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As a bacterial resistance strategy, serine β-lactamases have evolved from cell wall

synthesizing enzymes known as penicillin-binding proteins (PBP), by not only covalently

binding β-lactam antibiotics but, also acquiring mechanisms of deacylating these

antibiotics. This critical deacylation step leads to release of hydrolyzed and inactivated

β-lactams, thereby providing resistance for the bacteria against these antibiotics

targeting the cell wall. To combat β-lactamase-mediated antibiotic resistance, numerous

β-lactamase inhibitors were developed that utilize various strategies to inactivate the

β-lactamase. Most of these compounds are “mechanism-based” inhibitors that in some

manner mimic the β-lactam substrate, having a carbonyl moiety and a negatively

charged carboxyl or sulfate group. These compounds form a covalent adduct with the

catalytic serine via an initial acylation step. To increase the life-time of the inhibitory

covalent adduct intermediates, a remarkable array of different strategies was employed

to improve inhibition potency. Such approaches include post-acylation intra- and

intermolecular chemical rearrangements as well as affecting the deacylation water.

These approaches transform the inhibitor design process from a 3-dimensional problem

(i.e., XYZ coordinates) to one with additional dimensions of complexity as the reaction

coordinate and time spent at each chemical state need to be taken into consideration.

This review highlights the mechanistic intricacies of the design efforts of the β-lactamase

inhibitors which so far have resulted in the development of “two generations” and 5

clinically available inhibitors.
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Resistance against β-lactam antibiotics is in large part mediated
by β-lactamases. The expression of β-lactamases protects the
intended targets of these antibiotics, the penicillin binding
proteins (PBPs), transpeptidase and carboxypeptidase enzymes
critical in the synthesis of peptidoglycan and the bacterial cell
wall (Nikolaidis et al., 2014). β-lactamases provide this protection
as they have evolved from PBPs to recognize β-lactams, yet have
also acquired a deacylation machinery to inactivate/hydrolyze
β-lactam antibiotics (Fisher and Mobashery, 2009). There are
four classes of β-lactamases, A–D, with Classes A, C, and D
being serine β-lactamases that have PBPs as a shared common
ancestor; Class B is reserved for the structurally unrelatedmetallo
β-lactamases (Bush, 2013).

The serine β-lactamases contain key motifs or features to
recognize and facilitate the β-lactam for hydrolysis: (1) a polar
pocket optimized to attract the carboxyl moieties of β-lactams;
(2) an oxyanion hole to attract and stabilize the carbonyl
oxygen of the β-lactam ring; (3) a catalytic serine hydroxyl
moiety that attacks the carbonyl carbon atom which leads
to breakage of the carbonyl carbon nitrogen bond in the β-
lactam; (4) conserved residues involved in a deacylation step
not present in PBPs (Class A β-lactamases utilize for example
a deacylation water that is primed by E166/N170 in the omega
loop, a structural motif not present in PBPs). These features
are complemented by an intricate hydrogen bonding network
involving conserved Lys and Ser/Tyr hydroxyl moieties, in
addition to a likely substrate-assisted hydrogen donation step
that aids in the catalytic mechanism of some of these enzymes
(e.g., Class C β-lactamases; Bulychev et al., 1997; Patera et al.,
2000). These above steps have been investigated for different
β-lactamases (Strynadka et al., 1992; Bulychev et al., 1997;
Chen et al., 2006; Docquier and Mangani, 2016) as well as
analyzed with QM/MM calculations [(Meroueh et al., 2005; Li
et al., 2011; Sgrignani et al., 2014, 2016; Tripathi and Nair,
2016; Lizana and Delgado, 2017)]. To combat the β-lactamase-
mediated resistance against β-lactam antibiotics, many different
β-lactamase inhibitors (BLIs) were developed often using novel
strategies to overcome the deacylationmachinery of β-lactamases
(Papp-Wallace and Bonomo, 2016). This review summarizes
the remarkable breadth of inhibitor development strategies
often involving additional chemical bond rearrangements post-
acylation. These chemical and mechanistic strategies might also
be useful for targeting other enzymes. Overall, the successful
efforts in this arena have led to five β-lactamase inhibitors being
approved for clinical use and others that are still in preclinical
development.

CLAVULANIC ACID, SULBACTAM, AND
TAZOBACTAM; THE “FIRST GENERATION”

The first BLIs that were approved by the FDA were clavulanic
acid, sulbactam, and tazobactam (Figure 1) (Page, 2000; Drawz
and Bonomo, 2010). Each of these BLIs was paired with a
β-lactam (amoxicillin/clavulanic acid, ticarcillin/clavulanic
acid, ampicillin/sulbactam, cefoperazone/sulbactam, and
piperacillin/tazobactam). These three inhibitors shared several

features with β-lactamase substrates, such as penicillin, including
a β-lactam ring fused to a 5-membered ring containing a
carboxylate moiety. Sulbactam and tazobactam are penicillanic
acid sulfones and differ in the C2 substituent which is a methyl
group for sulbactam and a triazolyl containing moiety for
tazobactam (Figure 1). In contrast, clavulanic acid is a clavam
with sulfone replaced by an oxygen. The latter inhibitor differs
from the other two inhibitors at the C2 position. The serine
β-lactamases recognize the inhibitors by positioning the carboxyl
moiety and carbonyl moieties in conserved regions in the active
site as was observed in the pre-acylation Michaelis-Menten
complex of sulbactam bound to the S70C mutant of SHV-1
β-lactamase (Figure 2A; Rodkey et al., 2012). The carboxyl
moiety is in a pocket with hydrogen bond donors T235, S130,
and within electrostatic interaction distances of R244 and K234
(Figure 2A). The carbonyl oxygen is positioned in the oxyanion
hole formed by backbone nitrogens of residues 70 and 237
thereby priming the carbonyl carbon for nucleophilic attack by
the hydroxyl moiety of the catalytic S70 as well as to stabilize the
transition state. Finally, the hydrophobic part of the ring systems
of sulbactam form hydrophobic interactions with the aromatic
face of the side chain of Y105. Overall, this binding mode is
similar to how these enzymes recognize β-lactam substrates
(Beadle et al., 2002).

All three “first generation” inhibitors are mechanism-
based compounds and inhibit serine β-lactamases by limiting
deacylation via additional post-acylation reaction pathways that
can promote semi-stable intermediates including trans-enamine
(Figure 2B) and cis-enamine (Figure 2C) inhibitory species
(Figure 1A; Padayatti et al., 2004, 2005; Totir et al., 2006).
The enamine species both yield a double bond in the vicinity
of, and thereby a conjugated system with, the carbonyl bond
(Figure 1A). This conjugation is thought to decrease the carbonyl
carbon’s susceptibility to nucleophilic attack by the deacylation
water thus preventing deacylation.

A second inhibitory mechanism for these inhibitors likely
entails fashioning an eventual irreversible inhibitory species that
appears after several turn-over events; this inhibitory species
is postulated to involve fragmentation of the inhibitor yielding
covalent modifications on either S130 and/or the catalytic S70
residue (Figures 1A, 2C; Kuzin et al., 2001; Sun et al., 2004).

DEFINING THE IMPORTANCE OF A
LONG-LIVED INTERMEDIATE: SA2-13

Efforts to improve the longevity of the trans-enamine
intermediate have yielded the inhibitor SA2-13 which increases
the lifetime of this intermediate by 10-fold over tazobactam as
observed in the measured kobs,react (Padayatti et al., 2006). This
improvement was accomplished by changing the C2 substituent
to a carboxyl linker such that the latter moiety occupies the
carboxyl binding pocket thereby forming a U-shaped covalent
adduct that stabilizes the trans-enamine intermediate (Padayatti
et al., 2006; Sampson et al., 2011; Ke et al., 2012c; Rodkey
et al., 2014; Figure 2D). SA2-13 thus positions its two carboxyl
moieties in the carboxyl binding pocket during two separate
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FIGURE 1 | Schematic diagrams of different approaches of mechanism-based inhibition of serine β-lactamases. (A) Inhibition by tazobactam; (B) inhibition by

PSR-3-283A; (C) inhibition by penem 1; (D) inhibition by LN-1-255; (E) inhibition by DCM-1-10; (F) inhibition by avibactam; (G) inhibition by vaborbactam; (H) inhibition

by S02030; (I) inhibition by phosphonate 3. Instances where there is conjugation with the double bond of the carbonyl moiety are highlighted by a dashed gray line.

steps in its reaction with the β-lactamase. The position of the
original carboxyl moiety in the SA2-13 complex leads to a minor
steric and electrostatic repulsion with residues in the omega-loop
such that binding of SA2-13 to Extended-Spectrum-β-Lactamase
(ESBL) mutants of SHV-1 causes complete disorder of the
omega loop; this disorder further enhancing SA2-13’s inhibitory
efficacy toward ESBLs as this loop harbors residues needed for
deacylation (Sampson et al., 2011).

SLOWING THE DEACYLATION RATE:
6β-HYDROXYMETHYL CONTAINING
INHIBITORS

The addition of a 6β-hydroxy-methyl moiety to a penicillanic
acid sulfone improved certain inhibitory characteristics
specifically slowing down the deacylation rate (Bitha et al.,
1999a,b; Papp-Wallace et al., 2012; Che et al., 2015). The basis of
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FIGURE 2 | Crystallographically determined binding modes of β-lactamase inhibitors. (A) Sulbactam bound in a pre-acylation/Michaelis-Menten binding mode in the

S70C mutant of SHV-1 β-lactamase. The S70C mutations changes the reactivity of the catalytic S70 nucleophile; the C70 residue forms a covalent sulfonamide bond

with the conserved K73 allowing capture of the pre-acylation complex. Hydrogen bonds between the carboxyl and carbonyl oxygens are depicted as dashed black

lines. The occupied carboxyl pocket and oxyanion hole are labeled “⋄” and “*”, respectively. These labels are used through subsequent panels of this figure where

applicable. The deacylation water is shown as a solid red sphere labeled “wat;” (B) tazobactam, in the trans-enamine conformation, bound to the deacylation deficient

E166A mutant of SHV-1; (C) tazobactam, in the cis-enamine conformation, bound to the inhibitor-resistant S130G mutant of SHV-1. Tazobactam adopts three

conformations two of which are cis-enamine (0.33 occupancy with cyan carbon atoms each labeled “a” and “b”) and a fragmented species with green carbon atoms

labeled “c” (also 0.33 occupancy). These labels for alternate conformations are used when needed in subsequent panels of this Figure. The cis-enamine and

fragmented species have their carbonyl oxygens positioned outside (labeled “#”) and inside the oxyanion hole (labeled “*”), respectively; (D) SA2-13 complexed to

SHV-1; (E) PSR-2-283A complexed to SHV-1. The hydroxymethyl moiety was observed to be in two conformations (labeled “a” and “b”). The major conformation

hydrogen bonds with the deacylation water (not shown) and the second conformation does not. Residue S130 is also in two conformations; (F) penem 1 bound to

SHV-1; (G) LN-1-255 complexed to SHV-1. Two conformations of the tail of LN-1-255 are observed (“a” and “b”); (H) DCM-1-10 bound to SHV-1; (I) Avibactam

bound to Class D OXA-24 β-lactamase; (J) Vaborbactam complexed to CTX-M-15. Two conformations for vaborbactam were observed. The amide moiety of

vaborbactam (labeled “†”) makes hydrogen bonds across the active site groove; (K) S02030 bound to KPC-2. Two conformations were observed for the

carboxyl-triazole moiety (labeled “a” and “b”); (L) Phosphonate 3 complexed to P99 β-lactamase. The iodobenzene ring was present in two conformations. Like in

vaborbactam, the amide moiety of phosphonate 3 makes hydrogen bonds across the active site.
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this effect is attributed to the presence of the hydroxyl-methyl
moiety interacting with the deacylation water when in the trans-
enamine or imine intermediate state of the inhibitor (Figures 1B,
2E). This interaction can thereby either (1) sterically prevent
the deacylation water from being able to nucleophilically attack
the carbonyl carbon; and/or (2) negatively alter the nucleophilic
properties of the deacylation water (Che et al., 2015). These
inhibitors were also observed to undergo fragmentation yielding
inhibitory adducts to Class A and C β-lactamases (Papp-Wallace
et al., 2012). A 6-α-hydroxymethyl penicillanate variant yielded
a similar inhibitory binding mode when bound to TEM-1 with
the hydroxymethyl moiety also interacting with the deacylation
water (Maveyraud et al., 1996).

PENEM; A STRATEGIC DESIGN THAT
ENHANCES THE ACYL INTERMEDIATE

To take advantage of and to increase the longevity of the semi-
stable acyl-enzyme imine intermediate, reactive groups were
added at the C6 position such as the alkylidene group in penems
(Figure 1C; Nukaga et al., 2003; Venkatesan et al., 2004a,b, 2008;
Mansour et al., 2007; Ke et al., 2012b). The design was to,
when in the imine intermediate, allow the nucleophilic sulfur
to react with the carbon in the alkylidene group via a 7-
endo-trig rearrangement. This reaction would form a new 7-
membered ring that via additional rearrangements can lead to an
enamine species that conjugates with the carbonyl carbon bond
(Figure 1C). This in turn limits deacylation by decreasing the
susceptibility of the carbonyl carbon to nucleophilic attack of the
deacylation water. This 7-membered ring enamine intermediate
was crystallographically observed for penem 1 with the carbonyl
oxygen situated in the oxyanion hole with deacylation likely
being diminished due to this conjugation (Figures 1C, 2F; Ke
et al., 2012b).

The alkylidene moiety at the C6 position can have different
aromatic 1-, 2-, or 3-ring systems as substituents of which penem
1 contains a 2-ring heterocycle substitution (Bulychev et al., 1995;
Ke et al., 2012b). When combined with piperacillin, penem 1
lowered MIC values from 64–2,048 to 4–8µg/ml for Escherichia
coli expressing SHV-1, SHV-2, and the inhibitor-resistant R244S
variant (Ke et al., 2012b).

6-ALKYLIDENE-2′β-SUBSTITUTED PENAM
SULFONES: LN-1-255 AND NOVEL
CHEMISTRY

Like the penems above, alkylidene group containing reactive
groups were added at the C6 position of penam sulfones (Chen
et al., 1987; Buynak et al., 1999; Phillips et al., 2005; Kalp et al.,
2007; Che et al., 2012). In particular, the pyridylemethylidene
moiety in LN-1-255 is potent since, when in the imine
intermediate, the nitrogen of the pyridyl group reacts with
the carbon atom of the imine bond to form a bicyclic ring
(Figure 1D; Buynak et al., 1999; Pattanaik et al., 2009). The
carbonyl carbon is now conjugated with the newly formed
bicyclic ring; to maintain its conjugation and thus planarity with

this bulky ring, the carbonyl oxygen “flips out” of the oxyanion
hole (labeled “#” in Figure 2G). This oxygen movement and the
resulting conjugation renders the carbonyl bond very resistant
to deacylation making the inhibitor even more efficient with
a lower turn-over number compared to tazobactam (Pattanaik
et al., 2009).

Remarkably, LN-1-255 and other 6-alkylidene-2′β-substituted
penam sulfones are also potent Class D β-lactamase inhibitors
and have a similar mechanism of enzyme inhibition (Bou et al.,
2010). An additional improvement for LN-1-255 included adding
a dihydroxy-phenyl catechol moiety at the C2 position of the
penam sulfone. This moiety is a siderophore and could allow
improved uptake of LN-1-255 via bacterial iron-acquisition
siderophore channels (Pattanaik et al., 2009). Presently, LN-1-
255 is undergoing preclinical studies to establish it efficacy in
treating infections.

7-ALKYLIDENECEPHALOSPORIN
SULFONES

Like in LN-1-255 and penem 1, the alkylidene moiety
can also be incorporated on the equivalent position in
cephalosporin sulfones, at the 7 position (Buynak et al.,
2000). Such a 7-alkylidenecaphalosporin sulfone is DCM-1-
10 (Figure 1E). DCM-1-10 undergoes a similar acyl-forming
inhibitory mechanism, yet deviates from penem 1 in that it
is the sulfone that reacts with the carbon of the alkylidene
moiety thus forming an 8 atom cyclic intermediate (Figures 1E,
2H). The carbonyl oxygen remains in the oxyanion hole yet
the intermediate is likely protected from deacylation by the
stabilizing effect on the carbonyl bond by being conjugated with
a neighboring double bond (Figure 1E; Rodkey et al., 2013).
DCM-1-10 has only modest potency as its IC50 is 4- and 27-
fold higher for clavulanic acid and tazobactam, respectively.
Nevertheless, the turnover numbers for DCM-1-10 are similar
to tazobactam and the kobs,react is significantly slower compared
to tazobactam and clavulanic acid indicating that DCM-1-10 can
form a relatively stable inhibitory complex (Rodkey et al., 2013).

DIAZABICYCLOOCTANE INHIBITORS; THE
“SECOND GENERATION”

Avibactam (NXL104) is a diazabicyclooctane (DBO) (Coleman,
2011) and is the 4th β-lactamase inhibitor that was FDA approved
as part of the formulation ceftazidime/avibactam (in 2015).
Unlike the above described inhibitors, avibactam inhibition of
serine β-lactamases is mostly reversible (Figure 1F; Ehmann
et al., 2012, 2013). Avibactam is chemically distinct from the
other inhibitors in that its rings are arranged differently with
the strained 4-atom β-lactam ring being absent. Nevertheless,
avibactam contains a carbonyl bond adjacent to a ring nitrogen.
The carboxyl moiety, present in all previously discussed
inhibitors, is replaced by a negatively charged sulfate moiety.
For proper recognition in the active site, the same distance
between the carbonyl oxygen and the negatively charged oxygens
of the sulfate group is maintained relative to its equivalent
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atoms in the above β-lactam containing inhibitors: the negatively
charged oxygens (in either the carboxyl or sulfate moiety) and
the carbonyl oxygen are separated by 4 atoms in both classes of
inhibitors (Figure 1).

Avibactam forms an acyl-enzyme complex with the serine
β-lactamase upon breakage of the C-N bond and concomitant
opening of the 5-membered ring (Figure 1F). Interestingly,
avibactam can be removed from the enzyme via deacylation
and ring closure resulting in an intact avibactam molecule being
liberated. A number of crystal structures have been determined of
avibactam complexes with representatives from all three serine β-
lactamase classes (Xu et al., 2012; Lahiri et al., 2013, 2014, 2015;
King et al., 2015; Krishnan et al., 2015; Calvopiña et al., 2017; Jin
et al., 2017; Lohans et al., 2017).

Despite the mostly reversible mode of inhibition (a property
not evident with the other BLIs listed above), some β-lactamases
are capable of slowly desulfating avibactam once bound to the
enzyme resulting in inactivation of avibactam upon carbamate
hydrolysis (Ehmann et al., 2012, 2013; Figure 1F). Avibactam
forms similar acyl-enzyme complexes in Class A, C, and D
β-lactamases (Xu et al., 2012; Lahiri et al., 2013, 2015; King
et al., 2015; Krishnan et al., 2015) in which the sulfate moiety
is occupying the carboxyl binding pocket and the carbonyl
oxygen is situated in the oxyanion hole (Figure 2I). One possible
explanation that the acyl-enzyme is likely resistant to attack by
the deacylation water could be due to having a nitrogen atom
bonded to the carbonyl carbon atom (Figure 1F) thereby likely
altering this bond as well as its local environment. The chirality of
this tertiary amine, when bound to β-lactamase, can vary from S,
R, or planar (Krishnan et al., 2015). Additional DBO β-lactamase
inhibitors are currently being developed with improved efficacies
with some having dual action potential by also inhibiting PBPs
(Ambrose et al., 2017; Durand-Réville et al., 2017; Moya et al.,
2017a,b; Shapiro et al., 2017; Zhanel et al., 2018). The DBOs in
preclinical development are listed in Table 1; additional DBO
analogs in earlier stages of development can be found here (King
et al., 2016; Wang et al., 2016; Durand-Réville et al., 2017).

BORONIC ACID AND PHOSPHONATE
TRANSITION STATE ANALOGS

Elucidation of the reaction scheme of mechanism-based
inhibition BLIs (Figure 1A) suggested that transitions states can
be mimicked to obtain potent inhibitors. The reaction scheme
indicates that a transition state exists for both the acylation
and the deacylation component of the reaction; exploiting these
transitions state for developing new BLIs will be discussed next.

The cyclic boronic acid inhibitor vaborbactam (RPX7009;
Hecker et al., 2015; Lomovskaya et al., 2017) was recently
FDA approved (meropenem/vaborbactam) and its complex
with CTX-M-15 and P99 β-lactamases was crystallographically
determined (Hecker et al., 2015; Figures 1G, 2J). Vaborbactam
mimics β-lactamase inhibitors/substrates (Figure 2J) by having
(1) a boron atom, like the carbonyl carbon, that can be the
recipient of nucleophilic attack by the catalytic serine; (2) a
carboxyl moiety that occupies the carboxyl binding pocket; (3)

a hydroxyl moiety mimicking the carbonyl oxygen; (4) a ring
system that makes hydrophobic interactions with the Y/W side
chain often found in β-lactamase active sites; and (5) an amide
moiety, found in the penicillin substrate, that can interact with
the different atoms across the active site cleft (with a backbone
oxygen of T237 on one side of the cleft and the amide moieties
of both Asn132 and Asn102 on the other end). When bound
to the active site, vaborbactam adopts an acylation transition
state binding mode with its exocyclic boron oxygen in the
oxyanion hole (Figure 2J). Like DBOs that can reversibly acylate
and deacylated, vaborbactam can be a reversible β-lactamase
inhibitor (Hecker et al., 2015; Lomovskaya et al., 2017). Cyclic
boronate inhibitors can have broad spectrum efficacy as some
are capable of inhibiting all 4 classes of β-lactamases including
metallo β-lactamases (Cahill et al., 2017). Furthermore, these
inhibitors have potential beyond inhibiting β-lactamases as a
cyclic boronate inhibitor was shown to inhibit PBP5 (Brem et al.,
2016).

A different boronic acid inhibitor is S02030 which when
complexed to KPC-2 binds in a deacylation transition state mode
(Figures 1H, 2K; Nguyen et al., 2016). This is in sharp contrast
to vaborbactam. S02030 possesses two boron hydroxyl groups:
one of them occupies the oxyanion hole whereas the second
hydroxyl occupies the pocket normally harboring the deacylation
water, but this water is now displaced (Figure 2K); these hydroxyl
interactions were also observed in a KPC-2 complex with a
small boronic acid fragment molecule (Ke et al., 2012a). S02030
is very potent at inhibiting β-lactamases observed in Klebsiella
pneumoniae and E. coli species. Developing boronic acid β-
lactamase inhibitors is a promising approach as has been shown
for a number of different β-lactamases (Tondi et al., 2010, 2014;
Powers et al., 2014; Bouza et al., 2017; Werner et al., 2017; Caselli
et al., 2018).

In addition to boronic acid analogs, phosphonates also behave
as transition state BLIs. Phosphonates are unique mechanism-
based BLIs; the nucleophilic attack of the catalytic serine leads
to bond breakage and release of part of the molecule adjacent
to the phosphonate (Figure 1I). The structure of phosphonate
3 bound to P99 β-lactamase reveals the phosphorous atom
covalently bonded to the catalytic serine (Figure 2L; Lobkovsky
et al., 1994). Furthermore, one of the phosphonate oxygen atoms
is in the oxyanion hole and the amide moiety makes hydrogen
bond interactions across the active site cleft like vaborbactam
(Figures 2J, 2L). Like with boronic acids, phosphonates have
also been used to probe binding modes of transition states of
β-lactams such as the phosphonate transition state analog of a
cephalosporin bound to a Class C β-lactamase (Nukaga et al.,
2004).

ADDITIONAL INHIBITOR DESIGN
APPROACHES

In addition to these mechanism-based β-lactamase inhibitors,
some groups have targeted developing non-covalent β-lactamase
inhibitors (Eidam et al., 2012; Nichols et al., 2014). This
approach is often initiated by starting from small fragments
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TABLE 1 | Promising DBO inhibitors in pre-clinical development or FDA approved.

DBO name Characteristics References

Avibactam (NXL104) Currently only FDA approved DBO β-lactamase inhibitor. Partnered

with ceftazidime

Reviewed in Coleman, 2011

WCK 4234 Active against Pseudomonas and Acinetobacter Class A, C, and D

β-lactamases. Partnered with imipenem or meropenem

Mushtaq et al., 2017

WCK 5107 (Zidebactam) Active against A. baumannii, Enterobacteriaceae, and Pseudomonas

aeruginosa. Dual target inhibitor (P.a. PBP2). Partnered with cefepime

or sulbactam

Livermore et al., 2017; Moya et al., 2017a,b; Sader et al.,

2017a,b

WCK 5153 Active against A. baumannii and P. aeruginosa. Dual target inhibitor

(P.a. PBP2). Partnered with cefepime or sulbactam

Moya et al., 2017a,b

ETX2514 Active against Gram-negative bacteria including A. baumannii and P.

aeruginosa. Dual target inhibitor (A. b. PBP2). Partnered with sulbactam

Durand-Réville et al., 2017; McLeod et al., 2017; Shapiro

et al., 2017

Relebactam (MK-7655) Active against Enterobacteriaceae, Klebsiella pneumoniae, and

Pseudomonas. Partnered with imipenem

Livermore et al., 2013; Blizzard et al., 2014; Lapuebla et al.,

2015; Haidar et al., 2017; Lob et al., 2017

Nacubactam (OP0595) Active against Enterobacteriaceae, P. aeruginosa, and K. pneumoniae.

Dual target activity (inhibits PBP2) and has “enhancer”-activity.

Partnered with cefepime, piperacillin, or meropenem

Livermore et al., 2015; Morinaka et al., 2015, 2017

and exploiting hydrogen bond, electrostatic, and van der Waals
interactions similar those observed in the mechanism-based
inhibitor complexes. Despite not having a covalent bond with
the catalytic serine, this approach can yield nano-molar affinity
β-lactamase inhibitors (Eidam et al., 2012; Nichols et al.,
2014). An important challenge here is the need to demonstrate
“broad class” inhibition as was seen with DBOs. Alternatively,
“narrow spectrum” inhibitors should not be discounted for
therapeutic purposes as they will likely cause less damage to the
patients beneficial microbiome (Boucher et al., 2017). Another
approach is to utilize naturally observed protein inhibitors of
β-lactamases from Streptomyces, termed β-lactamase inhibitor
proteins (BLIPs), which can be altered to modulate β-lactamase
specificity (Brown et al., 2013; Chow et al., 2016; Adamski
and Palzkill, 2017a,b); peptides derived from BLIPs have
been shown to have antimicrobial activity (Alaybeyoglu et al.,
2015).

CONCLUSION

BLI development has made tremendous progress during the
last decades and exploited numerous different chemical and/or
mechanistic strategies. This includes unusual (post-acylation)
reactions that can involve both intra- and/or inter-molecular
rearrangements. Different areas of the reaction coordinate space
have been exploited to arrive at novel and promising compounds.
Despite all the progress resulting in now 5 inhibitors clinically
available, resistance against these β-lactamase inhibitors has
occurred including against avibactam (Wright et al., 2017);

resistance against vaborbactam has not been observed yet, as the
inhibitor has only recently been FDA approved (Zhanel et al.,
2018). Therefore, continued efforts in this field are needed to
develop BLIs with novel properties such as the dual action DBO
inhibitors that are in preclinical development. Also, developing
BLIs that target both metallo-β-lactamases (Class B) and serine
based enzymes (Classes A, C, and D) remains a goal of the
future.
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