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Abstract

Profilin 1 (PFN1) protein plays key roles in neuronal growth and differentiation, membrane

trafficking, and regulation of the actin cytoskeleton. Four natural variants of PFN1 were

described as related to ALS, the most common adult-onset motor neuron disorder. How-

ever, the pathological mechanism of PFN1 in ALS is not yet completely understood. The

goal of this work is to thoroughly analyze the effects of the ALS-related mutations on PFN1

structure and function using computational simulations. Here, PhD-SNP, PMUT, PolyPhen-

2, SIFT, SNAP, SNPS&GO, SAAP, nsSNPAnalyzer, SNPeffect4.0 and I-Mutant2.0 were

used to predict the functional and stability effects of PFN1 mutations. ConSurf was used for

the evolutionary conservation analysis, and GROMACS was used to perform the MD simu-

lations. The mutations C71G, M114T, and G118V, but not E117G, were predicted as delete-

rious by most of the functional prediction algorithms that were used. The stability prediction

indicated that the ALS-related mutations could destabilize PFN1. The ConSurf analysis indi-

cated that the mutation C71G, M114T, E117G, and G118V occur in highly conserved posi-

tions. The MD results indicated that the studied mutations could affect the PFN1 flexibility at

the actin and PLP-binding domains, and consequently, their intermolecular interactions. It

may be therefore related to the functional impairment of PFN1 upon C71G, M114T, E117G

and G118V mutations, and their involvement in ALS development. We also developed a

database, SNPMOL (http://www.snpmol.org/), containing the results presented on this

paper for biologists and clinicians to exploit PFN1 and its natural variants.

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that progressively affects

the upper and lower motor neurons, leading to muscular atrophy and paralysis due to neuron

injury and death [1]. ALS is the most common adult-onset motor neuron disorder [2] with an

estimated economic burden of over one billion dollars a year in the United States only [3].

Due to the lack of effective treatments, ALS leads to death within 2 to 5 years after the diagno-

sis, usually due to respiratory paralysis [4]. Most ALS cases are sporadic (sALS); however,

5–10% of the ALS cases are familial (fALS) and related to genetic causes [5].
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Four non-synonymous single nucleotide variants (nsSNVs) in the PFN1 gene were

described as being involved with fALS development [6,7]. Interestingly, these mutations were

also found in sporadic cases of ALS [8]. The PFN1 gene encodes profilin 1 (PFN1), a 140-resi-

dues ubiquitously expressed [9] cytosolic protein [10] that plays key roles in the regulation of

actin cytoskeleton [11].

PFN1 is crucial for monomeric actin conversion into filamentous actin, as it sequestrates

cytosolic actin monomers and catalyzes the assembly of monomers into filamentous-actin [9].

PFN1 also interact with poly-L-proline (PLP) sequences and major proline-rich protein fami-

lies, such as vasodilator-stimulated phosphoproteins (VASP), which participates of the nucle-

ation and elongation of actin filaments. PFN1 interaction with these cytoskeleton regulators is

an important generator of actin-based structures [12]. Previous studies have shown that PFN1

is also an important regulator of cell motility events, including migration and invasion of

breast cancer and vascular endothelial cells. Furthermore, disrupted PFN1 interactions, as well

as reduced PFN1 expression have been shown to cause impaired capillary morphogenesis and

defects in neurite development [13].

Moreover, PFN1 is involved in many cellular processes [11] through the interaction with

diverse binding partners [14], including structural proteins in neurons, growth factors [9],

ribonuclear particles [15] and proteins involved in signaling cascades [9]. PFN1 also plays

important roles in membrane trafficking [16], RNA processing and transcription [9], GTPase

signaling [17], and neuronal growth and differentiation [16]. In neurons, PFN1 is essential for

neuronal development, formation and maintenance of the neuronal cytoskeleton, synaptic for-

mation and activities, as well as growth of dendrites and axons [8].

ALS-related mutations in PFN1 are known to cause cytoskeletal disruption in neurons [10],

resulting in axonal dysfunction and retraction. This leads to synaptic failure with consequent

denervation of post-synaptic motor neurons [18]. Cytoskeletal defects plays a major role in

motor neuron diseases and contributes importantly to ALS pathogenesis [19]. It is also known

that PFN1 mutations cause proteostasis disturbances [14], which are evidenced by the pres-

ence of biological markers, such as formation of cytoplasmic protein inclusions [10] and accu-

mulation of ubiquitin and p62 [20]. PFN1 mutations are known to destabilize PFN1 resulting

in structural perturbations that lead to protein aggregation [17]. Protein misfolding and aggre-

gation result in proteostasis network disturbance, which is believed to contribute to early

events in ALS pathogenesis [21]. Thus, studying the PFN1 missense mutations may contribute

to a better understanding of the ALS pathophysiology.

Next-generation sequencing experiments reveal millions of novel SNVs [22]. However, the

experimental characterization of their effects is extremely expensive, time-consuming and dif-

ficult [23]. The computational simulations, also known as in silico analysis, allows the predic-

tion of SNV effects in a faster, cheaper and efficient way [4]. The computational approach is

then beneficial in prioritizing the most probable disease-related mutations [23] to be narrowly

examined with wet-lab experiments [4]. Moreover, already known disease-related mutations

can also be studied in silico to identify pharmacological targets for relevant treatments and to

gain insight into their molecular mechanisms of pathology [23]. In this scenario, the computa-

tional simulations have become an important ally of the experimental methods [4] and an

essential approach for the study of SNVs [22,23].

Optimal protein-drug binding is crucial to achieving the desired therapeutic effects, as well

as to minimizing associated side effects and toxicity of drugs. Protein-drug interactions are

determined by local biochemical and structural features of drug-binding cavities [24]. Residues

outside drug-binding cavities can also have long-range effects on these sites and, consequently,

influence protein-drug binding [25]. Thus, key amino-acid residues in proteins are essential for

maintaining the structural properties of binding sites and for the formation of non-covalent
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interactions with drug molecules [24]. In this sense, nsSNVs affecting key protein residues can

impact drug binding-sites, resulting in alterations in drug binding affinity and selectivity [26].

In this work, we applied computational simulations, following the methodology previously

established by our group [4,27,28], to the study of PFN1 nsSNVs, which were described as

related to ALS development [6,7]. We aim at the characterization of the PFN1 nsSNVs and

their effects on protein structure and function. Here, we applied ten functional and stability

prediction algorithms, an evolutionary algorithm and molecular dynamics simulations to a

thorough analysis of PFN1 nsSNVs. Our findings suggested that these nsSNVs could affect

PFN1 flexibility, which could be therefore related to ALS development. We also developed an

database containing the results presented in this paper for biologists and clinicians to exploit

PFN1 and its natural variants.

Since these nsSNVs may influence drug selection, dosing, and adverse effects, understand-

ing their effects on PFN1 structure and function may help the development of new drugs and

personalized therapies for ALS [22].

Materials and methods

Sequence, structure and natural variants retrieval

The sequence and natural variants of PFN1 were retrieved from the UniProt database (UniProt

ID: P07737) [7]. The structure of and the wild-type PFN1 was retrieved from the Protein Data

Bank (PDB) database (PDB ID: 1PFL) [29].

Functional and stability prediction analysis

The functional and stability effects of the PFN1 nsSNVs were predicted using the following

algorithms: PhD-SNP [30], PMUT [31], PolyPhen-2 [32], SIFT [33], SNAP [34], SNPS&GO

[35], SAAP [36], nsSNPAnalyzer [37], SNPeffect4.0 [22] and I-Mutant2.0 [38].

Evolutionary conservation analysis

The evolutionary conservation analysis of PFN1 was performed using the ConSurf server,

which determined the degree of evolutionary conservation of each amino-acid of PFN1 [39].

The following parameters were selected for this analysis: PDB ID: 1PFL; Chain identifier: A;

homologous search algorithm: PSI-BLAST; number of iterations: 3; E-value cut-off: 0.0001;

protein database: UniProt; reference sequence: closest; number of reference sequences

selected: 150; maximum sequence identity: 95%; minimum identity for counterparts: 35%;

alignment method: MAFFT-L-INS-i; calculation method: Bayesian; and evolutionary substitu-

tion model: best model (default).

Molecular dynamics simulations

MD simulations of the wild-type PNF1 and its natural variants: C71G, M114T, E117G and

G118V, were performed using the GROMACS 2018.2 package [40]. Mutator Plugin 1.3 [41],

which is available in the Visual Molecular Dynamics (VMD) 1.9.1 software [42] was used to

induce the C71G, M114T, E117G and G118V substitution on the experimentally determined

structure of wild type PFN1 (PDB ID: 1PFL) [29].

Following the methodology previously established by our group [4], we selected the

amber99SB-ILDN as the force field of the simulations. Amber99SB-ILDN is an improved ver-

sion of the amber99SB force field [43], which is widely used in MD simulations of proteins

[44]. The new side-chain torsion potentials of amber99SB-ILDN are clearly improved and do

not cause undesirable side effects [43]. Amber99SB-ILDN proved to be a good choice for the
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MD simulation of proteins [44], since this force field accurately descript many protein struc-

tural and dynamical properties [45]. Amber99SB-ILDN is therefore recommended for the sim-

ulation of protein dynamics [43,44].

The structures were solvated using the TIP3P water model inside a dodecahedral box of

dimensions 44 x 37 x 34 Å. The systems were neutralized by adding Na+ and Cl− ions and min-

imized for 5000 steps using the steepest descent method.

After system minimization, three other steps were carried out in the MD simulations: NVT

(constant number of particles, volume, and temperature), NPT (constant number of particles,

pressure, and temperature) and production. The NVT ensemble was followed by the NPT

ensemble at 1 atmosphere and temperature of 300 K for the duration of 100 ps [4]. Parrinello-

Rahman was selected as the barostat and v-rescale was selected as the thermostat of the NVT

and NPT ensembles.

The production simulations were performed in triplicates at 300 K for the duration of 100

ns for the wild-type PFN1 and its variants. The LINCS (linear constraint solver) algorithm was

applied to constrain covalent bonds [46], and the electrostatic interactions were processed

using the particle mesh Ewald (PME) method [47]. The time step of 0.002 ps was selected for

the simulations and the MD trajectories were recorded every 10 ps [4].

Structural parameters of the wild-type PFN1 and its variants were accessed through the

root-mean-square-deviation (RMSD), root-mean square-fluctuation (RMSF), radius of gyra-

tion (Rg), intramolecular hydrogen bonds (Hb) and B-factor analyses. These parameters were

calculated separately for each triplicate trajectory. The means for each triplicate in the RMSD,

RMSF, RG and intramolecular Hb analyses were calculated and plotted using the ggplot2

package in R software [48].

The following GROMACS distribution programs were used to perform the MD analyses:

gmx hbond, gmx rms, gmx rmsf, and gmx gyrate.

PFN1 database development

The results presented in this paper were compiled and stored on SNPMOL, an online database.

The human-curated database of PFN1 was developed using JSmol, an HTML5-based equiva-

lent of Jmol [49].

Results and discussion

Sequence, structure and natural variants retrieval

PFN1 is a 140-amino acid cytoskeletal protein that is coded by the PFN1 gene [7], which is

located on chromosome 17p13.2 [50]. Four natural variants of PFN1 were described as related

to the development of ALS type 18 [7] structure, i.e., PDB ID: 1PFL, experimentally deter-

mined by nuclear magnetic resonance (NMR) spectroscopy [9,29].

PFN1 protein has two important domains: an actin-binding domain and a poly-L-proline

(PLP) binding domain [9], which are essential for PFN1 to perform its biological functions

[9,12]. The actin-binding domain of PFN1 is located on its helix 3 and part of its strands 4, 5

and 6, whereas the PLP binding domain is lo’cated on the N and C terminal helices [9,15,16].

Moreover, the residue threonine 89 (T89) is an important site of PFN1, which is phosphory-

lated by PKA. The phosphorylation of T89 was predicted to potentially increase the PFN1

affinity for actin. This post-translational modification is believed to be a regulatory mechanism

of PFN1-dependent actin polymerization processes. Moreover, several changes were observed

by inducing the T89D mutation in PFN1, including detergent insolubility, protein aggregation

and accelerated proteolysis, which suggested that the T89 residue is structurally important for

PFN1 [51].
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A schematic representation of PFN1 containing its natural variants and important domains

are shown in Fig 1. As shown in Fig 1, all studied PFN1 nsSNVs lead to amino acid substitu-

tions in regions that are spatially close to the actin binding and PLP binding domains of the

Fig 1. Tridimensional structure and schematic representation of PFN1. The PLP binding domain and the actin-binding domain of PFN1 are represented in blue

and green, respectively. The mutation sites: C71, M114, E117 and G118, are represented in red. The dark yellow arrow shows the residue threonine 89. (A)

Tridimensional structure of PFN1 (PDB ID: 1PFL). (B) Schematic representation of PFN1.

https://doi.org/10.1371/journal.pone.0215723.g001
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protein. It is believed to be related to the impaired actin-binding ability and altered PLP-bind-

ing ability of the PFN1 ALS-related variants [9,16].

Functional and stability prediction analysis

The functional and structural consequences of nsSNVs at the protein level can be predicted

using computational simulations [52]. The effects of amino acid substitutions on PFN1 func-

tion were analyzed using eight different algorithms. The mutations C71G and G118V were

predicted as deleterious by the eight functional prediction algorithms that were used. The

M114T mutation, in turn, was predicted as deleterious by seven of the eight algorithms, while

the E117G mutation was predicted as deleterious by four of the eight algorithms (Fig 2).

In the test case we performed, the algorithms: SAAP, SIFT, SNAP, and SNPs&GO, showed

the best accuracy amongst the used functional prediction algorithms. They were able to detect

the known deleterious effects of the studied PFN1 mutations [7]. The PhD-SNP algorithm pre-

sented the worst accuracy in the test case we performed, as it was not able to detect the known

deleterious effects of the M114T and E117G mutations [7] (Table 1).

Despite the high accuracy in detecting the known deleterious effects of C71G, M114T and

G118V, the algorithms that were used showed low accuracy in predicting the known

Fig 2. Functional prediction results of each PFN1 nsSNV. The four known nsSNVs of PFN1 were analyzed using eight different functional prediction

algorithms. The bar plot indicates the number of neutral and deleterious predictions of each PFN1 nsSNV, according to the used algorithms. Blue bars indicate

neutral predictions while red bars indicate the number of deleterious predictions.

https://doi.org/10.1371/journal.pone.0215723.g002
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deleterious effect of the E117G variant of PFN1. These algorithms apply different strategies to

make predictions [28]. Moreover, there is no established gold standard method to predict the

functional effects of mutations [53]. Thus, it is important to combine the results of a variety of

algorithms to determine the deleterious effects of mutations, as previously demonstrated by

our group [4,28,54]. The test case we performed reaffirms the importance of the combined

usage of algorithms when proceeding predictive functional analysis. The divergent results and

the weaknesses of functional prediction algorithms evidence the need of improving such

methods.

The effects of amino acid substitutions on PFN1 stability were further analyzed using the

FoldX [55] and I-Mutant2.0 [38] algorithms. According to I-Mutant2.0 and FoldX, the muta-

tions C71G, M114T and E117G decrease PFN1 stability. The mutation G118V, in turn, was

predicted as destabilizing for FoldX and stabilizing for I-Mutant2.0. Recently, Boopathy et al.
[16] showed that the ALS-related mutations: C71G, M114T, and G118V, but not E117G, desta-

bilize PFN1 in vitro [9,16].

The divergent results presented in the stability prediction analysis may occur due to the dif-

ferent prediction strategies applied by I-Mutant2.0 and FoldX [22,38]. While FoldX is an algo-

rithm trained in a database of engineered proteins [55], I-Mutant 2.0 uses information from a

database of experimentally determined structures to predicted the effect of mutations on pro-

tein stability [38].

Lastly, the effects of amino acid substitutions on PFN1 aggregation tendency (TANGO),

amyloid propensity (WALTZ), and chaperone binding tendency (LIMBO) were analyzed

using the SNPeffect4.0 algorithm [22]. According to SNPeffect4.0, none of these mutations

affect the PFN1 aggregation tendency, amyloid propensity, and chaperone binding tendency.

Interestingly, the protein variants: C71G, M114T and G118V, are known to aggregate in vitro
[19].

Evolutionary conservation analysis

ConSurf is a bioinformatics tool that analyzes the evolutionary conservation of protein regions

and calculates the conservation score of each amino acid based on statistical inference meth-

ods, machine learning, and multiple sequence alignments. The conservation scores are associ-

ated with a coloring scheme and projected on the protein’s surface. ConSurf is widely used to

detect functional regions on proteins as important residues are usually conserved throughout

evolution [39].

The evolutionary conservation score of each amino acid of PFN1 was calculated by ConSurf

(Fig 3). Highly conserved positions are colored maroon, average conserved positions are col-

ored white, and variable positions are colored turquoise [39]. According to ConSurf, all PFN1

mutations occur in conserved positions, which indicate that these variants probably affect

important PFN1 sites. It might explain the association of these mutations with ALS develop-

ment. Moreover, PFN1 has two major areas composed of structural conserved amino acids,

Table 1. Functional prediction analysis of PFN1 natural variants.

Functional prediction algorithms

Natural variant nsSNPAnalyzer PhD-SNP PolyPhen-2 PMut SAAP SIFT SNAP SNPs&GO

C71G Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious

M114T Deleterious Neutral Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious

E117G Neutral Neutral Neutral Neutral Deleterious Deleterious Deleterious Deleterious

G118V Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious

https://doi.org/10.1371/journal.pone.0215723.t001

Functional and structural analysis of human PFN1

PLOS ONE | https://doi.org/10.1371/journal.pone.0215723 June 19, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0215723.t001
https://doi.org/10.1371/journal.pone.0215723


which correspond to the actin binding domain and adjacent residues, as well as the PLP-bind-

ing domain. These regions are crucial to PFN1 performs its biological function [14], which

probably contributed to their structural conservation throughout the evolution [39].

In addition to showing the conservation scores of PFN1 mutated sites, the ConSurf analysis

also provided an interesting graphical representation in which the conservation scores for

amino acid of PFN1 is plotted on its three-dimensional protein structure, highlighting its con-

served regions and structural proximities.

Molecular dynamics simulations

MD is an in silico method of solving Newtonian equations of motions for a given set of atoms

[56]. This method aims to reproduce the real behavior of molecules, such as proteins, in their

environment. Unlike the static pictures obtained from methods such as X-ray crystallography

[4], the molecular trajectories generated by MD simulations provide detailed information on

changes in protein conformation and fluctuation. This information can be used to assess struc-

tural parameters of proteins, such as flexibility and stability [57]. As changes in protein flexibil-

ity and stability may lead to the development of pathologies [52,58,59], the impact of

mutations on protein structure and function can be understood using MD simulations (Vinay

Kumar et al., 2014).

To further analyze the effects of PFN1 nsSNVs we carried out MD simulations of the wild-

type PFN1 and its four natural variants [40] using the GROMACS 5.0.7 package [40]. The

NMR structure of PFN1 (PDB ID: 1PFL) was used as the wild type structure. The tridimen-

sional structures of the C71G, M114T, E117G and G118V variants were generated by inducing

the respective amino acid substitutions on the wild type PFN1 using the VMD software (Ver-

sion 1.9.1) [42]. The MD simulations of the wild-type PFN1 and its natural variants were car-

ried out for 100ns. The generated trajectories were evaluated according to their RMSD, RMSF,

RG, intramolecular Hb and B-factor characteristics.

Fig 3. Evolutionary conservation analysis of PFN1. The PFN1 conservation profile shown in three different angles. Each PFN1 amino acid is represented as a

space-filling model and colored according to its conservation score. The ConSurf coloring scheme is shown in the color-coding bar. According to ConSurf, the

positions 71, 114 and 118 are highly conserved, while the position 117 is average conserved.

https://doi.org/10.1371/journal.pone.0215723.g003
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RMSD is a useful parameter to analyze the structure motions over time and to determine its

spatial convergence throughout the simulation [4,56,60]. As shown in Fig 4, the average

RMSD values of the C71G (0.1875±0.02nm), M114T (0.2091±0.02nm), E117G (0.2480

±0.02nm), and G118V (0.2415±0.3nm) variants are similar to the wild-type PFN1 (0.2248

±0.04nm). It indicates that the PFN1 variants diverge from the initial position as much as the

wild-type PFN1. Moreover, the establishment of a plateau in the RMSD values, observed in all

simulations (Fig 4), suggests that the structures fluctuate around an average stable conforma-

tion, thus making sense to assess its local fluctuations [56,60]. The E117G simulation reached a

plateau of RMSD values first (around 25ns), followed by the wild-type (around 40ns), M114T

(around 60ns), G118V(around 65ns), and C71Gsimulations (around 70ns), respectively.

The RMSD analysis, however, only provides information about the overall structure fluctua-

tions [61]. We then performed RMSF analysis to obtain local information. RMSF is a useful

parameter to describe the flexibility of protein residues throughout the simulation [4,61]. As

shown in Fig 5, all studied variants presented altered flexibility in the actin-binding, PLP-bind-

ing domains and adjacent regions throughout the simulations when compared to the wild-type

PFN1. However, none of the variants presented altered flexibility at the residue threonine 89.

The C71G variant presented increased flexibility at the actin-binding domain and adjacent

regions, especially at the region comprised between the residues 50–56 and 75–79. It also had

Fig 4. Backbone RMSD of the wild-type PFN1 and its natural variants. The RMSD for the backbone atoms of the wild-type structure and variants at 300K

shown as a function of time. The wild type is represented in black,variant C71G is represented in red, variant M114T is represented in blue, variant E117G is

represented in green, and variant G118V is represented in purple.

https://doi.org/10.1371/journal.pone.0215723.g004
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an increased flexibility at the N and C-terminal helices of the PLP-binding domain. In addi-

tion, this variant presented increased flexibility especially at the coils regions.

The M114T variant, in turn, presented reduced flexibility at the actin-binding domain and

adjacent regions, especially at the region comprised between the residues 73–82 and 92–94. It

also had increased flexibility at the N-terminal helix of the PLP-binding domain and decreased

flexibility at the C-terminal helix of the PLP-binding domain. Moreover, this variant presented

decreased flexibility especially at the coil and helices regions.

The E117G variant presented reduced flexibility at the actin-binding domain and adjacent

regions, especially at the region comprised between the residues 64–68 and 77–81. It also had

increased flexibility at the N-terminal helix of the PLP-binding domain and an increased flexi-

bility in a region adjacent to the C-terminal helix of the PLP-binding domain (residues 116–

120). In addition, this variant presented decreased flexibility especially at the coil regions,

Fig 5. RMSF of the wild-type PFN1 and its natural variants. The RMSF of each residue of the PFN1 wild-type and variants at 300K is shown. Schematic

representations of PFN1 domains and secondary structure are shown to further comparison. The PLP binding domain and actin-binding domains of PFN1 are

represented in blue and green, respectively. The PFN1 mutation sites are colored red. Alpha-helices are represented by magenta arrows, beta-strands are

represented by yellow barrels, and the coils are represented by the thin black lines. The dark yellow line shows the residue threonine 89. (A) The wild type is

represented in black and variant C71G is represented in red. (B) The wild type is represented in black and variant M114T is represented in blue. (C) The wild type

is represented in black and variant E117G is represented in green. (D) The wild type is represented in black and variant G118V is represented in purple.

https://doi.org/10.1371/journal.pone.0215723.g005

Functional and structural analysis of human PFN1

PLOS ONE | https://doi.org/10.1371/journal.pone.0215723 June 19, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0215723.g005
https://doi.org/10.1371/journal.pone.0215723


except for the region comprised between the residues 36–42, which had an increased flexibility

when compared to the wild-type.

The G118V, in turn, presented decreased flexibility in adjacent regions to the actin-binding

domains, except for the region comprised between the residues (93–96). It also had an

increased flexibility at the N-terminal helix of the PLP-binding domain. Moreover, this variant

presented decreased flexibility especially at the coil regions, except for the region comprised

between the residues 36–50, which had an increased flexibility when compared to the wild-

type PFN1.

Since protein flexibility has a wide influence on the thermodynamics of binding [62,63] the

flexibility changes observed in the PLP,actin-binding domain and adjacent regions of PFN1

variants might be related to the known altered binding ability of these variants [16].

The structural flexibility can also be assessed throughout the simulation by analyzing the B-

factor [4]. As well as the RMSF, B-factor is useful for describing the flexibility of protein resi-

dues [4,64]. The distribution of B-factors along a protein structure is an important indicator of

its dynamics [65]. We then projected the B-factor values calculated for each PFN1 residue in

the protein surface (Fig 6).

The C71G variant presented increased flexibility at adjacent regions to the actin-binding

domain of PFN1. The M114T variant, in turn, presented decreased flexibility at the actin-bind-

ing domain and adjacent regions, as well as increased flexibility at the PLP-binding domain

and adjacent regions. The E117G variant presented decreased flexibility in adjacent regions of

Fig 6. The B-factor representation of PFN1 wild-type and its natural variants. The B-factor for each residue of the PFN1 wild-type and variants represented in a

coloring-thickness scheme. Red and bulky structures represent high values and dark blue and thin structures represent low values. (A) B-factor representation of

the wild type PFN1. (B) B-factor representation of the C71G variant. (C) B-factor representation of the M114T variant. (D) B-factor representation of the E117G

variant. (E) B-factor representation of the G118V variant. (F) Schematic representation of PFN1 structure to further comparison. The PLP binding domain and

actin-binding domains of PFN1 are represented in blue and green, respectively. The PFN1 mutation sites are colored red. The dark yellow arrow shows the residue

threonine 89.

https://doi.org/10.1371/journal.pone.0215723.g006
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the actin-binding domain, as well as increased flexibility in adjacent regions of the PLP-bind-

ing domain. The G118V variant, in turn, presented decreased flexibility at the actin binding

domain and adjacent regions, except for the loop that connects the fifth and sixth beta-strands,

which presented increased flexibility when compared to the wild-type. In addition to reaffirm-

ing the flexibility alterations observed in the RMSF analysis, B-factor analysis also provided an

interesting graphical representation of structural flexibility.

The Rg analysis is useful for describing the overall dimensions of protein structures

throughout the simulation [4,52,61]. As shown in Fig 7, the average Rg value of the wild-type

structure (1.383±0.02) is similar to those of the C71G (1.379±0.01nm), M114T (1.375

±0.01nm), E117G (1.378±0.01nm), and G118V (1.381±0.01nm) variants. These results suggest

that the C71G, M114T, E117G, and G118V variants are as compact as the wild–type PFN1

The stability of protein structures can be assessed throughout the simulation by analyzing

the formation of intramolecular hydrogen bonds [66]. As shown in Fig 8, the average number

of intramolecular hydrogen bonds formed in the wild-type simulation (101.26±5.85) is similar

to those of the C71G (98.67±6.80), M114T (102.04±5.13), E117G (98.50±5.46), and G118V

(100.41±6.11) simulations. It suggests that all studied variants are as stable as the wild–type

PFN1.

The MD analyzes therefore suggested that the studied mutations could affect the PFN1 flex-

ibility at the actin and PLP-binding domains, and, consequently, their intermolecular

Fig 7. The radius of gyration (Rg) of the wild-type PFN1 and its natural variants. The Rg for the Cα atoms of the wild-type PFN1 and its natural variants at

300 K are shown as a function of time. (A) The wild type is represented in black and variant C71G is represented in red. (B) The wild type is represented in black

and variant M114T is represented in blue. (C) The wild type is represented in black and variant E117G is represented in green. (D) The wild type is represented in

black and variant G118V is represented in purple.

https://doi.org/10.1371/journal.pone.0215723.g007

Functional and structural analysis of human PFN1

PLOS ONE | https://doi.org/10.1371/journal.pone.0215723 June 19, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0215723.g007
https://doi.org/10.1371/journal.pone.0215723


interactions. It may explain the known altered binding ability of the C71G, M114T, E117G

and G118V variants [16]. Moreover, considering that the PFN1 functions are mediated by its

actin and PLP-binding ability [9,12], these findings could be also related to the functional

impairment of PFN1 upon C71G, M114T, E117G, and G118V mutations (Fig 9), and their

involvement in ALS development [9,17].

PFN1 database

Visualization and analysis of intricate 3D structures of macromolecules, such as proteins, are

essential to provide insights into their biological processes [49]. For such purpose, there is a

wide range of graphics software and web-based viewers currently available [29,67]. Amongst

them, Jmol, which is a widely used open-source viewer of 3D structures [49]. However, this

application is falling into disuse because its web-based version is embedded as a Java applet, a

plug-in that is no longer supported on many devices and browsers due to security concerns

[29,68,69]. In this scenario, JSmol, an HTML5-based equivalent of Jmol [49], comes as a great

solution, because it requires no Java applets to run and produces identical graphical results

[68]. We, therefore, developed a curated database of human variants using JSmol.

The PFN1 results presented in this paper are stored in SNPMOL, the human-curated data-

base developed by our group (http://www.snpmol.org/). The database is freely available for

biologists and clinicians to exploit the PFN1 variants described here and their functional and

structural alterations. SNPMOL interface allows users to quickly retrieve and analyze the pre-

dicted effects and theoretical models of PFN1 variants. Understanding their effects on PFN1

Fig 8. Intramolecular hydrogen bonds (Hb) for the wild-type PFN1 and its natural variants. The number of intramolecular Hb formed at 300 K throughout the

simulations is shown as a function of time. (A) The wild-type is represented in black and variant C71G is represented in red. (B) The wild type is represented in

black and variant M114T is represented in blue. (C) The wild type is represented in black and variant E117G is represented in green. (D) The wild type is

represented in black and variant G118V is represented in purple.

https://doi.org/10.1371/journal.pone.0215723.g008
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Fig 9. Schematic representation of the PFN1 mechanism of action and how it can be disrupted by missense mutations. PFN1 is represented in green, actin

monomer is represented in blue, Ena/VASP is represented in orange, and the actin polymer is represented by the blue chained filament. Black arrows indicate the

normal PFN1 mechanism of action, while the inhibitory arrow (red) indicates how this mechanism could be disrupted by missense mutations. i) The unbound

PFN1 is able to interact with actin monomers. ii) PFN1 interacts through its actin-binding domain with an actin monomer. iii) Upon binding to the actin

monomer, PFN1 interacts through its PLP-binding domain with Enabled/vasodilator-stimulated phosphoproteins (Ena/VASP). iv) Ena/VASP, in turn, is

responsible for adding the actin monomer captured by PFN1 to the crescent actin filament polymer. v) After the delivery of actin monomer, the PFN1 is released
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structure and function may help the development of new drugs and treatments for ALS [22],

as well as facilitating the design of further experiments [70].

Conclusions

In this paper, we analyzed the effects of PFN1 nsSNVs using ten functional and stability pre-

diction algorithms, an evolutionary algorithm, and MD simulations. The functional prediction

algorithms used here showed high accuracy in detecting the known deleterious potential of the

C71G, M114T, and G118V mutations, but not E117G. The functional prediction analysis also

showed that it is important to use a variety of algorithms to determine the deleterious effects of

mutations. The stability prediction suggested that the ALS-related mutations could destabilize

PFN1. The evolutionary conservation analysis indicated that the mutations C71G, M114T,

E117G, and G118V occur in highly conserved positions. The MD analyses suggested that the

studied mutations could affect the PFN1 flexibility at the actin and PLP-binding domains, and

consequently, their intermolecular interactions. It may be therefore related to the functional

impairment of PFN1 upon C71G, M114T, E117G and G118V mutations, and their involve-

ment in ALS development. We also developed a human-curated database, SNPMOL (http://

www.snpmol.org/), containing the results presented in this paper for biologists and clinicians

to exploit PFN1 and its natural variants. Furthermore, we can conclude that computational

simulations are an effective approach for the study of disease-related mutations, as well as an

important ally of the experimental methods.
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64. Craveur P, Joseph AP, Esque J, Narwani TJ, Noël F, Shinada N, et al. Protein flexibility in the light of

structural alphabets. Front Mol Biosci. 2015; 2. https://doi.org/10.3389/fmolb.2015.00020 PMID:

26075209

Functional and structural analysis of human PFN1

PLOS ONE | https://doi.org/10.1371/journal.pone.0215723 June 19, 2019 18 / 19

https://doi.org/10.1002/prot.22711
http://www.ncbi.nlm.nih.gov/pubmed/20408171
https://doi.org/10.1002/prot.25525
http://www.ncbi.nlm.nih.gov/pubmed/29790608
https://doi.org/10.1371/journal.pone.0196207
http://www.ncbi.nlm.nih.gov/pubmed/29694437
https://doi.org/10.1021/ct700200b
http://www.ncbi.nlm.nih.gov/pubmed/26619985
https://doi.org/10.1063/1.470117
https://doi.org/10.1093/nar/gkx365
http://www.ncbi.nlm.nih.gov/pubmed/28472503
https://doi.org/10.1002/cpbi.27
http://www.ncbi.nlm.nih.gov/pubmed/28654725
https://doi.org/10.1371/journal.pone.0156313
https://doi.org/10.1371/journal.pone.0156313
http://www.ncbi.nlm.nih.gov/pubmed/27228149
https://doi.org/10.1016/j.jtbi.2014.03.027
http://www.ncbi.nlm.nih.gov/pubmed/24681403
https://doi.org/10.1093/bib/bbn047
http://www.ncbi.nlm.nih.gov/pubmed/19181721
https://doi.org/10.1002/jcb.27636
http://www.ncbi.nlm.nih.gov/pubmed/30206983
https://doi.org/10.1093/nar/gki387
http://www.ncbi.nlm.nih.gov/pubmed/15980494
https://doi.org/10.1089/cmb.2010.0237
http://www.ncbi.nlm.nih.gov/pubmed/21702691
https://doi.org/10.1016/j.ijbiomac.2015.12.072
https://doi.org/10.1016/j.ijbiomac.2015.12.072
http://www.ncbi.nlm.nih.gov/pubmed/26730484
http://www.ncbi.nlm.nih.gov/pubmed/18172930
https://doi.org/10.1155/2014/502618
http://www.ncbi.nlm.nih.gov/pubmed/25400662
https://doi.org/10.1371/journal.pone.0119264
http://www.ncbi.nlm.nih.gov/pubmed/25816325
https://doi.org/10.1016/j.bpj.2009.11.011
https://doi.org/10.1016/j.bpj.2009.11.011
http://www.ncbi.nlm.nih.gov/pubmed/20197040
https://doi.org/10.1016/j.str.2006.01.014
http://www.ncbi.nlm.nih.gov/pubmed/16615910
https://doi.org/10.3389/fmolb.2015.00020
http://www.ncbi.nlm.nih.gov/pubmed/26075209
https://doi.org/10.1371/journal.pone.0215723


65. Yuan Z, Bailey TL, Teasdale RD. Prediction of protein B-factor profiles. Proteins Struct Funct Genet.

2005; 58: 905–912. https://doi.org/10.1002/prot.20375 PMID: 15645415

66. Pikkemaat MG, Linssen ABM, Berendsen HJC, Janssen DB. Molecular dynamics simulations as a tool

for improving protein stability. Protein Eng. 2002; 15: 185–192. https://doi.org/10.1093/protein/15.3.185

PMID: 11932489
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