, by systemically reviewing susceptible genes of the five ADs and

driver genes in cancers, we identified 45 carcinogenic autoimmune disease risk (CAD) genes, which likely

connect the genetic susceptibility of both specialties. In addition, single-cell transcriptome analyses re-

vealed that defect of immune surveillance and gain of cancer stemness are present in both SLE and related

cancers in kidney or skin, highlighting the possible transformation from ADs to some related malignancies.

RESULTS

Characteristics of GWAS variants for the five ADs

Literature searching in the GWAS catalog and Pubmed database yielded 96 unique GWAS studies for the

five ADs, of which 63 were derived from the GWAS catalog and 33 were collected from the Pubmed data-

base (Figure 1; Table S1). These previous GWAS reported 1964 lead SNPs (Table S2), of which 1102 unique

SNPs (Table S3) were functionally relevant to diseases and associated risk factors confirmed by cis-form

expression quantitative trait loci (eQTL) analysis (Lappalainen et al., 2013; Westra et al., 2013; GTEx Con-

sortium, 2015). These SNPs were annotated to 457 unique genes annotated by SNPnexus, including 132 for

RA, 265 for SLE, 108 for SS, 71 for SSc, and 20 for IIM (139 genes were duplicates, Table S4). Previous study

showed that these ADs shared symptoms, modes of progression, environmental risk factors, and high rates

of familial aggregation (Acosta-Herrera et al., 2019). Consistently, we found 76 and 33 susceptible genes

were shared by at least two and three ADs, respectively (Figure S1), suggesting genetic pleiotropy in
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different ADs. For instance, B cell lymphocyte kinase (BLK) gene is shared by five ADs and has an important

influence on several ADs by regulating B cell activation (Simpfendorfer et al., 2015). Moreover, BLK is also

an oncogene and a potential target for therapy in cutaneous T cell lymphoma (CTCL) (Petersen et al., 2014).
Functional enrichment of associated loci of ADs on regulatory elements

We performed an enrichment analysis with GARFIELD (Iotchkova et al., 2019) to assess whether the asso-

ciated variants lie in coding or non-coding regulatory elements of specific cell types. The results showed

remarkable enrichment patterns that mainly appeared in blood cells and embryonic stem cells (ES) with

39 significant enrichments (p % 5 3 10�2, Figure S2). We found the majority of associated variants were

enriched in DNase I hypersensitivity site hotspots in blood with a repertoire of cells from the immune sys-

tem, such as T helper cells (p = 3.19 3 10�2), CD56+ NK (p = 2.23 3 10�2), CD20+ B (p = 3.19 3 10�2), and

CD19+ B (p = 3.86 3 10�2) primary cells (Table S5). In line with this enrichment, disease-associated SNPs

were enriched in transcription start site (TSS, p = 3.513 10�2) in the B lymphocyte cell line GM12878. Addi-

tionally, the highest enrichment was observed in the histone modification H3K27me3 (p = 3.65 3 10�2) in

the HepG2 cell line, which is from a liver hepatocellular carcinoma. Therefore, our results indicated these

associated variants may not only contribute to ADs via T cell or B cell regulations but also involved in human

cancers by activating cancer stem cells.
Genetic association between five ADs and cancers

In order to find the genetic association between ADs and cancers, the ADs susceptible genes were

compared with cancer driver genes. First, 1,877 candidate cancer driver genes were collected from seven

published datasets including 124 genes in 20/20 rule (Vogelstein et al., 2013), 567 genes in CGC database

(Tate et al., 2019), 118 genes in CGC-pointMut (Cho et al., 2016), 288 genes in HCD (Tamborero et al., 2013),

797 genes in MouseMut (March et al., 2011; Mann et al., 2012), 688 genes in OnGene (Liu et al., 2017), and

299 genes in CTAT (Bailey et al., 2018) (Table S6). Next, all identified susceptible genes of five ADs were

overlapped with cancer driver genes. 45 genes were found to be implicated in driving cancer development

(Figure 2A) and we named these genes carcinogenic AD risk (CAD) genes. Third, we employed PancanQTL

(Gong et al., 2018) to perform cis-eQTL annotation to confirm if any lead SNP could regulate local gene

expression in cancers. We found 41 out of 45 (91.11%) CAD genes harbored at least one cis-eQTL in at least

one of 33 cancer types from The Cancer Genome Atlas (TCGA) project (Figure 2B; Table S7). For example,

KDM4C, DDX6, NOTCH2, FADS2, PTPN2, and PTTG1 genes have top incidences among the five ADs and

33 TCGA cancer types. Interestingly, the BLK gene is the most common CAD gene shared by five ADs, fol-

lowed by TNPO3 and NOTCH4 (Figure 2B). Additionally, we found 13 CAD genes shared by at least two

ADs while 32 CAD genes occurred specifically in one AD. Functional annotation of CAD genes and specific

genetic variants across five ADs were described in Table S8. Furthermore, to identify the enriched biolog-

ical and molecular pathways of these CAD genes, we employed ClueGO, ToppGene, and g:Profiler to

perform functional enrichment analysis. We found that these 45 CAD genes were significantly overrepre-

sented mainly in five biological pathway categories (FDR<0.05): 1) T cell signaling pathway, 2) immune

response, 3) metabolism pathway, 4) B cell signaling pathway, and 5) regulation of cytokine pathway (Fig-

ure S3; Table S9). In addition, protein-protein network analysis by STRING revealed that 45 CAD genes

have significantly more interactions than expected (p = 8.59 3 10�6), and ERBB2, PTPRC, GRB2, PPARG,

andNOTCH2 are network hubs which are widely linked with other CAD genes (Figure S4). Our observations

identified overlapping of AD susceptible genes and cancer driver genes, highlighting the potential genetic

root of cancer susceptibility in patients with AD.
Immune cell signaling is likely depressed in renal cancer compared with SLE

Given that ADs and cancers shared susceptible genes and biological pathways, we investigated the expres-

sion levels of those genes in cells from both sides. Patients with SLE usually have kidney involvement and

have a high risk of renal cancer. Thus, we integrated and analyzed single-cell transcriptomes of 3,707 SLE

renal cells and 16,103 renal cancer cells to compare the cell identities based on expression signatures. We

observed large numbers of identical cells shared between SLE and renal cancer (Figure 3A). These 19,810

renal cells were clustered into 22 cell clusters (Figure 3B) by Seurat v3 and the proportions of some cell sub-

types were different although the proportions of most cell subtypes were comparable between SLE and

renal cancer (Figure 3C). For example, the proportions of NK cells (cluster 2 and cluster 11), plasma cells

(cluster 21), and B cells (cluster 12) were lower while the proportion of macrophages was higher in renal can-

cer compared to SLE (Figure 3C; Table S10).
iScience 25, 104631, July 15, 2022 3
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Figure 2. Network visualization and overview of the 45 CAD genes shared between the five autoimmune

diseases and cancers

(A) In the gene network, nodes indicate mutated genes in ADs and/or cancers; node colors indicate genes specifically

belongs to different disease groups; edges indicate genes in the same group or shared by R 2 groups.

(B) Summary of the 45 CAD genes in five ADs and 33 cancer types. Gene score indicates the number of diseases among

five ADs and 33 cancer types from The Cancer Genome Atlas involving a specific mutated gene based on cis-eQTL

analyses. Filled red boxes indicate the AD having the risk genes, and filled green boxes indicate the cancer type carrying

the mutated genes.
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Expressions of 45 CAD genes varied in 22 cell clusters of renal cells, in which PTPRC, GRB2, and REL gene

were highly expressed (Figure 3D). Interestingly, PTPRC and GRB2 genes were downregulated while REL

gene (a proto-oncogene) was upregulated in renal cancer compared with SLE (Figure 3E). Both PTPRC
4 iScience 25, 104631, July 15, 2022
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Figure 3. Immune cell signaling was downregulated in renal cancer compared to SLE revealed by integrated single-cell analysis

(A) Integrated UMAP visualization of 19,810 renal cells from SLE (n = 3,707 cells) and renal cancer (n = 16,103 cells). Each dot represents a single cell. Cells

from different samples are color-coded (SLE: pink, renal cancer: cyan).

(B) UMAP visualization of integrated projection of SLE and renal cancer cells that were assigned to 22 clusters and color-coded based on the clusters.

(C) Percentages of cells from each cluster (color-coded based on the clusters showed in (B) in SLE and renal cancer.

(D and E) Dotplots showing the scaled expression level of 45 CAD genes within each cluster of integrated (D) or split (E) dataset of SLE and renal cancer, the

size of each circle reflects the percentage of cells in a cluster where the gene is detected, and the color intensity reflects the average expression level within

each cluster (E). Renal cancer and SLE were indicated in cyan and red color, respectively (E).

(F and G) Enrichment of immune cell signaling gene signature in each renal cell split by samples of SLE and renal cancer was illustrated by UMAP plots (F) and

violin plots (G). The violin represents the probability density at each value. Expression levels are color-coded: gray, not expressed; blue, expressed, SLE: pink

violins, and renal cancer: cyan violins.
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(encodes CD45) and GRB2 are required for immune cell maturation and signaling (Vang et al., 2008; Jang

et al., 2010). Then, four immune cell signaling-related CAD genes including PTPRC, SH2B3, TCF7, and

GRB2 were examined in SLE and renal cancer. Their expression was all depressed in renal cancer compared

with SLE (Figure S5). Taken together, immune cell signaling signature represented by the four CAD genes

was depressed in renal cancer compared with SLE (Figures 3F and 3G).
iScience 25, 104631, July 15, 2022 5
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Figure 4. Integrated single-cell transcriptome analysis discovering cells with stemness in SLE and renal cancer

(A) Heatmap indicating the Z-scores of 12 cancer-related gene signatures, including Stemness, Glycine metabolism, Hypoxia, Glycolysis, Metastasis,

Angiogenesis, Invasion, EMT, Proliferation, DNA repair, DNA damage, Cell Cycle.

(B and C) Enrichment of the stemness gene signature in each renal cell (n = 16,103 cells). Single-cell average expression levels of stemness-related genes

were illustrated in the UMAP plots (B) and violin plots (C). Gray, not expressed; blue, expressed. The violin represents the probability density at each value.

Stemness signature genes were significantly enriched in cluster 5, 10, 15, and 19, highlighted in black circles (B) and violins (C).

(D and E) Enrichment of the stemness gene signature in each renal cell split by samples of SLE and renal cancer were illustrated by violin plots (D) and UMAP

plots (E).

(F and H) GSEA illustrating the enrichment of stemness gene signature in cluster five of SLE renal cells (n = 379 cells) versus normal renal cells (n = 379 cells)

from healthy donor (p=0.0025) (F) or in cluster 5 of renal cancer cells (n = 688 cells) versus adjacent normal renal cells (n = 572 cells) from the same three

individual patients (p<0.001) (H). Normalized enrichment scores and nominal p values are indicated by Kolmogorov-Smirnov test.

(G and I) Heatmap indicating significant upregulated stemness-related genes in cluster 5 of SLE renal cells compared with normal renal cells from healthy

donor (G) or in cluster 5 of renal cancer cells compared with adjacent normal renal cells from the same three individual patients (I), orange and blue bar

indicated cells from SLE (or renal cancer) and normal renal cells, respectively. Red highlighted the genes enriched in both (G) and (I).

(J) Joint visualization of scRNA-seq data of 19,810 renal cells from SLE (n = 3,707 cells) and renal cancer (n = 16,103 cells) determined by Monocle v3, color-

coded by sample type of origin (SLE: cyan, renal cancer: pink).

(K) UMAP visualization of renal cells with renal tumor identity (black circle highlighted renal cells from SLE with tumor identity, ccRCC: clear cell renal cell

carcinoma, wilms tumor: Wilms tumor, wilms.fibro: Wilms’ tumor and fibroblasts, pRCC: papillary renal cell carcinoma) annotated byMonocle v3 with the top

five most specific tumor cell marker genes of the original paper, color-coded by cell type.
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Figure 4. Continued

(L) The trajectories of renal cells state transition in a two-dimensional state-space determined by Monocle v3. Black lines show the structure of the

trajectories, and black circles highlight the trajectories of both SLE and renal cancer cells. Each dot represents a single cell, color-coded by cell type.

(M) Highlighted pseudotime visualization of a trajectory in l (on the left), color-coded by pseudotime. Brackets with numbers indicate branch nodes, where

cells can transform to several outcomes. Color represents origin of cells: cyan (SLE), pink (renal cancer).
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Enrichment analysis of cancer-related signatures in renal cells of SLE and renal cancer

To understand the origin of oncogenesis, enrichment analysis of cancer gene signatures (Table S11) was

performed. We found stemness associated genes were highly expressed in cells of cluster 5, 10, 15, and

19 and displayed more significantly in renal cancer (Figures 4A–4E). Similar features were observed in

3,600 cells randomly selected from both SLE and renal cancer (Figure S6). Next, we took cluster 5 as an

example to perform GSEA validation analysis since cluster 5 has the most significant enrichment of stem-

ness signature and simultaneously has comparable cell number between SLE and renal cancer. Stemness-

related genes were significantly upregulated in cluster 5 of SLE renal cells (Figures 4F and 4G, NES = 1.47,

p = 2.50 3 10�3) and in cluster 5 of renal cancer cells (Figures 4H and 4I, NES = 1.48, p = 0) compared with

normal renal cells from healthy donors. Six stemness-related genes including NFIB, EMX2, NFIA, TFDP2,

SOX9, and MET were consistently upregulated in both SLE and renal cancer compared with normal con-

trols (Figures 4G and 4I). We speculated that cells in cluster 5 were cancer stem cells, which were rare

immortal cells within a tumor that can both self-renew by dividing and give rise to different tumor cell types.

Apart from stemness signature, glycine/serine/threonine metabolism signature was also enriched in both

SLE and renal cancer in cells of cluster 5 and 6 while it was obviously higher in SLE in cells of cluster 5

compared with renal cancer (Figures 4A and S7A). Consistently, amino acid metabolism could affect

T cell activation, differentiation, and function in both systemic lupus erythematosus (Kono et al., 2021)

and cancers (Pan et al., 2021). Whereas, other tumorigenic signatures including angiogenesis and hypoxia,

glycolysis, and metastasis were enriched in renal cancer cells of cluster either 5, 6, 10, 15, or 19 but not in

SLE cells (Figures 4A and S7B–S7E). In addition, cancer metastasis signatures including invasion and

epithelial-mesenchymal transition (EMT) were enriched in renal cancer cells of cluster either 16, 18, 19,

or 20 but not in SLE cells (Figures S7F and S7G). Interestingly, other cancer hallmark signatures including

proliferation, DNA repair, DNA damage, and cell cycle were enriched in both renal cancer and SLE cells of

cluster 17 and 20 which are proliferating T cells and macrophages, respectively (Figures S7H–S7K). Our ob-

servations suggested SLE renal cells shared oncogenic expression signatures with renal cancer cells while

renal cancer cells harbored cancer-specific hallmark signatures compared with SLE renal cells.

Furthermore, cell type classification based on the top five most specific tumor marker genes (Table S12)

revealed that some renal cells from SLE had similar expression characteristics to renal tumor by using

the function of Garnett in Monocle v3 (Cao et al., 2019) (Figures 4J and 4K). Interestingly, single-cell trajec-

tory analysis of renal cells state transition in a two-dimensional state-space demonstrated a continuum of

intermediate states spanning SLE and renal cancers (Figures 4L and 4M). On the other hand, profiles of

aneuploid copy number were delineated in both SLE and renal cancer cells (Figures S8A and S8B). 1,372

aneuploid and 1,898 diploid cells were identified in SLE renal cells while 6,306 aneuploid and 6,024 diploid

cells were observed in renal cancer cells (Table S13). Consistently, some SLE renal cells had similar charac-

teristics of aneuploid copy number profiles to renal tumor cells although most of aneuploid cells in SLE

seemed to be benign (Figures S8C–S8F).
Expression signatures in skin cells of SLE and T cell lymphoma

To confirmwhat we have observed in renal cells from SLE and renal cancer, we performed single-cell transcrip-

tome analysis of skin cells in SLE and cutaneous T cell lymphoma (CTCL). Briefly, we integrated and analyzed

single-cell transcriptomes of 2,272 SLE skin cells and 10,938 CTCL skin cells to compare the cell identities and

expression signatures. Large numbers of identical cells were shared between SLE and CTCL since they were

derived from the same tissue (Figure 5A). These 13,210 skin cells were clustered into 17 cell types (Figures 5B

and 5C) by Seurat v3 and stemness signatureswere enriched in skin cells of cluster 9 and 10 (Figure 5D). Consis-

tently, stemness signatures were enrichedmore significantly in CTCL cancer cells compared with SLE skin cells

(Figures 5E–5G). Similar features were observed in randomly selected 2,200 cells fromboth SLE andCTCL (Fig-

ure S9). In addition, stemness-related genes were significantly upregulated in skin cells of cluster 9 and 10 (Fig-

ure 5H, NES = 1.50, p = 4.003 10�3) and CTCL cancer cells (Figure 5I, NES = 1.47, p = 2.953 10�2) compared

with normal skin cells from healthy donors. Similarly, single-cell trajectory analysis of skin cells state transition
iScience 25, 104631, July 15, 2022 7
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Figure 5. Integrated single-cell datasets analysis confirming cells with stemness in SLE and T cell lymphoma

(A) Integrated UMAP visualization of 13,210 skin cells from SLE (n = 2,272 cells) and lymphoma (n = 10,938 cells) determined by Seurat v3. Each dot represents

a single cell. Cell origins are color-coded (SLE: cyan, lymphoma: pink).

(B and C) UMAP visualization of integrated projection of SLE and lymphoma was assigned to 17 clusters and color-coded based on the clusters (B) and split

by SLE and lymphoma (C).

(D–G) Enrichment of the stemness signature in each skin cell, determined by multiple feature analysis of Seurat v3. Single-cell average expression levels of

stemness-related genes were illustrated in the UMAP plot (D, E) and violin plot (E, G). Expression levels are color-coded: gray, not expressed; blue,

expressed. Each dot corresponds to one individual cell. Stemness signature genes were significantly enriched in cluster 9 and 10, highlighted by black circles

(D). The violin represents the probability density at each value. (E, G) Enrichment of the stemness signature in each skin cell split by SLE and lymphoma were

illustrated by UMAP plots (E) and violin plots (G). Stemness signature genes were significantly enriched in cluster 9 and 10 of SLE and turn more significant in

lymphoma, highlighted in cyan and pink circle, respectively.
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Figure 5. Continued

(H and I) GSEA illustrating the enrichment of stemness signature in cluster 9 and 10 of SLE skin cells (n = 149 cells) versus normal skin cells (n = 224 cells) from

three healthy control subjects (p=0.004) (H) or in cluster 9 and 10 of lymphoma skin cells (n = 977 cells) versus normal skin cells (n = 977 cells) from four healthy

control skin samples (p=0.0295) (I). Normalized enrichment scores and nominal p values are indicated by Kolmogorov-Smirnov test.

(J) The trajectories of skin cells state transition in a two-dimensional state-space determined byMonocle v3. Black lines show the structure of the trajectories.

Each dot represents a single cell color-coded by pseudotime. Bracket with numbers indicate branch nodes, where cells can transform to several outcomes.

Origin of cells was color-coded: cyan (SLE), pink (lymphoma).
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showed SLE skin cells were located at earlier transcription states than CTCL tumor cells along the trajectory

ordered in pseudotime (Figure 5J). Therefore, single-cell transcriptome analysis of skin cells in SLE and

T cell lymphoma also illustrated the potential trajectories in which SLE cells may transform cell fates to tumor

cells by reinforcing cell stemness.
Drug enrichment analysis of CAD genes

Bioinformatic prediction based on genetic or expression features potentially improves the success rates in

repurposing existing therapeutic drugs (Li et al., 2021;Wang et al., 2021). A drug enrichment analysis for the

45 CAD genes was performed on the DGIdb platform (Freshour et al., 2021). We identified 266 drugs for

GRB2, BLK, CDKN1B, PPARG, FADS2, KDM4C, PADI2, NOTCH2/4, PTPRC, ERBB2, CDK12, and SH2B3

at any stages of development (Tables S14 and S15). Some of the enriched drugs such as methotrexate

(MTX) and azathioprine (AZA) have been reported to be used in both cancer and AD therapy, indicating

potential shared therapy for ADs and cancers. To study how they affect gene transcription of ADs and can-

cers, we performed a series of GSEA analyses. In this analysis, MTX and AZA have shown extensive effect on

important signaling pathways involved in the pathogenesis of ADs (RA, SLE, and SS) and cancers such as

prostate cancer, leukemia, breast cancer, and small-cell lung cancer (Figures 6A and 6B, Tables S16, and

S17). Signaling pathways related to 45 CAD genes were also significantly regulated by these two drugs

(Figures 6A and 6B). MTX, as one of the most common conventional disease-modifying antirheumatic

drugs (DMARDs), repressed upregulated genes of RA, SS, and SLE, as well as activity-related genes of

RA, SS, and SLE (Figures 6C and S10A). Meanwhile, MTX also reversed the upregulation of genes involved

in pathways in several cancer types including colorectal cancer, small-cell lung cancer, and prostate cancer

(Figures 6D and S10A).

Next, some CAD-targeting drugs known for treating cancer, ADs, or other diseases were analyzed for the

therapeutic potential for ADs or cancer, respectively. Pazopanib, a potent receptor tyrosine kinase inhib-

itor, has been used for therapy of cancer such as sarcoma and renal cell carcinoma. Intriguingly, our results

showed that it also repressed upregulated genes of RA and SLE, indicating their possible role in treating

some ADs (Figures 6E and S10B). Tofacitinib is an inhibitor of Janus kinase (JAK) 1 and 3 and has recently

been used to treat RA, psoriatic arthritis, and ulcerative colitis. We found that it also reversed gene signa-

tures of some cancers including non-melanoma skin cancer, basal cell carcinoma, and acute myeloid leu-

kemia (Figures 6F and S10C), and exhibit cytotoxicity on a basal cell carcinoma cell line TE354.T (Fig-

ure S11). An antidiabetes drug, pioglitazone, is an agonist for the nuclear receptor peroxisome

proliferator-activated receptor gamma (PPAR-g). It modulates genes involved in the control of glucose

and lipid metabolism of cells, which are also dysregulated in ADs and cancers (Figures 4 and S7). Our

GSEA results showed that pioglitazone could reverse upregulated genes in both ADs such as RA and SS

and related cancers (Figures 6G, 6H, and S10D), predicting its potential as a novel drug for the treatment

of both ADs and carcinomas. Both pazopanib and pioglitazone reduce viability of RA fibroblast-like syno-

viocytes, which is one of the important effector cells in RA inflammatory sites (Figure S11). Our results

pointed to mechanisms underlying shared treatments between ADs and cancers and shed light on the dis-

covery of new chemotherapy for ADs and cancers.
DISCUSSION

In this study, we systematically evaluated candidate pleiotropic genes and associated biological pathways

that are likely shared between ADs and malignancies. We identified 45 CAD genes implicated in both ADs

and cancers. These genes belong to interrelated signaling pathways important in both ADs and carcino-

genesis such as T cell signaling pathway, immune response, metabolism pathway, B cell signaling pathway,

and regulation of cytokine pathway. Integrated single-cell transcriptome analysis revealed immune cell

signaling was downregulated in cancer compared to SLE, whereas, stemness gene signature was enriched

in specific cell types in SLE and enriched more significantly in such cells from renal cancer or CTCL when
iScience 25, 104631, July 15, 2022 9
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Figure 6. Gene set enrichment analysis of shared drugs between autoimmune diseases and cancer

(A–H) GSEA of expression profile of methotrexate (A) and azathioprine (B) show that both methotrexate and azathioprine have extensive effects on gene

signatures of ADs and cancer, dark gray dot: pathway with normalized enrich score higher than 1 or lower than �1, highlighted colored dot: pathways

overlapped with 45 CAD genes associated pathways, light gray dot: pathway with normalized enrich score lower than 1 or higher than �1; (C) methotrexate

significantly downregulates activity-related genes of RA, SS, and SLE (p < 0.001), as well as gene signatures of RA (p < 0.001), SS (p < 0.001), SLE (p = 0.31);

(D) methotrexate significantly downregulates pathways in cancer gene signatures in colorectal cancer, small-cell lung cancer, prostate cancer (p < 0.001);

(E) pazopanib downregulates gene signatures of RA and SLE (p < 0.001); (F) tofacitinib downregulates gene signatures of non-melanoma skin cancer and

basal cell carcinoma (p < 0.001); (G and H) pioglitazone downregulates gene signatures of some ADs (such as RA and SS) (p < 0.05) (G), and cancer (such as

carcinoma and endometrial cancer) (p < 0.05) (H). NES: normalized enrichment score.
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compared with that in normal tissues. By investigating the gene variants, cells with stemness, as well as

drugs shared between ADs and cancer, we linked ADs with certain malignancies. Our study is the first

GWAS-based enrichment and single-cell analysis aiming to improve the knowledge of the genetic resem-

blances between ADs and cancer as well as shared risk genes among five ADs.
10 iScience 25, 104631, July 15, 2022
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Pathway analysis onCADgenes highlights some immune-related pathways, someof which also play important

roles in cancer development. T cell signaling pathway is one of the main categories that may underlie the link

between ADs and malignancies. It is widely known that altered survival of T cells and defects in the inhibitory

signaling pathways of T cells can contribute to autoimmunity (Ohashi, 2002). Alteration of T cell signaling asso-

ciatedwith survival, such as thePI-3Kpathway, is sufficient topromote autoimmunity. B cell signalingpathway is

crucial for normal B cell development and adaptive immunity (Melchers, 2015). BCR signaling also supports the

survival and growth of malignant B cells in patients with B cell leukemia or lymphomas. In addition, other

signaling pathways such as NOTCH signaling pathway and virus infection pathway were also significantly en-

riched (FDR<0.05) among these 45CADgenes.Most of these biological andmolecular pathways were related

to both ADs (Okada et al., 2014) and human cancers (Vogelstein et al., 2013). For example, NOTCH signaling

pathway has been known to control cell-fate determination in nearly every tissue and organ by influencing dif-

ferentiation, proliferation, or apoptotic events, and dysregulated NOTCH signaling is implicated in ADs and

various malignancies (Guruharsha et al., 2012; Kuksin and Minter, 2015).

Immune surveillance was depressed in renal cancer compared with SLE, indicated by the decrease of the

number of NK cells and B cells as well as immune cell signaling indicated by some CAD genes. If cells with

driver mutations and driver genes were not eliminated immediately by the immune system, those

cancerous and/or precancerous cells would develop into tumors (Wang et al., 2020, 2021). Moreover, in

specific cell types, stemness signature was enriched in both SLE cells and renal cancer cells or CTCL cells

rather than normal control cells (Figures 4 and 5). Cells with increased stemness may be more prone to

transform into cancer stem cells under the influence of some environmental factors or cytotoxic drugs.

Therefore, gain of cancer stemness and defect of immune surveillance may be the underlying mechanisms

of the high risk for some cancers in patients with ADs. In the comparison between SLE and renal cancer, we

identified some renal cell clusters with high stemness signals except renal cortex cells (cluster 5) were only

found in renal cancer but not in SLE. Whether those cells were derived from tumor development or due to

sampling difference require further study.

Patients with ADs have immune dysregulation, and usually have to receive immunosuppressive medications,

which can inhibit tumor immune surveillance. DMARDs, suppressing immune responses in patients with ADs,

could presumably raise the possibility of an increased risk of malignancies. However, there is a debate on

whether ADs treatments cause cancer. For instance, a large cohort study has shown that MTX can increase

the risk of non-melanoma skin cancer (Scott et al., 2016; Ridker et al., 2019) while other studies claimed that there

is no certain evidence to confirm the oncogenicity of MTX (Salliot and van der Heijde, 2009; Beauparlant et al.,

1999). Moreover, most randomized controlled trials meta-analysis of biologic treatment for RA including anti-

TNF and other biologic agents do not show significant differences in the incidence of cancer including lym-

phoma between biologics and control treatments (Lopez-Olivo et al., 2012; Bongartz et al., 2009; Leombruno

et al., 2009). However, the follow-up time is relatively short as cancer may be more likely to be noticed at late

periods. At this point, immunosuppressive treatment is not established as the dominant reason why autoimmu-

nity can raise the risk of some cancers, especially since some DMARDs may be used as antitumor drugs.

But it is worth noting that chronic inflammation is a hallmark of autoimmunity and inflammatory mediators

can act upon local tissues to increase cell proliferation, mutagenesis, oncogene activation, and angiogen-

esis, which is consistent with our results showed in Figure 4A and may result in tumor initiation and devel-

opment. It is easy to understand why many clinic chemotherapy drugs are shared between ADs and cancer.

MTX and AZA are two widely used drugs for standard therapy of both ADs and cancer. Our GSEA analysis

revealed shared treatment outcome between ADs and cancers by two well-known shared drugs (MTX and

AZA), and showed the potential of an antitumor drug (pazopanib), an antirheumatic drug (tofacitinib), and a

novel antidiabetic drug (pioglitazone) for treatments of ADs, cancers, and both, respectively. Moreover, we

confirmed the potential of an antitumor drug pazopanib and antidiabetic drug pioglitazone to inhibit RA

fibroblast-like synoviocytes and found an antirheumatic drug tofacitinib could significantly suppress the

growth of a basal cell carcinoma cell line TE354.T. The present study revealed a likely mechanism under-

lying epidemiological relationship and shared treatments between ADs and cancers. Our findings shed

light on the new discovery of chemotherapy for both ADs and cancers.
Limitations of the study

One important limitation in this study is that only five out of over a hundred of ADs were included in the

analysis, although the five ADs represent important systemic immune-mediated disease with high cancer
iScience 25, 104631, July 15, 2022 11



ll
OPEN ACCESS

iScience
Article
risk to some extends. Secondly, overlapping of susceptible genes of ADs and cancer driver genes were per-

formed to study the genetic association. However, we cannot exclude that some genes were differentially

mutated and functioned in the two entities. Thirdly, dynamic sampling of cancer development in patients

with history of ADs was very difficult. For this reason, we had to rely on the integrated analysis of data from

separate studies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

SNPs of RA, SLE, SS, SSc, and IIM NHGRI-EBI GWAS catalogue database https://www.ebi.ac.uk/gwas/home

Additional SNPs of RA, SLE, SS, SSc, and IIM PubMed Table S1 in this paper

Cancer driver genes (20/20 rule) Vogelstein et al., 2013 Table S2A

Cancer driver genes (CGC database) Tate et al., 2019 https://cancer.sanger.ac.uk/census

Cancer driver genes (CGCpointMut) Cho et al., 2016 http://www.inetbio.org/muffinn/

Cancer driver genes (HCD) Tamborero et al., 2013 http://www.intogen.org/tcga

Cancer driver genes (MouseMut) March et al., 2011; Mann et al., 2012 Supplemental information

Cancer driver genes (ONGene) Liu et al., 2017 http://www.ongene.bioinfo-minzhao.org/

Cancer driver genes (CTAT) Bailey et al., 2018 https://gdc.cancer.gov

Expression quantitative trait loci-1 Westra et al., 2013 http://www.genenetwork.nl/bloodeqtlbrowser

Expression quantitative trait loci-2 Westra et al., 2013 http://www.genenetwork.nl/bloodeqtlbrowser

Expression quantitative trait loci-3 GTEx Consortium, 2015 GTEx

Single cell transcriptome data of SLE (kidney) Arazi et al., 2019 ImmPort repository (SDY997): EXP15176

Single cell transcriptome data of SLE (skin) Der et al., 2019 ImmPort repository (SDY997): EXP15077

Single cell transcriptome data of renal cancer Young et al., 2018 European Genome-phenome Archive:

EGAS00001002171, EGAS00001002486,

EGAS00001002325 and EGAS00001002553

Single cell transcriptome data of cutaneous

T-cell lymphoma

Gaydosik et al., 2019 GEO: GSE128531

DGIdb Freshour et al., 2021 http://www.dgidb.org

Software and algorithms

GARFIELD Iotchkoval et al., 2019 http://www.ebi.ac.uk/birney-srv/GARFIELD/

Venn diagram VIB/UGent http://bioinformatics.psb.ugent.be/webtools/Venn/

ClueGO Bindea et al., 2009 http://apps.cytoscape.org/apps/cluego

ToppGene Chen et al., 2009 https://toppgene.cchmc.org/

g:Profiler Raudvere et al., 2019 https://biit.cs.ut.ee/gprofiler/

Cytoscape v3.6.1 Shannon et al., 2003 https://cytoscape.org/

STRING v10 Szklarczyk et al., 2015 https://string-db.org/

SNPnexus Dayem Ullah et al., 2018 https://snp-nexus.org/

Seurat v3.0.2 Stuart et al., 2019 https://satijalab.org/seurat/v3.0

Monocle v3 Cao et al., 2019 https://cole-trapnell-lab.github.io/monocle3/

CopyKat Gao et al., 2021 https://github.com/navinlabcode/copykat

Gene Set Enrichment Analysis Subramanian et al., 2005 https://www.gsea-msigdb.org/gsea/index.jsp
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Fengbiao Mao (maofengbiao@126.com).

Materials availability

This study did not generate new unique reagents.
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Data and code availability

d The SNPs information were collected from NHGRI-EBI GWAS catalogue database (https://www.ebi.ac.

uk/gwas/home) and PubMed. All the single cell transcriptome datasets used in this study are available in

GEO (https://www.ncbi.nlm.nih.gov/geo/). Accession numbers and DOIs are listed in the key resources

table.

d All codes used in this study followed the manuals of each R package. Accession numbers are listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The study was approved by the ethics committees and institutional review board of West China Hospital,

Sichuan University. We obtained fibroblast-like synoviocytes (FLS) from 3 synovial tissues obtained at ar-

throplasty or synovectomy from RA patients who received the diagnosis according to the American college

of Rheumatology 2010 classification criteria for RA. TE354.T cell line was purchased from ATCC (CRL-7762).
METHOD DETAILS

Collection of SNPs of autoimmune diseases and cancer driver genes

A systemic search of susceptible genes for five ADs (RA, SLE, SS, SSc, and IIM) was carried out on the

NHGRI-EBI GWAS catalogue database (https://www.ebi.ac.uk/gwas/home) (Buniello et al., 2019). A litera-

ture search for published GWAS or meta-GWAS papers on PubMed between Jan 1, 2000 and May 1, 2019

was conducted in the field of the five ADs using inclusion criteria: 1) discovered risk loci or SNP of five ADs

including RA, SLE, SS, SSc, and IIM; 2) GWAS or meta-analysis of GWAS with odds ratio (OR) and P-value.

Related data were extracted as a supplement to the curated datasets from NHGRI-EBI GWAS catalogue

database. All genome-wide significant SNPs (p < 5 3 10-8) and suggestive significant SNPs (5 3 10-8%

p < 1 3 10-5) were collected, including leading SNPs, first author and year, PubMed ID, journal, discovery

and replication sample sizes. A candidate gene was considered as an AD susceptible gene if 1) at least one

of the lead SNPs is located within or nearby the gene; and 2) it is functionally relevant to influence at least

one of the AD susceptible genes as proved by expression quantitative trait loci (eQTL) analysis. Cancer

driver genes were curated from studies of 20/20 rule (Vogelstein et al., 2013), CGC database (Tate et al.,

2019), CGCpointMut (Cho et al., 2016), HCD (Tamborero et al., 2013), MouseMut (March et al., 2011,

Mann et al., 2012), ONGene (Liu et al., 2017), and CTAT (Bailey et al., 2018). The duplicates of cancer driver

genes were removed.
Regulatory features of SNPs and overlapping genes

A non-parametric enrichment analysis was performed for associated variants by implementing GARFIELD

(Iotchkova et al., 2019). The overlaps between each AD and cancer or among five ADs were analyzed and

visualized using a Venn diagram created by a web tool (http://bioinformatics.psb.ugent.be/webtools/

Venn/).
Biological pathway enrichment and network analysis

The potential pleiotropic genes were further used to identify the most enriched canonical pathways using

Cytoscape plugin ClueGO (http://apps.cytoscape.org/apps/cluego) (Bindea et al., 2009), ToppGene

(Chen et al., 2009) (https://toppgene.cchmc.org/), and g:Profiler (Raudvere et al., 2019) (https://biit.cs.ut.

ee/gprofiler/) platforms. Network visualization was constructed by Cytoscape v3.6.1 (Shannon et al.,

2003). In details, all the 45 potential pleiotropic genes were used as input for these softwares. Cytoscape,

ToppGene and g:Profiler were used to compare the proportion of input genes mapping to a biological

pathway with the reference genes in the ingenuity databases. The significance of the overrepresented ca-

nonical pathways was determined using the hypergeometric test followed by adjustment by multiple

testing using the Benjamini-Hochberg (B&H) method. Significant levels were determined at B&H adjusted

p-value < 0.05. STRING v10 (https://string-db.org/) (Szklarczyk et al., 2015) was used to construct a protein-

protein interaction network.
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Expression regulation analysis and gene annotation

Expression quantitative trait loci (eQTLs) analysis was employed to identify the functional lead SNPs and

regulated genes using three public databases: Lappalainen et al (Lappalainen et al., 2013), Westra et al

(Westra et al., 2013), and GTEx (GTEx Consortium, 2015). Then, SNPs were annotated to local genes based

on GRCh37/hg19 using the web tool SNPnexus (https://snp-nexus.org/) (Dayem Ullah et al., 2018), which

provides information of overlapping or neighboring up/down-stream genes.
scRNA-seq datasets collection

Two integrated single cell analysis were performed in this study. In order to ensure it was comparable be-

tween SLE and cancer datasets, we integrated datasets from the same tissue tomake sure each paired sam-

ple had similar cell types. Renal tissues from SLE (Arazi et al., 2019) and renal cancer (Young et al., 2018)

were used for the first integrated single cell analysis. In kidney integration, the scRNA-seq dataset of renal

tissue from 24 patients with lupus nephritis (LN) was downloaded from the ImmPort repository with the

study number of SDY997 and the experiment number of EXP15176 (Arazi et al., 2019). In details, 3,707 renal

cells were extracted with the sample ID started with ‘‘K’’ from the UMI counts matrix file. The scRNA-seq

dataset of renal cancer was downloaded from the supplemental information of the study (Young et al.,

2018) with three files (matrix.mtx, genes.tsv, barcodes.tsv). In details, 16,103 renal cancer cells were ex-

tracted from five renal cancer patients with the sample ID labeled as ‘‘RCC’’ (clear cell renal cell carcinoma,

n = 4) and ‘‘PapRCC’’ (papillary renal cell carcinoma, n = 1). Skin tissues from SLE (Arazi et al., 2019) and

cutaneous T-cell lymphoma (CTCL) (Gaydosik et al., 2019) were used as the validation in the second inte-

grated single-cell analysis. In skin integration, the scRNA-seq dataset for SLE was obtained from 17 skin

tissues collected from 17 patients with LN, and was downloaded from ImmPort repository with the study

number of SDY997 and experiment number of EXP15077 (Arazi et al., 2019). In details, the read counts

of 2,272 skin cells were extracted from expression matrix files with the sample ID containing the character

of ‘‘Skin’’ and were used by followed analysis. The scRNA-seq dataset of skin tissues from three advanced-

stage CTCL skin tumors was downloaded from theGEOdatabase with the accession number of GSE128531

(Gaydosik et al., 2019). In details, the raw read counts of 10,938 skin cells were extracted from expression

matrix files.
scRNA-seq data integration

Single cell transcriptome datasets were read and further integrated using Seurat v3.0.2 (Stuart et al., 2019).

Briefly, Seurat Object of each dataset was generated by the Seurat function of ‘‘CreateSeuratObject’’. Cells

that expressed less than 500 genes were considered outliers and discarded. Raw unique molecular iden-

tifier counts were normalized to unique molecular identifier count per million total counts and log-trans-

formed with the Seurat function of ‘‘NormalizedData’’. In total 2,000 most variable genes were identified

based on average expression and dispersion with the selection method of "vst" by the Seurat function

of ‘‘FindVariableFeatures’’. FindIntegrationAnchors function was then used to find correspondences across

the different studied datasets (ie. SLE dataset 1 and renal cancer, SLE dataset 2 and lymphoma) with the

parameters of dimensionality = 1:20. IntegrateData function was used to generate the integrated Seurat

Object with the result output from the FindIntegrationAnchors. Next, the standard workflow from Seurat

was used to scale the integrated data, to find the relevant components with PCA (npcs = 30) and to visualize

the results with UMAP (reduction = "pca", dims = 1:20). Marker genes were identified by the Seurat func-

tion FindAllMarkers. Cell type of each cluster was then annotated with those marker genes by using Enrichr

(Kuleshov et al., 2016). Scaled expression data of these marker genes was used for creating dotplots.

Normalized data was shown in feature plots or violin plots.
Feature plots and violin plots of multiple genes

In order to create feature plots and violin plots for multiple genes, the average normalized expression of

those genes was used to profile stemness gene signature for renal cells and skin cells, T cell signaling gene

signature for renal cells. Stemness geneset containing 166 genes was collected from the database

CancerSEA (Yuan et al., 2019). Score of stemness signature was obtained from the average expression level

of stemness geneset by using the ‘‘apply’’ function of R. T cell signaling gene signature expression score

was obtained from the average expression level of gene PTPRC, SH2B3, TCF7 and GRB2 by using the

‘‘apply’’ function of R. Next, standard FeaturePlot and VlnPlot function of Seurat was used to generate

the feature plots or violin plots by replacing the original single gene with geneset signature score.
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Gene set enrichment analysis for stemness signature

First, four paired scRNA-seq datasets were served as the input datasets: 1) renal cells from cluster 5 of SLE

(n = 379 cells) versus normal renal cells (n = 379 cells) from healthy donors in the same study (Arazi et al.,

2019), 2) renal cells in cluster 5 of renal cancer (n = 688 cells) versus adjacent normal renal cells (n = 572 cells)

from the three corresponding individual patients in the same study (Young et al., 2018), 3) skin cells in clus-

ter 9 and 10 of SLE (n = 149 cells) versus normal skin cells (n = 224 cells) from healthy donors in the

same study (Der et al., 2019), 4) skin cells in cluster 5 of lymphoma (n = 977 cells) versus normal skin cells

(n = 977 cells) from three healthy control subjects in the same study (Gaydosik et al., 2019). Renal cells

from SLE and renal cancer, as well as skin cells from SLE and lymphoma were extracted from the UMI counts

matrix files of each dataset, as described in ‘‘Datasets collection’’ part, with the cluster ID of each cell

defined by Seurat, as described in ‘‘scRNA-seq data integration’’ part. Normal paired renal cells (SLE

and renal cancer) and normal paired skin cells (SLE and lymphoma) were extracted from paired UMI counts

matrix file of each dataset with the cell barcode information described in their corresponding supplemen-

tary meta files (Arazi et al., 2019; Young et al., 2018; Der et al., 2019; Gaydosik et al., 2019). Second, the

stemness geneset that contains 166 genes obtained from the database of CancerSEA (Yuan et al., 2019)

was used as input geneset. Third, the enrichment analysis of stemness signature was performed in four

paired samples using the GSEA (gene set enrichment analysis) v3.0 software (Subramanian et al., 2005).

Finally, the Enrichment score (ES) and nominal p value were applied to sort each dataset after gene set per-

mutations was performed 1000 times for the analysis.

Trajectory analysis and cell classification

Trajectory modelling and pseudo temporal ordering of cells were performed with the Monocle v3 R pack-

age (Cao et al., 2019) by following the standard pipeline on its official website (https://cole-trapnell-lab.

github.io/monocle3). Briefly, to further verify the potential relationships between SLE and cancer, inte-

grated objects with 2000 most highly variable genes of renal cells for renal cancer and SLE as well as

skin cells for lymphoma and SLE were input into Monocle v3 to predict developmental trajectory. Firstly,

reduce dimension was performed with the monocle function ‘‘reduce_dimension’’. Next, cells were group-

ed into clusters with the function of ‘‘cluster_cells’’. Then, in order to learn the trajectory graph, a principal

graph within each partition was fitted by using the learn graph function with the clustered cells. Finally, we

order the cells according to their progress through the developmental program that measured by pseudo-

time in Monocle v3. In order to place the cells in order, the ‘‘beginning’’ of the biological process was also

needed to be set by choosing the regions of the graph that marked as "roots" (here, we randomly assigned

a cell from SLE: TCTGGAAGTGTAAGTA as the root) of the trajectory. In addition, sub-types identity of

renal tumor into clear cell renal cell carcinoma, Wilms’ tumor and papillary renal cell carcinoma was pre-

dicted and annotated by the function of Garnett in Monocle v3 based on the top five most specific tumor

cell marker genes from the original paper (Young et al., 2018). Aneuploid copy number profiles of SLE renal

cells and renal cancer cells were delineated by using CopyKat (Gao et al., 2021) with default parameters.

Drug search and drug activity evaluated by gene set enrichment analysis

Drug-targeting CAD genes were summarized by querying the DGIdb (http://www.dgidb.org) platform

(Freshour et al., 2021). Efficacy of drugs shared between ADs and cancers including methotrexate and

azathioprine were performed with GSEA (Subramanian et al., 2005). GSEA of an anti-tumor drug pazopanib

and a targeted synthetic disease-modifying antirheumatic drug (DMARD) tofacitinib were explored in ADs

and cancers, respectively. Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARg)

agonist that was used for diabetes, was analyzed in both ADs and cancers to find its novel utility with

GSEA. Input expression matrix include: RNA expression microarray data from chondrocytes or RA synovial

fibroblasts stimulated with 1) methotrexate and 2) azathioprine (GEO: GSE12860); 3) RNA expression mi-

croarray data from HLCs treated with pazopanib or DMSO for 24 h (GEO: GSE75888); 4) RNA expression

microarray data of whole skin from C57/B6 mice female treated with tofacitinib or vehicle control for

4 days (GEO: GSE69300); 5) RNA expression microarray data of rat bladder after dosed orally with Piogli-

tazone or vehicle (GEO: GSE68592). Genesets include: 1) activity-related genes for RA, SS and SLE were

obtained from a previous study (Banchereau et al., 2017), 2) differentially expressed genes obtained in

SS cohorts (Emamian et al., 2009), 3) up-regulated genes in SLE compared to healthy controls were ob-

tained from a previous study (Mackay et al., 2016), 4) RA related genes were obtained from a previous study

(He et al., 2016), 5) rest of the gene sets for ADs and cancers, as well as different functional pathways were

obtained from databases of GWAS Catalog, dbGaP, GO Biological Process, KEGG, Reactome,

WikiPathways, and BioCarta. Then, the GSEA analysis of these five-paired samples was performed using
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the GSEA v3.0 software. Finally, the Enrichment score (ES) and nominal p value were applied to sort each

dataset after gene set permutations was performed 1000 times for the analysis. Gene symbols of mouse

and rat were converted to the symbols of homologous genes of human by using Ensembl BioMart tool.
Cell proliferation assay

The effects of tofacitinib, pazopanib, and pioglitazone on the proliferation of TE354.T (a basal cell carci-

noma cell line) and fibroblast-like synoviocytes (FLS) were analyzed using the cell counting kit (CCK)-8 pro-

liferation assay according to the manufacturer’s protocols (Biosharp, China). In brief, cells were plated onto

96-well plates at the density of 13104 cells/well in DMSO supplemented with 10% FBS. When they reached

30% confluence, cells were washed with PBS and fresh media supplemented with compounds of different

concentration were added into each well. Following 48h incubation, CCK-8 solution was added to each

plate. After 1-3h incubation, the absorbance was measured at 450 nm using a microplate reader. Each

experiment was repeated for 3 times independently.
QUANTIFICATION AND STATISTICAL ANALYSIS

Two-tailed unpaired student’s t-test were used for comparisons of two groups. Kolmogorov-Smirnov test

was used for calculation of the norminal p values in gene set enrichment analysis (GSEA). The hypergeo-

metric test followed by adjustment by multiple testing using the Benjamini-Hochberg (B&H) method

was used to determine the significance of the overrepresented canonical pathways. The level of signifi-

cance was set at *P < 0.05, **P < 0.01, ***P < 0.001. All data visualization and statistical analyses were car-

ried out using inhouse R script and Graphpad Prism v7.0 Software.
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