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Abstract: Brain waves, measured by electroencephalography (EEG), are a powerful tool in the
investigation of neurophysiological traits and a noninvasive and cost-effective alternative in the
diagnostic of some neurological diseases. In order to identify novel Quantitative Trait Loci (QTLs) for
brain wave relative power (RP), we collected resting state EEG data in five frequency bands (δ, θ, α,
β1, and β2) and genome-wide data in a cohort of 105 patients with late onset Alzheimer’s disease
(LOAD), 41 individuals with mild cognitive impairment and 45 controls from Iberia, correcting for
disease status. One novel association was found with an interesting candidate for a role in brain
wave biology, CLEC16A (C-type lectin domain family 16), with a variant at this locus passing the
adjusted genome-wide significance threshold after Bonferroni correction. This finding reinforces the
importance of immune regulation in brain function. Additionally, at a significance cutoff value of
5 × 10−6, 18 independent association signals were detected. These signals comprise brain expression
Quantitative Loci (eQTLs) in caudate basal ganglia, spinal cord, anterior cingulate cortex and
hypothalamus, as well as chromatin interactions in adult and fetal cortex, neural progenitor cells and
hippocampus. Moreover, in the set of genes showing signals of association with brain wave RP in
our dataset, there is an overrepresentation of loci previously associated with neurological traits and
pathologies, evidencing the pleiotropy of the genetic variation modulating brain function.
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1. Introduction

Neurons, as excitable cells with electrical properties, generate coherent electric and magnetic
fields when they are synchronously activated, being akin to current dipoles that may be recorded
by electrodes at the scalp [1]. Electroencephalography (EEG) captures the summed electrical
activities of neuron populations and EEG signals co-vary strongly with different levels of arousal
and consciousness [1]. These signals can be viewed as reflections of outputs from the regulation of
synchronization/desynchronization and functional coupling/decoupling in neuron populations with
effect on vigilance, motivation and cognitive processes [2,3].

Brain waves recorded as electrophysiological signals harbor an impressive amount of information,
thus offering a noninvasive and cost-effective alternative into the investigation of neurophysiological
mechanisms. Neural networks change with development, age, disease and personal experience,
and abnormalities in the oscillatory activity are associated to neurological disorders such as
schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD)
and Alzheimer’s disease (AD) [4–10]. The mechanisms of synchronization/desynchronization of
thalamocortical and ascending activity systems can be analyzed by measuring the amplitude or source
activity of resting-state eyes-closed cortical EEG rhythms and can reveal the effects of AD on brain
function [4]. In this regard, abnormally reduced spectral coherence in α and β rhythms has been
associated with AD, as well as an increase of δ and θ rhythms, contributing with valuable information
to build a prediction pipeline for the disease [7,8].

All current evidence suggests that oscillations are essential components in neural computation
and not just biomarkers of the process. These manifestations are amongst the most heritable traits in
humans [11,12], since individual differences across the EEG frequency spectra in adult population are
largely determined by genetic factors. Generally, hereditability is highest around the α frequency band
and lower in θ and δ bands [13]. These signals may act as an intermediate phenotype between genetics
and behavior, representing endophenotypes [14,15].

The use of brain endophenotypes, such as EEG, has been proposed as a valid approach to
uncover the contribution of a given variant to disease, even with modest sample sizes (an important
advantage of quantitative phenotypes) [14], by reducing the inherent complexity of behavioral and
neurological traits [16,17]. Indeed, although genome-wide association studies (GWAS) have played an
important role in uncovering many genetic variants for some conditions, this method has not been so
successful for psychiatric and neurological disorders [18]. This is probably due to a more complex
genetic architecture of these phenotypes, which reflects the intricacy of the underlying brain processes.
Nevertheless, as EEG patterns also likely come from a polygenic model of inheritance, alternative
approaches to maximize power to detect relevant biological pathways without large sample sizes are
needed. Gene-based and expression-based enrichment analyses increase the power to detect genes
affecting the phenotype under study [19–21].

Only a few studies to date have searched for genetic variation associated to different brain
oscillatory traits, using individuals affected by neurological diseases and controls, and the number
of genes identified is still small [22]. We hypothesized that additional quantitative trait loci (QTLs)
for brain waves at different frequency bands could be uncovered when using data from cohorts
with different EEG phenotypic ranges. For this purpose, resting state EEG data from a novel cohort
of 105 patients with late onset Alzheimer’s disease (LOAD), 41 individuals with mild cognitive
impairment (MCI) and 45 controls from Iberia were analyzed by means of a genome-wide QTL analysis
for brain wave relative power (RP) in five conventional EEG frequency bands (δ, θ, α, β1, and β2),
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corrected for disease status. With this strategy, we aimed to identify new genes associated with EEG
endophenotypes. Our findings contribute a number of interesting candidate genes with a role in
brain function.

2. Materials and Methods

2.1. Subjects

The current study included 105 LOAD patients from North Portugal (n = 42) and from the Spanish
autonomous community of Castile and León (n = 63) with a clinical diagnosis of dementia due to LOAD.
AD patients were diagnosed following the criteria of the National Institute on Aging and Alzheimer’s
Association (NIA-AA) [23]. The severity of cognitive impairment in AD was assessed by Mini-Mental
State Examination (MMSE) test. Patients were classified in the four main stages of AD development:
mild (MIL), moderate (MOD), and severe Alzheimer’s disease (SEV).

In addition, 41 MCI subjects and 45 elderly controls with no history of neurological or major
psychiatric disorders from both geographical regions were also included in the study. In total,
191 individuals were analyzed. The age of the subjects ranged between 63 and 97 years old, with a
mean age of 79 years old for controls, 84 for individuals with MCI and 81 for LOAD patients.

This project has been approved by the Ethics Committee of the University of Porto (CEUP)
(report # 38/CEUP/2018), and written informed consents were obtained from all participants, family or
legal representatives.

2.2. EEG Recording and Processing

Resting state EEG was acquired using a 19-channel EEG system (Nihon Kohden Neurofax JE-921A,
Tokyo, Japan) at a sampling frequency of 500 Hz. EEG signals were recorded at electrodes F3, F4, F7,
F8, Fp1, Fp2, T3, T4, T5, T6, C3, C4, P3, P4, O1, O2, Fz, Cz and Pz of the International 10–20 System
and then re-referenced by means of common average referencing. Subjects were asked to remain
awake with eyes closed during EEG acquisition. Each five-minute EEG recording was processed by
independent component analysis (ICA), digital filtering using a Hamming window bandpass finite
impulse response (FIR) filter in the band of interest (1–30 Hz) and by selecting 5 s artifact-free epochs
by visual inspection [24]. Frequency bins were defined as the conventional EEG frequency bands:
δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), β1 (13–19 Hz) and β2 (19–30 Hz). The metric used to describe the
distribution of the spectral content of the signals and explore associations was RP. RP quantifies the
relative contribution of each frequency band to the global power spectrum. It is calculated from the
power spectral density (PSD) function by summing the contribution of each spectral component in a
specific band [24].

2.3. Genotyping and Genome-Wide Association Analysis

Saliva was collected from participants either using Oragene DNA (OG-500) self-collection kits
(DNA Genotek, Ottawa, Canada) or cotton sterile buccal swabs. DNA was then extracted from the
liquid saliva samples using the prepIT DNA extraction kit (DNA Genotek, Ottawa, Ontario, Canada)
and using the Citogene extraction kit (Citomed, Odivelas, Portugal) for the buccal swabs following the
manufacturer’s protocols. Samples were genotyped with the Axiom Spain Biobank Array (Thermo
Fisher, Waltham, MA, USA), and the genotyping service was carried out at CEGEN-PRB3-ISCIII,
Santigo de Compostela, Spain; supported by grant PT17/0019, of the PE I + D + I. Variant calling
and quality control pre-analysis were performed using the Affymetrix Power Tools (APT) and
PLINK [25]. Individuals with outlying missing genotype or heterozygosity rates (between µ ± 3σ),
as well as individuals estimated as related through identical-by-descent measurements and markers
with significant deviation to Hardy–Weinberg equilibrium (HWE, α = 10−7) were removed prior
to the analysis. Through Principal Component Analysis (PCA, implemented in SMARTPCA from
EIGENSOFT) individuals with divergent ancestry were identified and removed [26]. The final total



Brain Sci. 2020, 10, 870 4 of 22

genotyping rate was 0.996. Differences between populations from PCA were not statistically significant
(p = 0.53).

Common variants were selected, considering minimum allele frequencies (MAF) above 5%,
which resulted in a set of 388,620 variants. For a nominal significance level α = 0.05, this set of variants
leads to a Bonferroni genome-wide significance threshold of 1.29 × 10−7, when considering each of the
five frequency bands.

To detect association between variants and brain EEG signals, we implemented a multivariable
linear regression model in PLINK. The regression was done with 5 continuous variables, corresponding
to each of the 5 different EEG frequency bands selected for analysis (δ, θ, α, β1, and β2).
The model included 5 covariates to correct for residual population substructure: the first 2 principal
components (PC), age (since RP suffer important changes across the lifespan [27]), sex and disease
status (encoded as 0: control; 1: MCI; 2: MIL; 3: MOD; 4; SEV):

Y = a + b1.ADD + b2.PC1 + b3.PC2 + b4.AGE + b5.SEX + b6.dstatus + ε

being b1 the coefficient for the applied additive genotypic model of association between SNP and EEG
frequency band (ADD). PCs were computed using Eigensoft’s smartpca for the 191 individuals [28].
With this model, all SNP effects found in this study will mostly reflect the genetic effects on
brain electrophysiology.

The cutoff value used to evaluate associations was the Bonferroni genome-wide significance
threshold of 1.29 × 10−7, but a less stringent cutoff of 5 × 10−6 was also applied (since our sample size
is small) for gene-based analysis.

2.4. Common Variant QTL and eQTL Enrichment Analysis

Considering the five linear regressions, top candidate variants were selected considering the
significance level α = 0.01 (= 0.05/5). This resulted in the analysis of a set of 16,575 variants.

Functional annotation of GWAS results, comprising gene identification and prioritization by
positional, expression-QTL (eQTL) and chromatin interaction (CI) mapping, as well as gene-based
pathway and tissue enrichment, was carried out using FUMA (https://fuma.ctglab.nl/) to find likely
causal relations from the summary statistics provided (rsID, p-value) [21]. SNPs were mapped to
genes up to 10 kb apart and the r2 threshold of the linkage disequilibrium (LD) to define independent
significant SNPs was set to 0.8 (≥). SNPs were filtered based on chromatin state in the brain
(accessibility of genomic regions every 200 bp based on 15 categorical states) for state ≤ 7 (open in
given tissue/cell type). Gene eQTLs were mapped to Genotype-Tissue Expression (GTEx) V8 Brain
tissues filtered by raw p-values (α = 5 × 10−4) and chromatin state in the brain ≤ 7. Datasets of brain
tissues and cell types were selected for 3D CI mapping—the significance of interaction threshold was
set to false discovery rate (FDR) ≤ 10−6, as suggested by Schmitt and colleagues [29]. The promoter
region window was set to 250 bp upstream and 500 bp downstream, to overlap transcription start site
(TSS) of genes to significantly interacted regions with risk loci. Overlapping genes were used for gene
mapping. Only SNPs overlapped with enhancers and promoters from brain epigenomes were mapped.
More detailed information on the analyses incorporated in FUMA is available at https://fuma.ctglab.nl/.

The 50 genes with lower p-values were selected and tested for gene-based pathway and brain
tissue enrichment, for enrichment in curated gene sets from the HGRI GWAS catalog of reported genes,
as well as for evaluating protein interactions using STRING v.11.0 (https://string-db.org/) [30,31].

2.5. Statistical Power Computation

The computation of the statistical power to detect an association is of paramount importance.
The power to detect a variant-trait association can be quantified through the non-centrality parameter

https://fuma.ctglab.nl/
https://fuma.ctglab.nl/
https://string-db.org/
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(NPC), which is the expected value of a test statistic to detect association when the null hypothesis is
true [32]:

NPC = n × R2/(1 − R2), with R2 = r2
× q2

where n is the sample size, q2 is the proportion of phenotypic variance explained by a specific causal
variant in the population, and r2 is the squared LD correlation between the causal variant and the
genotyped one. R2 is the proportion of variance explained by the genotyped SNP in the population.
If the genotypes at the causal locus are in HWE [33,34], then

q2 = 2 ×MAF × (1 −MAF) × β2

where β is the effect size of an allele on the phenotype. This assumes that the analysis for detecting an
association is computed by regression of the phenotype on the genotype count (zero, one, or two minor
alleles). R2 can then be computed as the ratio between q2 and the phenotype’s total variance [35]:

R2 = q2/var(Y).

3. Results

3.1. Linear Regression for 5 Oscillatory Phenotypes Identified One New Association

We tested a total of 388,620 common variants (MAF > 5%). The linear regressions for each of
the five frequency bands revealed some deviations from the null distribution (Figure 1). This is more
clearly noticed for the θ, β1 and β2 frequency bands. At a significance level α = 5 × 10−6, 19 highly
correlated SNPs were identified, corresponding to 18 independent signals (since two of the loci are
in LD), namely 1 in δ, 8 in θ, 2 in α, 4 in β1 and, 4 in β2 (Figure S1A–D, Table 1). With p-values ranging
from 4.98 × 10−6 to 2.64 × 10−8, these can be interpreted as strong associations, considering our modest
sample size. None of the associated SNPs were detected in more than one phenotype (frequency band)
and, to the best of our knowledge, none of these associations were previously reported.
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p-values for each of the five linear regressions (δ: blue; θ: yellow; α: green; β1: red; β2: purple) by the
theoretical quantiles. A uniform distribution of p-values should follow the 45◦ line in orange.
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Table 1. List of significant variants (rsID) at a p-value threshold of 5 × 10−6. Significant variants (rsID)
and their respective p-value and regression coefficient (b1) for each phenotype (p_δ, p_θ, p_α, p_β1 and
p_β2).

rsID p_δ p_θ p_α p_β1 p_β2 b1

rs7516534 2.76 × 10−6 −0.08
rs12720066 1.39 × 10−6 0.10
rs12705973 2.65 × 10−6 0.02
rs10108126 1.97 × 10−6 0.05
rs10104429 1.55 × 10−7 0.05
rs7125249 3.70 × 10−6 0.03
rs6692346 2.32 × 10−6 0.04
rs4658030 2.04 × 10−6 −0.03

rs77599684 9.17 × 10−7 0.05
rs6106856 2.21 × 10−6 0.03
rs7149295 4.88 × 10−6 0.09

rs12263011 4.98 × 10−6 0.07
rs71381191 2.64 × 10−8 1 0.11
rs12443654 4.19 × 10−6 0.07
rs9930193 4.57 × 10−6 0.07

rs55908084 2.65 × 10−6 0.06
rs9960516 2 3.09 × 10−6 0.05

rs72919581 2 1.82 × 10−6 0.06
rs1893824 1.66 × 10−6 −0.05

1 Values that passed the Bonferroni threshold of significance. 2 SNPs in LD (R2 = 0.73).

An ANOVA test was computed to evaluate the capacity of the EEG signals for distinguishing
between LOAD patients in the different disease stages, subjects with MCI, and controls with normal
ageing. RP values distinguished between healthy and affected individuals with statistical confidence,
in particular with p-values ranging between 1.42 × 10−7 and 1.02 × 10−3 (Figure 2). This pattern has
been observed before in other AD cohorts: an increase in the relative power of slow oscillations (δ and
θ rhythms) and a decrease in relative power of fast oscillations (α and β rhythms) [36].Brain Sci. 2020, 10, x FOR PEER REVIEW 6 of 23 
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Individuals with outlier relative power values are marked as diamonds. Each color represents a disease
status (CTRL: blue; MCI: orange; MIL: green; MOD: red; SEV: purple).
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One variant within a candidate for a role in brain wave biology, CLEC16A (C-type lectin domain
family 16), passed the genome-wide significance threshold after Bonferroni correction. Individuals
with at least one copy of the minor allele of this variant showed higher θ RP values, a tendency also
observed in the LOAD patients when compared with controls (Figures 2 and 3). CLEC16A is highly
expressed in cerebellum (Figure S2) and in cerebellar Purkinje cells in mouse (Allen Mouse Brain Atlas,
http://mouse.brain-map.org/gene/show/50215).
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Figure 3. Relative power for each frequency band and genotype for rs71381191, rs12705973, rs12263011,
rs7149295, rs55908084 and rs1893824. The number of altered alleles is color coded: blue for individuals
with 0 altered alleles (homozygous for the most frequent allele), orange for heterozygous individuals
and green for individuals homozygous for the altered (minor) allele.

3.2. SNP-Based Functional Analysis of Most Significant GWAS Hits

For the SNP-based analysis, 16,575 variants from all the five linear regressions were jointly
selected (significance level α = 0.01) for functional annotation, gene identification and prioritization
by positional, eQTL and CI mapping using FUMA [21]. From this analysis, 15 genomic associated
loci corresponding to the lead SNPs that passed the significance thresholds and mapping conditions
settings were evaluated, with a total of 18 individually significant SNPs, 3 of them in LD. A total of
30 genes were mapped to these regions (Table 2).

This approach retrieved biologically meaningful results, since all the genomic loci mapped to
the most significant SNPs by FUMA, either as eQTL or CI analysis, are brain-related. Brain eQTLs
were identified in caudate basal ganglia, spinal cord, anterior cingulate cortex and hypothalamus,
while CIs were detected mainly in adult and fetal cortex, neural progenitor cells and hippocampus.
Moreover, the genes mapped to the most significant SNPs are highly expressed in various brain tissues
(Figure S3).

A few genes particularly relevant for brain function were identified with this analysis. Those more
directly linked to the phenotypes under study are highlighted next. FOXP2 (Forkhead box protein P2)
was mapped both by eQTL and CI to rs12705973 (p-value = 2.65 × 10−6, β1 regression coefficient = 0.02)
(Figure S4). This gene encodes a transcriptional repressor that plays a role in synapse formation by
regulating SRPX2 levels and was shown to be involved in neural mechanisms mediating the speech
development [37,38]. It is highly expressed in the head and tail of nucleus caudatus and putamen,
which play a role in movement regulation and other nonmotor actions such as procedural learning,
associative learning and inhibitory control of action [39].

http://mouse.brain-map.org/gene/show/50215
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Table 2. Gene mapping of all brain wave associated SNPs with FUMA. Only SNPs showing maximum p-value of 0.01 in any of the five linear regressions were
selected for this analysis. The table displays the strongly associated genomic loci (Locus), the p-value of the lead SNP for each locus (p), the individually significant
SNPs for each locus (Sig_SNPs), the mapped genes (Gene), the gene product (type) and brain tissues from Genotype-Tissue Expression (GTEx) V8 mapped by gene
expression-QTL (eqtlMapts) and by chromatin interaction (ciMapts) to the genomic loci.

Locus p Sig_SNPs Gene Type eqtlMapts ciMapts

1:31318133:C:T 2.76 × 10−6 rs7516534
LAPTM5 p_coding Adult_Cortex

RN7SKP91 misc
RNA

RP1-65J11.5 antisense
1:192427329:C:G 2.04 × 10−6 rs4658030
7:87169702:A:C 1.39 × 10−6 rs12720066

7:114313199:A:G 2.65 × 10−6 rs12705973
FOXP2 p_coding Brain_Caudate_basal_ganglia Fetal_Cortex:

Neural_Progen_Cell

AC073626.2 antisense Fetal_Cortex:
Neural_Progen_Cell

MIR3666 miRNA

8:74257947:A:G 1.55 × 10−7 rs10104429
rs10108126

10:13865505:A:C 4.98 × 10−6 rs12263011

PRPF18 p_coding Fetal_Cortex
FRMD4A p_coding

CDNF p_coding Adult_Cortex:
Fetal_Cortex

HSPA14 p_coding Adult_Cortex:
Fetal_Cortex

RP11-398C13.6 lincRNA Fetal_Cortex
SUV39H2 p_coding Fetal_Cortex

11:45062339:G:T 3.70 × 10−6 rs7125249

14:51283148:C:T 4.88 × 10−6 rs7149295

L2HGDH p_coding Fetal_Cortex
ATP5S p_coding Fetal_Cortex

NIN p_coding Adult_Cortex:
Hippocampus

RP11-286O18.1 antisense
PYGL p_coding Adult_Cortex

16:11156812:A:G 2.64 × 10−8 rs71381191
CLEC16A p_coding
RPL7P46 pseudogene

RP11-66H6.3 antisense
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Table 2. Cont.

Locus p Sig_SNPs Gene Type eqtlMapts ciMapts

16:19375297:C:T 4.19 × 10−6 rs12443654 RPS15A p_coding Brain_Spinal_cord_cervical_c-1
rs9930193 CTA-363E6.2 lincRNA

17:65034162:C:G 2.65 × 10−6 rs55908084
CACNG4 p_coding

AC005544.1 p_coding
RP11-74H8.1 antisense

18:21849024:A:G 9.17 × 10−7 rs77599684
OSBPL1A p_coding

RN7SL247P misc_RNA

18:45885064:C:T 1.82 × 10−6 rs72919581 ZBTB7C p_coding
rs9960516

18:74959125:G:T 1.66 × 10−6 rs1893824
RP11-17M16.2 antisense Brain_Hypothalamus

GALR1 p_coding Brain_Anterior_cingulate_cortex_BA24
20:24313473:A:G 2.21 × 10−6 rs6106856

Lead SNPs are underlined, common findings between SNP-based and Gene-based approaches are bolded.
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Even though the variant rs12263011 physically maps to an intron of FRMD4A (p-value = 4.98 × 10−6,
θ regression coefficient = 0.07), by CI it was mapped to CDNF (Cerebral dopamine neurotrophic factor)
and SUV39H2 (Histone-lysine N-methyltransferase), in the adult and fetal cortex, respectively (Figure S5).
The variant rs12263011 is embedded in a region with epigenetic promoter marks and thus it may modulate
the expression of these genes approximately 0.5 Mb apart, through CI. FRMD4A (FERM domain-containing
protein 4A) is a scaffolding protein that regulates epithelial polarity and has been previously identified as a
genetic risk factor for LOAD and cognitive decline [40,41]. Even though this gene is an interesting candidate
for an EEG endophenotype, the mechanism through which rs12263011 or any of the linked intronic SNPs
(Figure S6) may contribute to the phenotype is not clear. There is some evidence supporting this variant
may alter a transcription factor binding motif (https://pubs.broadinstitute.org/mammals/haploreg/) and
thus have a regulatory effect if it lies within a promoter region with enhancer-like features, regulating distal
target genes through chromatin loops [42]. CDNF is a trophic factor for dopamine neurons, preventing the
6-hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in substantia nigra [43].
Neurotrophic factors influence the survival, differentiation and maintenance of neurons in the developing
and adult nervous system. SUV39H2 specifically trimethylates Lys-9 of histone H3, which is a tag for
epigenetic transcriptional repression. It is involved in the circadian rhythm by being recruited to the E-box
elements of the circadian target genes such as PER2 or PER1 [44,45].

FUMA functionally mapped rs7149295 (an intronic variant within NIN gene that encodes the
centrosomal protein ninein; p-value = 4.88 × 10−6, δ regression coefficient = 0.09), to L2HGDH
(L-2-hydroxyglutarate dehydrogenase) by CI in fetal cortex (Figure S7). L2hgdh KO mice exhibit white
matter abnormalities, extensive gliosis, microglia-mediated neuroinflammation and an expansion of
oligodendrocyte progenitor cells (OPCs).

The intergenic variant rs55908084 (p-value = 2.65 × 10−6, δ regression coefficient = 0.06) was
mapped directly to CACNG4 (voltage-dependent calcium channel gamma-4 subunit), the gene upstream
to it. CACNG4 regulates the activity of L-type calcium channels and the trafficking and gating properties
of AMPA-selective glutamate receptors (AMPARs), promoting their targeting to the cell membrane
and synapses and modulating their gating properties by slowing their rates of activation, deactivation
and desensitization [46].

Finally, rs1893824 (p-value = 1.66 × 10−6, θ regression coefficient = −0.05 “better”) was identified
as an eQTL of the gene in its vicinity, GALR1 (Galanin receptor type 1), in the anterior cingulate cortex
(Figure S8). GALR1 is a receptor for the hormone galanin with the highest expression level in the
adenohypophysis [47], and there is evidence supporting that this receptor modulates impulse control
in prefrontal-hippocampal circuitry [48].

3.3. Gene-Based Expression and GO Analysis

Gene expression analysis for the 15 lead SNPs showed a significant enrichment of genes
up-regulated in the hippocampus, anterior cingulate cortex, cortex and caudate basal ganglia (Figure S3).
The same analysis was carried out at the gene level, for the 50 most significant genes (Table 3).
Each “genescore” computed by FUMA presents a contribution of all variants mapped to it and there is
a correction for the gene size. This revealed an enrichment of up-regulated genes in all brain tissues
plus coronary tissue (Figure 4).

Gene-ontology (GO) analysis on this set of 50 genes retrieved “Neuron development” and “neuron
differentiation” as the topmost enriched categories, and included the following genes: CAMK1D, PRKG1,
CDH23, TENM4, NTM, OPCML, NRXN3, RUNX1, DSCAM, CNTN4, UNCSC, TENM3, MAGI2, CNTNAP2,
PTPRD and KDM4C (neuron differentiation) (Figure 5). All the other significantly enriched categories are
related to neuron or head development. By the same token, GO term enrichment for cellular component
analysis revealed significantly enriched categories related to neuron parts (Figure S9). As expected,
in this set of genes, there is an overrepresentation of associations with brain phenotypes and neurological
pathologies such as: chronotype, schizophrenia, Asperger syndrome, brain connectivity, short-term
memory, dimensional psychopathology, bipolar disorder and AD (Table 4).

https://pubs.broadinstitute.org/mammals/haploreg/
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Table 3. Genescores for the top 50 most significant genes. The table displays the number of SNPs
mapped to each gene (nSNPs) as well as the computed p-value for each gene.

Gene nSNPs p-Value

CSMD1 35 3.01 × 10−16

CDH13 27 4.85 × 10−14

PTPRD 21 7.89 × 10−14

SORCS2 21 1.23 × 10−13

RBFOX1 20 2.05 × 10−13

MACROD2 20 1.39 × 10−12

ZBTB7C 12 2.29 × 10−12

RBFOX3 18 6.64 × 10−12

RUNX1 14 1.17 × 10−11

WWOX 23 2.39 × 10−11

FRMD4A 14 9.68 × 10−11

PLCB1 13 1.08 × 10−10

LRP1B 12 1.55 × 10−10

OPCML 11 2.74 × 10−10

CAMK1D 13 3.29 × 10−10

FHIT 13 3.97 × 10−10

PDZD2 13 4.84 × 10−10

CNTN4 14 5.03 × 10−10

CDH23 8 7.60 × 10−10

LPP 10 8.21 × 10−10

MYO16 11 8.79 × 10−10

CNTNAP2 12 8.92 × 10−10

KDM4C 12 1.06 × 10−9

NTM 11 1.09 × 10−9

ASIC2 9 1.13 × 10−9

RYR3 12 1.22 × 10−9

RPA3-AS1 13 1.39 × 10−9

OFCC1 10 1.41 × 10−9

DSCAM 12 1.46 × 10−9

TMEM132C 12 1.53 × 10−9

MTUS2 11 1.98 × 10−9

SLC9A9 10 2.12 × 10−9

LDLRAD4 11 3.99 × 10−9

FSTL5 11 4.06 × 10−9

RBMS3 10 4.79 × 10−9

TENM4 13 7.66 × 10−9

NELL1 10 1.06 × 10−8

TENM3 8 1.06 × 10−8

PRKG1 11 1.06 × 10−8

GRM7 8 1.19 × 10−8

HS3ST4 8 1.46 × 10−8

CNTN5 10 1.46 × 10−8

TUSC3 14 1.60 × 10−8

NRXN3 7 1.86 × 10−8

DPP6 11 1.92 × 10−8

UNC5C 9 2.06 × 10−8

MAGI2 10 2.08 × 10−8

ADARB2 8 2.27 × 10−8

RIMBP2 7 2.53 × 10−8

GPC5 7 2.59 × 10−8

Genes identified by highly significant single SNPs are bolded.
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Figure 4. Significantly enriched DEG (differentially expressed genes) for the 50 top genes on GTEx
v8 54 tissue types. Log-transformed p-values for the enrichment of DEG in each tissue. Significantly
enriched tissues are displayed in red (adjusted p-value ≤ 0.05), otherwise in blue. The tissues are
ordered by their enrichment’s significance on up-regulated genes, and the graph also displays values
for down-regulated genes as well as up/down-regulated.
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Figure 5. Gene-ontology (GO) most significant categories for biological function. GO biological
functions (at the left) are ordered by enrichment log-transformed p-value, displayed in blue.
Only statistically significant results are shown (padj < 0.05). The proportion of overlapping genes (at the
bottom) for each GO term (at the left) is displayed in red and for each term the specific genes are
identified in yellow.
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Table 4. Enrichment on genesets of reported genes for brain conditions/phenotypes from the NHGRI
(National Human Genome Research Institute) GWAS (genome-wide association studies) catalog.

GeneSet N n p-Value Adjusted p-Value Genes

Chronotype 556 13 7.05 × 10−13 6.39 × 10−10

CNTN5, GPC5, MYO16, NRXN3,
RBFOX1, ASIC2, MACROD2,

CNTN4, GRM7, FSTL5, MAGI2,
CSMD1, PTPRD

Intracranial aneurysm 72 6 8.85 × 10−10 3.97 × 10−7 RBFOX1, DSCAM, RBMS3, FHIT,
PDZD2, PTPRD

Response to amphetamines 33 5 1.09 × 10−9 3.97 × 10−7 NELL1, WWOX, CDH13,
FHIT, TENM3

Schizophrenia 827 12 1.43 × 10−9 4.31 × 10−7
PRKG1, NELL1, NRXN3, RYR3,
CDH13, CNTN4, RBMS3, FHIT,

TENM3, MAGI2, CSMD1, KDM4C
Amyotrophic lateral
sclerosis (sporadic) 164 7 3.58 × 10−9 8.76 × 10−7 CNTN5, OPCML, RYR3, ASIC2,

MACROD2, DSCAM, CSMD1

Night sleep phenotypes 538 10 3.86 × 10−9 8.76 × 10−7
TENM4, CDH13, LRP1B, CNTN4,
GRM7, RBMS3, SLC9A9, OFCC1,

MAGI2, CSMD1
Cognitive ability, years of
educational attainment or
schizophrenia (pleiotropy)

197 6 3.72 × 10−7 4.22 × 10−5 CAMK1D, NTM, GPC5, CDH13,
LRP1B, CNTN4

Loneliness
(multivariate analysis) 29 3 9.65 × 10−6 7.00 × 10−4 PRKG1, CNTN5, PTPRD

Asperger disorder 6 2 2.97 × 10−5 1.54 × 10−3 NTM, FHIT
Middle childhood and

early adolescence
aggressive behavior

6 2 2.97 × 10−5 1.54 × 10−3 OPCML, CNTN4

Daytime sleep phenotypes 259 5 3.38 × 10−5 1.66 × 10−3 WWOX, CDH13, PLCB1,
CNTN4, GRM7

Brain connectivity 7 2 4.15 × 10−5 1.88 × 10−3 MACROD2, CNTN4
Short-term memory

(digit-span task) 7 2 4.15 × 10−5 1.88 × 10−3 CDH13, PTPRD

Dimensional
psychopathology (Negative) 9 2 7.10 × 10−5 2.53 × 10−3 CDH13, MACROD2

Hippocampal sclerosis 9 2 7.10 × 10−5 2.53 × 10−3 NELL1, SORCS2
Bipolar disorder (body mass

index interaction) 10 2 8.86 × 10−5 2.87 × 10−3 CDH23, WWOX

Aggressiveness in attention
deficit hyperactivity disorder 11 2 1.08 × 10−4 3.33 × 10−3 NTM, CSMD1

Alzheimer’s disease (64◦) 70 3 1.39 × 10−4 3.93 × 10−3 FRMD4A, MYO16, CNTNAP2

Enrichment on genesets of reported genes for brain conditions/phenotypes (GeneSet) from the NHGRI GWAS
catalog [31] for the 50 most significant genes of our study. The table displays the background number of genes
in each geneset (N), the sample number of genes present in each geneset (n), the respective p-value and adjusted
p-value calculated from the comparison between the background and the sample frequency of genes and the sample
genes (Genes).

3.4. Protein–Protein Interactions

Finally, we performed a protein interaction analysis with STRING for the top 50 protein-coding
genes that resulted in a network with significantly more interactions than expected and an enrichment
p-value = 2.35 × 10−6 (Figure 6). Some of the interactions in the network, deserve a closer look.
CNTN4 (Contactin-4), mediates cell surface interactions during nervous system development and in
conjunction with one of its binding partners, amyloid precursor protein (APP), has been shown to
promote target-specific axon arborization, highlighting its importance for the functional development
of a behaviorally-relevant parallel visual pathway [49]. CNTN5 (Contactin-5) is a similar molecule but
it is exclusively expressed in the central nervous system (CNS), with strong expression in the cortex and
hippocampus, and has been associated with ASD [50]. NTM (neurotrimin) is a neural cell adhesion
molecule of the immunoglobulin superfamily that appears to regulate the development of neuronal
projections and might have a role in mediating estrogen-induced peripheral sympathetic innervation;
Ntm-deficient mice have shown a deficit in emotional learning [51,52]. RBFOX1 (RNA binding
protein fox-1) regulates alternative splicing in tissue-specific exons, and its cytoplasmic target mRNAs
are enriched in genes involved in cortical development and autism [53].
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3.5. Links to Brain Phenotypes and Neuropathologies

Overall the 16,575 input SNPs were mapped by FUMA to a total of 4078 protein coding genes. In order
to identify a possible link between these hits and brain pathophysiology, we inspected the scores for genes
previously associated with AD by meta-analysis (Table S1) [54,55]. CNTNAP2 (Contactin-associated
protein-like 2), with 12 mapped SNPs, reveals a strong association (p-value = 8.92 × 10−10). We also
inspected genes previously associated with schizophrenia by genome-wide association study and
replication (Table S2) [56]. The strongest association was found for MAGI2 (p-value = 2.08 × 10−8),
with 10 mapped SNPs.

The set of the 50 most significant genes in our analysis is also enriched for genes associated
with different brain physiological traits, behavioral phenotypes and neurological disorders (Table 3),
highlighting the overlap between the biological pathways of brain oscillations and these traits and
diseases. The most significant gene in the genescore analysis, CSMD1 (CUB and sushi domain-containing
protein 1), is highly expressed in the CNS, particularly in the frontal cortex (Figure S10) and has been
associated with schizophrenia. From the 50 most significant genes, two (ZBTB7C, p-value = 2.29 × 10−12;
and FRMD4A, p-value = 9.68 × 10−11) were already identified by a single highly significant SNP for
each gene. They have also been linked to different brain pathologies. From the 50 most significant
genes, ZBTB7C (p-value = 2.29 × 10−12) and FRMD4A (p-value = 9.68 × 10−11) have been previously
linked to different brain pathologies [54]. FRMD4A has been identified as a genetic risk factor for LOAD
and may modulate the disease progression by altering tau [57].

3.6. Statistical Power and Effect Size

We evaluated the theoretical statistical power to detect a causal SNP, such as the one identified at
genome-wide significance (rs71381191), by taking advantage of the relationship between experimental
sample size, allele frequency and effect size. The effect sizes for the discovered variants were reported
as b1—Table 1, referring to the coefficient of the linear regression. Generally, in QTL analyses, where
this coefficient is derived from a regression on a continuous variable with widely distributed values, b1
is not directly interpretable as an effect size per se. However, in our study we considered brain wave
RPs, which are normalized measurements, with continuous distribution between 0 and 1. It follows
that, in this case, the b1 coefficient derived from the linear regression is interpretable as the relative
effect size. As such, the value of b1 of 0.11, obtained for the SNP showing statistically significant
association, represents an 11% increase in the RP for the θ brain wave, for each additional “effect” allele.

Using the expressions exposed in Section 2.5, with MAF and β values for the genotyped
genome-wide significant variant (rs71381191), we calculated the proportion of phenotypic variance
explained by a such causal variant in our population (q2 = 0.0015) and divided it by the total θ RP
variance to get the proportion of phenotypic variance explained by the genotyped SNP (R2 = 0.14).
Finally, the statistical power to detect a SNP explaining 14% of trait variance (such as this one) with a
sample size of 191 individuals and assuming our genome-wide significance threshold, was estimated
in 62%. We conclude that the relatively large proportion of RP variance explained by rs71381191 (or a
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linked variant) has likely contributed to the identification of this significant association in our dataset,
for which MAF = 7%.

4. Discussion

The easiness and affordability of EEG has made it very appealing as a potential diagnostic
tool for several neurological/neurodegenerative diseases. In addition, the characterization of the
biological pathways underlying its measurements are thus of high importance. Malone and colleagues,
in one of the largest studies involving EEG signals so far, did not find genome-wide significant hits
after Bonferroni correction [58]. This is not surprising since the effects of single genetic variants on
multifactorial phenotypes such as brain electrophysiological signals are expected to be very small.
The largest GWAS of oscillatory power during eyes-closed resting EEG to date found through a
gene-based approach that GABRA2, a known genetic marker for alcohol abuse disorder and epilepsy,
was significantly related to β wave power [22]. Out of twenty-four other genes, three were significantly
associated with α power, showing differential expression in two tissues: GLYCTK in the hippocampus
and GNL3 and ITIH4 in the frontal cortex. All of these three genes were previously associated with
schizophrenia and bipolar disorder.

4.1. Linear Regression for 5 Oscillatory Phenotypes Identified One New θ QTL

We have performed a GWAS and QTL analysis for one brain endophenotype, EEG RP in five
frequency bands (δ, θ, α, β1 and β2) in an Iberian cohort of LOAD patients, individuals with MCI and
controls, corrected for the disease status, as well as for residual population stratification, age and sex.
In spite of the modest sample size, one variant within CLEC16A, a C-type lectin, passed the genome-wide
significance threshold after Bonferroni correction. CLEC16A was shown to participate in the molecular
machinery of human leukocyte antigen (HLA) late endosome formation and trafficking, serving as
a direct regulator of the HLA-II pathway in antigen-presenting cells [59]. HLA-II is expressed in
microglial cells, which are a component of the innate immunity. The relevance of the adaptive immunity
in neurodegeneration has been increasingly recognized. An increase in the number of microglial cells,
their activation and the disruption of their functions have been demonstrated in neurodegenerative
pathologies such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia [60]. This finding
reinforces the importance of immune regulation in brain physiology. Moreover, evidence points to
a function of CLEC16A in Purkinje cells. This neuronal cell type releases the γ-aminobutyric acid
(GABA) neurotransmitter that regulates synaptic plasticity and network oscillations through synaptic
inhibition by interneurons that release GABA [61,62]. At the physiological level, cerebellar-evoked
prefrontal synchronization in the θ frequency range has been shown to be modulated by GABA,
being positively associated with working memory performance [63]. Evidence suggests that the
cerebellum likely exerts its control on the cortex by a GABAergic dependent set of interneurons and
cerebellar θ-burst stimulation modulates cortical excitability of distant interconnected cortical areas [64].
Recently, the hippocampal expression of a GABA receptor has been associated with β oscillations,
supporting the now reported association as being relevant to the electrophysiology of the brain [22].
Considering our present results, another link between GABAergic system and brain electrophysiology
surfaces. In addition, the inhibition of CLEC16A protein function also has been shown to lead to
motor impairments, Purkinje cell loss and impaired autophagy, pointing to a role in the function and
clearance of autolysosomes that culminates in neurodegeneration [65].

4.2. SNP and Gene-Based Functional Analysis of Most Significant GWAS Hits and Their Link to Neurological
Traits and Pathologies

The analysis with the most nominally significant SNPs from all five linear regressions retrieved
a total of 30 candidates, all with functional relevance in brain tissues, as suggested by expression
and epigenetic data. Most of the loci physically or functionally mapped by FUMA to the lead
SNPs (SNPs that passed the threshold criteria) are involved in brain function, namely neuronal
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development and maintenance (CDNF), cognitive function (FOXP2), circadian rhythm (SUV39H2)
and one is likely a key player in brain electrophysiology (GALR1) [39,43,45,66]. Due to their relevance
to brain circuitry and physiology these genes have also proven or potential roles in several diseases
characterized by impaired cognitive function. Indeed, FRMD4A (FERM domain-containing protein 4A)
is a scaffolding protein that regulates epithelial polarity and has been previously identified as a
genetic risk factor for LOAD [57,67]. This connection to AD is also reinforced by the interaction
with PAR3 which regulates CNTNAP2 spatial localization. CNTNAP2 is required for radial and
longitudinal organization of myelinated axons and has been associated with AD and other disorders
such as epilepsy, seizures, autism and schizophrenia, and common variants in this gene influence
early language acquisition [54,55,68–71]. Neuropathological analyses in mice with mutations of this
gene revealed abnormalities in neuron migration, reduced number of interneurons and abnormal
neuronal network activity [72]. Moreover, a homozygous mutation in FRMD4A has been linked to a
syndrome of congenital microcephaly and intellectual disability [73]. On the other hand, variants in the
ZBTB7C (Zinc finger and BTB domain-containing protein 7C) have been associated with ischemic injury
susceptibility, maybe by modulating the ischemic response via neuronal apoptosis [74]. Another gene
among the top hits, L2HGDH, is involved in L-2-hydroxyglutaric aciduria (L2HGA), a rare autosomal
recessive disorder clinically characterized by a mild psychomotor delay followed by progressive
cerebellar ataxia and moderate to severe intellectual disability and a tendency to the development
of malignant brain tumors [75]. Moreover, L2hgdh deficiency leads to impaired adult hippocampal
neurogenesis and late-onset neurodegeneration in mouse brains [76]. It is thus plausible that variants
in L2HGDH may increase the risk for neurodegenerative disorders. Finally, GALR1 has been linked to
temporal lobe epilepsy (TLE) and galanin agonists inhibit seizures [47].

More indirect evidence for a contribution to neurological diseases exists for other genes in this set.
CDNF, a trophic factor for dopamine neurons that prevents the 6-hydroxydopamine (6-OHDA)-induced
degeneration of dopaminergic neurons in substantia nigra may have a role in the evolution of Parkinson’s
disease [43]. SUV39H, as an essential part of the circadian system, a timing mechanism responsible
for orchestrating many physiological processes including behavior and cognition through epigenetic
mechanisms, is a candidate gene for autism susceptibility [77].

As previously mentioned, gene-based approaches increase the power to detect genes affecting the
phenotype under study [19,21]. The set of the 50 most significant genes in our analysis is also enriched
in genes associated with different brain physiological traits, behavioral phenotypes and neurological
disorders, highlighting the overlap between the biological pathways of brain oscillations and these
traits and diseases. Indeed, EEG has been a valuable tool in the study of chronotype, brain connectivity,
substance abuse, Asperger syndrome, the diagnosis and classification of schizophrenia, and even
loneliness [78–83].

The most significant gene in the genescore analysis was CSMD1 (CUB and sushi domain-containing
protein 1), which is highly expressed in frontal cortex. Neurophysiological deficits have been observed
in CSMD1 depleted mice, inducing blunted emotional responses, anxiety and depression [84,85],
and it has also been linked to schizophrenia. We also inspected genes previously associated with
schizophrenia by genome-wide association study and replication [56]. The strongest association was
found for MAGI2 (p-value = 2.08 × 10−8), with 10 mapped SNPs. This gene encodes a molecule that
serves as a scaffold for proteins assembling synaptic protein complexes, therefore, with an essential
role in synaptic development and maintenance [86]. In addition, common variants of this gene were
associated with cognitive impairment in individuals with schizophrenia, and it has been validated as a
strong candidate by genome-wide association [56,87].

4.3. Limitations and Future Research Lines

Our study has some limitations that should be addressed. On one hand, the EEG analyses have
been performed using the grand-averaged values in order to reduce the dimensionality of the results
and simplify statistical analyses. As EEG activity may differ depending on the brain region under study,
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it could be useful to identify specific affected scalp regions in future studies. For future works, it will
be also interesting to acquire and analyze the sleep patterns of the subjects during the night previous to
the EEG recording, since some studies reported that disturbances in the sleep-wake cycle and circadian
rhythms are common symptoms of AD [88]. On the other hand, it is noteworthy the limited number
of subjects analyzed, as already acknowledged, as well as the inclusion of only two closely related
populations. The multimodal analysis of larger cohorts, from several diverse populations, will be
important to replicate our signals and may uncover other associations between genomic and EEG data.

5. Conclusions

One novel association was found with an interesting candidate for a role in brain wave biology,
CLEC16A (C-type lectin domain family 16), with a variant at this locus passing the adjusted genome-wide
significance threshold after Bonferroni correction, reinforcing the importance of the immune regulation
in brain function. Moreover, at a significance cutoff value of 5× 10−6, 18 independent association signals
were detected. These signals comprise brain expression Quantitative Loci (eQTLs) in caudate basal
ganglia, spinal cord, anterior cingulate cortex and hypothalamus, as well as chromatin interactions in
adult and fetal cortex, neural progenitor cells and hippocampus. At the same time, in the set of genes
showing signals of association with brain wave RP in our dataset, there is an overrepresentation of loci
previously associated with neurological traits and pathologies, evidencing the pleiotropy of the genetic
variation modulating brain function.

Our results corroborate and strengthen previous findings regarding the biological pathways
involved in brain electrophysiology, namely, the role of immunity regulation and GABA
neurotransmission, through the identification of a novel candidate gene for brain wave RP modulation.
In addition, the complexity inherent to brain phenotypes and the pleiotropy of the variants with
potential to modulate brain function is evidenced. In fact, even when dissecting isolated oscillatory
endophenotypes, the associated genetic variation has the potential to affect the regulation of other
traits and disease risk through diverse mechanisms, such as direct regulation of other genes or by
modulating the interaction with other proteins.
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