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Predicting natural language descriptions
of mono-molecular odorants
E. Darío Gutiérrez1, Amit Dhurandhar2, Andreas Keller3, Pablo Meyer 1,4 & Guillermo A. Cecchi 1

There has been recent progress in predicting whether common verbal descriptors such as

“fishy”, “floral” or “fruity” apply to the smell of odorous molecules. However, accurate pre-

dictions have been achieved only for a small number of descriptors. Here, we show that

applying natural-language semantic representations on a small set of general olfactory per-

ceptual descriptors allows for the accurate inference of perceptual ratings for mono-

molecular odorants over a large and potentially arbitrary set of descriptors. This is note-

worthy given that the prevailing view is that humans’ capacity to identify or characterize

odors by name is poor. We successfully apply our semantics-based approach to predict

perceptual ratings with an accuracy higher than 0.5 for up to 70 olfactory perceptual

descriptors, a ten-fold increase in the number of descriptors from previous attempts. These

results imply that the semantic distance between descriptors defines the equivalent of an

odorwheel.
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Humans are unique in their capacity to express sensory
perceptual experiences using the powerful machinery of
language—e.g. “The Requiem is Mozart’s most mournful

work”, “I feel a stabbing more than a burning pain”, which
prompts the question: to what extent can language adequately
convey perception? This question is particularly contentious in the
realm of olfaction research, where quantifying odor percepts
through semantic attributes is a central endeavor1,2. Indeed ratings
of a molecule along a comprehensive set of descriptors such as
“putrid”, “floral”, and “apple” could uniquely characterize the
molecule’s odor1, and experts spend considerable time and effort
handcrafting domain-specific sets of odor descriptors or collecting
ratings for large numbers of descriptors for each molecule of
interest3,4. A standard, generally applicable set of “primary” odor
descriptors would be more amenable5 but despite decades of
research this effort has been in vain2,6. The prevailing view is that
there is a significant disconnect between humans’ strong capacity
for odor discrimination7 and their inability to identify or char-
acterize odors by name1,8–12. This would seem to suggest that
semantic descriptors cannot be reliable. Yet semantically gener-
ated multidimensional descriptors have been proven to be stable13

and there is substantial evidence of interactions between language
and various perceptual modalities including olfaction14–19. Recent
work even suggests that olfactory knowledge can improve the
performance of linguistic representations in predicting human
similarity judgments20, while linguistic representations can be
applied to quantify the olfactory specificity and familiarity of
words6. Most recent work uses the linguistic approach to predict a
reduced representation, via clustering, of the odor of a mole-
cule21; however, the predictive efficacy of this model falls abruptly
when more than 5 clusters of descriptors are considered.

We here show that applying natural-language semantic repre-
sentations on a small set of general olfactory-perceptual descriptors
can allow for the accurate inference of perceptual ratings for
mono-molecular odorants over a large and potentially arbitrary set
of descriptors. Furthermore, combining such semantic-based

perceptual ratings predictions with a molecule-to-ratings model
that relies on chemoinformatic features, we perform zero-shot
learning inference20,22 of perceptual ratings for arbitrary molecules.

Results
Correspondence between semantic space and olfactory ratings
space. To investigate whether semantic representations derived
from language use could be applied to reliably predict how
molecules are rated along a large set of detailed olfactory-
perceptual descriptors, we chose to predict the ratings of 146 fine-
grained odor descriptors of the well known Dravnieks dataset
(Fig. 1)23. The ratings are obtained by asking human raters to
assign values, on a fixed scale, of how close their perceptual
experience of smelling an odorant is to each one of the descrip-
tors (see Methods). As a starting point to learn a generalizable
semantic-perceptual model, we used the ratings from the
19 general descriptors of a different study, the DREAM dataset24

as it has 58 molecules in common, from 128 in total, and shares
10 descriptors with the Dravnieks dataset (Fig. 1 and Supple-
mentary Table 1). To quantify the semantic relationship between
the DREAM and Dravnieks descriptors, we used a representation
of linguistic data known as distributional semantic models. These
models are quantitative, data-driven, vectorial representations of
word meaning motivated by the distributional hypothesis, which
asserts that the meaning of a word can be inferred as a function of
the linguistic contexts in which it occurs25. A distributional
semantic model assigns a vector to each word in a lexicon, based
on the word’s use in language; words that are used in similar
contexts, thus assumed to be more semantically similar, have
vectors that are closer together in the distributional semantic
space of the model (Fig. 1b). In particular, we utilized publicly
available 300-dimensional semantic vectors produced using the
fastText skip-gram algorithm that were trained on a corpus of
over 16 billion words26. The fastText model contained vectors
corresponding to the 19 DREAM descriptors which we refer to as
the DREAM semantic vectors, and to 131 of the 146 Dravnieks
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Fig. 1 Construction of a universal perceptual map. a Diagram describing similitudes and differences between the DREAM and Dravnieks psychophysical
olfactory datasets. Dravnieks dataset used olfaction experts, a smaller set of 128 molecules, 58 overlapping with DREAM, and a large set of 146 descriptors,
10 descriptors overlapping with DREAM. b Diagram showing the approach to predict ratings for the Dravnieks descriptor sets. For non-overlap molecules
between the datasets, a chemoinformatic model helps predicting ratings for values of the DREAM set of 19 perceptual descriptors. We then use fastText to
generate semantic vectors for the DREAM and Dravnieks descriptors by searching for co-occurrence of words in sentences as shown in the example (a
fragment of Milton’s Paradise Lost). A model using these vectors is then applied to DREAM ratings/predictions to generate Dravnieks rating values for 131
descriptors
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descriptors which we refer to as the Dravnieks semantic vectors.
Note that the training corpus was not biased in any way to
include more or less olfaction- or perception-related material, i.e.,
it was intended to represent the general structure of semantic
knowledge.

Given that the DREAM and Dravnieks studies presented
different sets of descriptors to the subjects, we expect that the
perceptual ratings for the molecules in common will be re-
anchored according to the available descriptors, and consequently
that the descriptor ratings for the two datasets will differ even on
shared descriptors27. Indeed we find that, although the correla-
tions across the 58 shared molecules are high for the 19
corresponding descriptors (Fig. 2a), the highest correlation is not
always between the matching descriptors: e.g., although “sweet” in
DREAM is most highly correlated to “sweet” in Dravnieks, “fruit”
has a higher correlation to “peach” than to “fruity” (Supplemen-
tary Table 1). Nonetheless, the clusters of highly correlated
descriptors defined by the dendrogram follow the close semantic
relationship between the descriptors—e.g., “flower” from
DREAM correlates highly with the co-clustered “rose”, “violets”,
“incense”, “perfumery”, “cologne”, “floral”, and “lavender” from
Dravnieks.

We compared the correlation matrix based on the descriptors’
perceptual ratings (Fig. 2a) to a correlation matrix between the
DREAM and Dravnieks semantic vectors (Fig. 2b). We observe
that the two correlation matrices are similarly structured
(Procrustes dissimilarity p < 0.05 tested against randomized
surrogates, correlation between maxima across the DREAM
descriptors is r= 0.74, p < 10−4 and r= 0.5, p < 10−9 across
Dravnieks descriptors). This is also reflected in the semantic
vector correlation matrix where “sweet” is similarly maximally
correlated with “sweet” in Dravnieks and “fruit” correlation is
with “peach” and “citrus” than with “fruity”. Finally although
“flower” shares a large weight with “floral”, it has similar
correlation with “strawberry”, “fragrant”, and “lavender” (Fig. 2b,
top). Further insight is gained from looking at arrangement
changes of two-dimensional projections of the DREAM descrip-
tors based on their ratings distance (Fig. 2c) and their semantic
distance (Fig. 2d; also see Methods). Notably, we observe only
small local distortions of group mappings, e.g., “grass”, “flower”
and “fruit” contiguous in both spaces (pink). However, there is
also a global distortion as “sweet” is arranged in the semantic
space near its antonym “sour,” and in the ratings space “sweet” is
arranged closer to the perceptually similar term “bakery,” and
“sour” is arranged closer to the perceptually similar term
“decayed”.

Extending predictions to arbitrary descriptors. The similarities
in how the descriptors are arranged in the olfactory-perceptual
space and in the semantic space favor the hypothesis of a tight
perceptual-linguistic bond between the descriptors ratings and
their linguistic meanings. Consequently we developed a model
that learns a transformation S from the 19 DREAM semantic
vectors to the 131 Dravnieks semantic vectors (Fig. 3a, top left)
and refer to this model as the direct semantic model. We hypo-
thesized that, given the correspondences between the perceptual
and semantic spaces, we could use this same matrix S to predict
the ratings of the 131 Dravnieks descriptors based solely on the
ratings of the 19 DREAM descriptors and the semantic relation
between the DREAM and Dravnieks descriptors. We compared
the results of the semantic model to a direct ratings model that
uses a training set of molecules for which both DREAM and
Dravnieks ratings are available to learn a transformation R that
can predict a new molecule’s ratings on the Dravnieks descrip-
tors, given its ratings on the DREAM descriptors (Fig. 3a, top

right). To further investigate the complementarity of the infor-
mation provided by the semantic vectors and ratings data, we also
looked at the performance of a mixed model that averaged the
predictions of the two models.

To avoid overfitting, we used a cross-validation procedure
where the 58 shared molecules are repeatedly divided at
random into test sets and training sets and results averaged over
repetitions. The performance of all three models was evaluated
as the number of training molecules is varied. We compared
each model’s performance by computing the median of the
correlation between the predicted ratings and the actual ratings
for a test set of molecules, across the Dravnieks descriptors. As
ratings of molecules across descriptors are significantly
correlated, we defined as an appropriate baseline prediction
the mean rating for each descriptor across all molecules used
for training the model and found that this baseline correlation
is around 0.6. We then calculate a Z-score that compares the
difference between the baseline correlation and the correlations
produced by the models, taking into account their dependence.
We report the median Z-score across molecules and across
repetitions of cross-validation.

Remarkably, without making use of any of the ratings from the
target set, i.e., an instance of zero-shot learning22, the semantic
model is able to predict the ratings in the target set reasonably
well (Fig. 3a bottom and 3b inset) with a median Z= 3.7,
r= 0.47, p < 10−4 (one-sided t-test, see Supplementary Fig. 1 for
correlations plot) and better than the ratings model when trained
on fewer than 6 overlapping molecules (Fig. 3a bottom, blue and
gold lines). Furthermore, the mixed model showed excellent
performance with a Z-score of up to 5 and was never
outperformed by the ratings model, underscoring the importance
of the contribution from the semantic model and suggesting
complementarity between information available in the ratings
and the semantic model (Fig. 3a bottom, green and gold lines).

Extending predictions to arbitrary molecules. We extended this
approach using a chemoinformatics-to-perception model that
allows the prediction of ratings along the 19 DREAM descriptors
for any molecule using its molecular features24. We used an
imputation model C, pre-trained with the DREAM dataset, to
predict the 70 Dravnieks molecules that are not part of the
DREAM dataset (Fig. 3b, top row; see also Methods). C is then
combined with either the semantic transformation S to yield the
imputed semantics model or used to train R yielding an imputed
ratings model, both inferring Dravnieks ratings (Fig. 3b, middle
row). These models were also averaged to produce a mixed model
and scored on Dravnieks ratings (Fig. 3b, bottom row).

Once again, predictions of descriptor ratings based on the
semantic vectors alone with no molecular training data, are
significantly better than chance when no training molecules
are available (Fig. 3b, bottom, median Z= 3.4, r= 0.40, p < 0.001,
see methods—see plot inset and Supplementary Fig. 2 for
correlations plot) and outperform the imputed ratings model
when less than 10 molecules are available for training (Fig. 3b,
bottom, blue and gold lines). We also again observe that a mixed
model dominates the ratings model, showcasing the utility of
semantic vectors even when ratings for a training set of molecules
are available (Fig. 3b, bottom, gold and green lines). This
advantage persists even as the number of molecules for which the
source ratings available grows larger.

Analysis of predictive performance. To understand the perfor-
mance of the semantics-based models, we varied the number of
source DREAM descriptors whose semantic vectors are available
for training the direct and imputed semantic models while using
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Fig. 2 Olfactory-perceptual map and semantic structure similarities. a Heatmap showing correlations between the ratings of the Dravnieks descriptors
(horizontal axis) and the DREAM descriptors (vertical axis) across the 58 shared molecules. Descriptors are arranged using hierarchical clustering,
showing that they naturally cluster into semantically interpretable categories in the perceptual ratings correlation space. b Heatmap showing the
correlation for the semantic vectors of the DREAM descriptors (horizontal axis) to the semantic vectors of the Dravnieks descriptors (vertical axis).
Descriptors are arranged using the hierarchical clustering of a in order to allow direct comparison and emphasize common structure. Top: zooming in on
one of the semantic clusters. Weights are not always highest between identical Dravnieks and DREAM descriptors (e.g., “flower”). c Organization of
descriptors in the olfactory rating space through a 2D dimensionality-reduction based on the intrinsic similarity between the ratings representation of the
descriptors across all molecules in the DREAM dataset. d Organization of descriptors in the olfactory rating space through a 2D dimensionality-reduction
based on the intrinsic similarity between the semantic representation of the descriptors in the DREAM dataset. Note the locality preservation of descriptor
groups, identified by colors (e.g., pink for “grass,” “flower” and “fruit”), and the global distortion due to the proximity of the antonyms “sweet” and “sour”
shown with a red bar in the semantic space, in turn mapped close to the perceptually closer “bakery” and “decayed,” respectively, shown with a red bar in
the ratings organization
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leave-one-out cross-validation on their respective training/test
molecule sets. The method we used for prioritizing the 19 per-
ceptual descriptors is a state-of-the-art prototype selection algo-
rithm based on a non-negative constrained reconstruction of the
original data (see Methods and ref.28). We chose this approach as
it selects recursively the best individual descriptor, i.e. the
descriptor that best explains the entire perceptual ratings data, as
opposed to commonly-used dimensionality-reduction factoriza-
tion algorithms. We observe that for both models, as the number
of source descriptors increases, prediction performance generally
increases, though the performance improvements plateau twice at
four source descriptors, notably “sour”, “urinous”, “burnt” and
“sweet”, and then around ten source descriptors (Fig. 4a). The

direct semantic model uses real DREAM ratings for making its
predictions and so its correlation across descriptors is overall
higher and the difference grows at the second plateau (Fig. 4a,
squares and circles). This also suggests that it is possible to
achieve good prediction performance on the target descriptors’
predictions by collecting only a small number of ratings from a
smaller number of source descriptors.

We analyzed the quality of model predictions for each of the 58
overlapping molecules of this leave-one-out model (last green dot
in Fig. 3a and see Supplementary Data 1 for all the predictions)
and find that the mixed model is more stable across molecules
than the semantic model and as expected its correlations are also
higher, around 0.8 on average (Fig. 4b).
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Fig. 3 Predicting olfactory perception across descriptor sets and molecules. a Top Schematic of the direct models for predicting ratings. During training (top
row), the direct semantic model (DirSem left column) learns a transformation S from DREAM descriptors’ semantic vectors to Dravnieks descriptors’
semantic vectors. Direct ratings model (DirRat right column) learns a transformation R from molecule ratings on DREAM descriptors to molecule ratings on
Dravnieks descriptors. During testing (bottom row), the DirSem and DirRatmodels use transformations S and R, respectively, to predict molecule ratings on
Dravnieks descriptors from the ratings given on DREAM descriptors. Note that during training, DirSem uses no molecules while DirRat uses the shared set
of 58 molecules. Both models are tested on these 58 molecules, averaging across 100 repetitions of 10-fold cross-validation. Bottom: The performance of
DirSem (blue dots) and DirRat (orange dots) as well as a their averaged mixed model (green dots), as the number of molecules used in training is increased.
b Top: Schematic of the indirect models for predicting ratings. During imputation (top row), both models learn the same transformation C from
chemoinformatic properties to the ratings on the DREAM descriptors. During training (middle row), the two models imputed semantics ImpSem and
imputed ratings ImpRat learn transformations S and R using the same procedure as the training phase of DirSem and DirRat, respectively. During testing
(bottom row), the DirSem and DirRat models use the transformations S ◦ C and R ◦ C, respectively, to predict molecule ratings on Dravnieks descriptors
from the ones given on DREAM descriptors. Note that the ImpSem model uses no molecules during training, while the ImpRat model uses molecules from
the set of 70 molecules present only in the Dravnieks dataset during training. Both models are tested on these 70 molecules, using cross-validation.
Bottom: The performance of the ImpSem (blue squares) and ImpRat (orange squares) models and the mixed model (green squares), as the number of
molecules used in training is increased. Inset shows the value of the correlations for the DirSem (black dots) ImpSem (black squares) when no molecules are
used during training
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Notably the semantic model predicted the perceptual ratings
profile for 57 of the 58 shared molecules with significantly above-
chance correlations. The best-predicted molecule pyridine, with a
fish-like smell, had a correlation around 0.6 while the other top
five predicted molecules had herbal and fruit-like smells (Fig. 4b).
We also analyzed the quality of the semantic model predictions
for each of the 131 Dravnieks descriptors by displaying the
median correlation across molecules for each descriptor in a
histogram (Fig. 4c, left). Notably about 30 percent of descriptors
were predicted with a correlation higher than 0.5 for the semantic
model, a value that increased to 50 percent of the descriptors for
the mixed model (Fig. 4c, right).

Organization of descriptors in semantic and olfactory ratings
spaces. A closer look at the nature of the semantic and perceptual
ratings spaces yields a deeper intuition about why and how our
method works. Figure 4d shows a dendrogram where Dravnieks
descriptors are arranged according to semantic distance, and
color-coded by prediction performance of the DirSem model. The
prediction’s smoothness reveals an odorwheel-like organization

whose backbone is the semantic content of the descriptors: the
semantic model for a given descriptor is significantly correlated
with the prediction performance of the nearest neighboring
descriptor in semantic space (r= 0.4170, permutation test
p < 0.001) and conversely a descriptor’s location in semantic space
well predicts the prediction performance of the semantic model
for that descriptor (p < 0.001 measured using 1- and 2-nearest-
neighbors permutation tests). On the other hand, the incomplete
correspondence between the semantic and olfactory spaces (Fig.
2c, d) is reflected in the failure to incorporate higher-order
semantic concepts such as synonymy/antonymy, meronymy/
hypernymy, which could be leveraged to improve our model29.

Universality and flexibility of the model: Prediction of homo-
logous series. To demonstrate the universality and flexibility of
our zero-shot learning inference, we applied it to odor molecules
that have been extensively studied by fragrance chemists and
whose structure-odor relationship heuristics are well known. For
this, we compiled notes on the smells of 35 molecules containing
between two and ten carbon atoms in the homologous series of
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Fig. 4 Analysis of predictive performance and map structure. a The performance of the direct semantic DirSem and the imputed semantic ImpSem models
(open blue circles and squares, respectively) as the number of descriptors used during training is increased. b Prediction performance for each molecule, as
measured by average correlation across descriptors between the ground truth ratings and the ratings predicted by the DirSem and mixed models (blue and
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alkyl aldehydes, primary alcohols, 2-ketones, and carboxylic acids
(Methods)30. For each molecule, using the chemoinformatic and
then semantic model method described above, we computed a
prediction of the ratings for each of the 80 unique descriptors
extracted from the smell notes (Supplementary Data 2). We
then ordered for each molecule the descriptors according to
their ratings and computed the area-under-the-curve of the

receiver-operating-characteristic curve (AUC) on the binary
classification task of predicting whether the paradigm odors for
each molecule contains the ordered descriptors (Fig. 5). Notably,
the family of acids were the best-predicted family with a median
AUC across molecules of 0.75 (p < 0.02 one-sided t-test), ketones
had an AUC of 0.67 (p < 0.05 one-sided t-test), alcohols had an
AUC of 0.63 (p < 0.07 one-sided t-test) and aldehydes were the
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worst predicted with an AUC of 0.61 (p < 0.09 one-sided t-test).
The overall median AUC across families of molecules was 0.66
(p < 0.05 one-sided t-test). Acids were overall predicted as sour
but as the number of carbons increased the second-ranked
descriptor changed from pungent to sweaty, musty and then back
to pungent. Alcohols had overall an herbal smell and changed
from sour to sweet (Supplementary Data 2), aldehydes changed
from pungent to sweet and fruity, finally 2-ketones changed from
sour, acidic to sweet and grape. Here again we encounter the
limitations of our current semantic model, reflected in the fact
that synonymous odor descriptors have systematically different
ranks. For example, each of the 35 molecules is predicted to be
more “pungent” than “penetrating” with the median rank of
“pungent” being 4 and the median rank of “penetrating” being 54
out of 80.

Discussion
There is a substantial body of evidence suggesting that the
representations of words in semantic vector spaces obtained from
co-occurrence statistics can be used to model different aspects of
human behavior31–36. Distributional semantic models not only
provide a good prediction of human word similarity
judgments31,32, but also other psycholinguistic phenomena such
as word acquisition in children33, reaction times in tasks to decide
whether a string of letters is a real word or not37, brain activity as
measured via fMRI34, reading comprehension35,36, test scores on
free-form essays33, and the presence of cognitive impairments
associated with prose recall deficiencies, among others38.

The present work demonstrates that the general structure of
semantic knowledge, as manifested in the unbiased distribution of
words in written language, can in fact be mapped onto the
olfactory domain, creating a natural classification of olfactory
descriptors, an odorwheel, that speaks to the depth of the con-
nection between language and perception14–19.

This connection can be harnessed to effectively transform
ratings from a small set of general descriptors to a larger more
specific one. In combination with a chemoinformatics-to-
perception model, our work enables end-to-end prediction of
perceptual ratings for chemicals for which no ratings data are
available at all, that is, a universal predictive map of olfactory
perception. Given that specialists including tea and wine tasters,
beer brewers, cuisine critics and perfumers expend considerable
labor to set up lexicons that are concise and hierarchical, and
which cover the relevant odor perception space, a general
solution for predicting smell perceptual descriptors, indepen-
dently of the lexicon used, would be extremely useful across a
wide range of industries. Moreover, our findings are also
clinically relevant, given that changes in olfactory perception
are one of the first signatures of Alzheimer’s Disease39 and
associated with a range of other mental disorders40. Our
approach provides a means to assess directly how these

perceptual disturbances are associated with cognitive and
emotional states.

Several limitations of the current approach need to be men-
tioned, along with possible ways to overcome them. In the first
place, the model needs to be extended to mixtures of molecules; a
naive linear superposition may suffice, but there is strong evi-
dence that mixtures are particularly susceptible to non-linear
interactions41. Secondly, as already mentioned, it is possible to
enlarge the basic distributional semantic model with additional
lexical structure not easily captured by context-as-semantics
hypothesis, such as synonyms/antonyms, part-of-speech markers
such as verbs and nouns, so as to minimize the distortions we
observed in the semantic-to-perception mapping. Related to this
last issue, it remains to be seen how the word-based approach
presented here will be extended to unconstrained discourse, in
particular as it pertains to the expected difference between open
narratives of the olfactory-perceptual experience by smell experts
and untrained raters42. We hope that, for all these extensions, our
work will provide a foundation to build upon.

Methods
Perceptual data. In all of our experiments, we predict the average perceptual
ratings given to molecules in the Dravnieks human olfaction dataset23. This dataset
consists of the average ratings of 128 pure molecules by a total of 507 olfaction
experts using 146 verbal descriptors. Each molecule was rated only by a subset of
100–150 of the experts. The ratings are on a scale from 0 to 5, where 5 signifies the
best match of a descriptor for a given stimulus. Of these 146 descriptors, 15 were
discarded because there was no corresponding word vector in our distributional
semantic model (e.g., “burnt rubber”), leaving us with 131 descriptors.

Several of our models make use of the data collected by Keller and Vosshall43 as
presented in Keller et al.24 Data from 49 individuals were used, all of the work
reported focuses on predicting the ratings averaged across subjects. Individuals
were asked to rate each stimulus using 21 perceptual descriptors (intensity,
pleasantness, and 19 descriptors), by moving an unlabeled slider. The default
location of the slider was 0. The stimuli were 476 pure molecules. For each task, the
final position of the slider was translated into a scale from 0 to 100, where
100 signifies the best match of a descriptor for a given stimulus. Further details on
the psychophysical procedures and all raw data are available in the Keller and
Vosshall article43.

Distributional semantic model. To assess accurately the semantic similarity
between the DREAM and Dravnieks descriptors, we took advantage of a dis-
tributional semantic model trained using the fastText skip-gram algorithm, a
neural network-based model that predicts word occurrence based on context44.
These 300-dimensional vectors were trained on a corpus of 16 billion words, and
are publicly available (https://fasttext.cc/docs/en/english-vectors.html). See Boja-
nowski et al. for additional details on training and the specifics of the model. We
originally used Word2Vec vectors26, and though we saw improved performance
with fastText, the difference was quite small.

The semantic vectors of a distributional semantic model are vectorial
representations of word meaning motivated by the distributional hypothesis stating
that the meaning of a word can be inferred as a function of the linguistic contexts
in which it occurs25.

Distributional semantic models rest on the assumption that, to quote
Wittgenstein, that ‘the meaning of a word is its use in the language’45. For example,
the distributional hypothesis would predict that kitten and cat have similar
meanings, given that they are both used in contexts such as the ____ purred softly
and the ____ licked its paws; meanwhile the meaning of rock would be less similar

Fig. 5 Predicting paradigm odors of four molecular families. a Schematic for predicting paradigm odors for 35 molecules from the four chemical families of
alkyl aldehydes, primary alcohols, 2-ketones, and carboxylic acids. Top. Features from molecular structures, left, are used to predict values of DREAM
descriptors middle, and then the semantic model is applied to predict values in 80 unique perceptual descriptors extracted from the paradigm odor
descriptions of all the 35 molecules, right. The 80 descriptors are shown in blue in a dendrogram according to their semantic similarity, the 19 DREAM
descriptors are shown in red. The 7 overlap descriptors are acid, floral, fruity, sour, sweaty, sweet, and wood. textitBottom. Example of performance of the
model for 3 molecules left, their paradigm odors are indicated in blue middle, and predicted ordered list of 80 descriptors by decreasing ratings right, only
first 10 are shown. Bold blue descriptors indicate a match to the paradigm descriptors of the molecule. b Prediction performance for the paradigm odors for
each of the 35 molecules ordered by increasing AUC-ROC values for each of the four families of molecules starting with acids shown with dots in
decreasing tones of yellow, ketones in decreasing tones of green, alcohols in increasing tones of light blue and aldehydes in increasing tones of dark blue.
The dotted line indicates random AUC-ROC value
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to kitten, because it is rarely if ever used in similar contexts. The distributional
hypothesis has inspired the field of distributional semantics, which aims to quantify
the meanings of words based on co-occurrence statistics of the words in large
samples of written or spoken language. These co-occurrence statistics can be
summarized and embedded in a low-dimensional vector space, known as a
semantic vector space, using dimensionality-reduction techniques such as principal
components analysis46 or neural networks26. The semantic vector space is
constructed in such a way that words that occur in similar contexts and are
therefore presumably semantically similar are represented by vectors that are
geometrically close as measured for example by cosine distance or Euclidean
distance.

Chemoinformatic features. We used version six of the Dragon software package
(http://www.talete.mi.it) to generate a 4884 physicochemical features of each
molecule (including atom types, functional groups, topological, and geometric
properties)

Estimating the perceptual ratings from chemical structure. To estimate the
perceptual ratings from the chemical structure, we use a regularized linear model
that is learned using elastic net regression24. This model is trained on the DREAM
dataset of 476 molecules. The input for the model consists of the chemoinformatic
features of the molecules described above. Using these features, the model predicts
the mean perceptual rating given by 49 subjects on each of the perceptual
descriptors that we use above. Thus, for each molecule i, the chemoinformatics-to-
perception model learns a transformation C such that

bpS;i ¼ CxS;i; ð1Þ

where bpS;i is the 19-dimensional vector containing the model’s estimate of the
mean ratings on the DREAM descriptors for the molecule i, and xS,i is the 4884-
dimensional vector of molecule i’s chemoinformatic features.

Extending ratings to new descriptor lexicons. We define two tasks, direct and
imputed. For the direct task, we have access to actual DREAM ratings for each test
molecule. In the imputed task, we do not have access to the test molecule’s actual
DREAM ratings. Instead, we begin by applying a previously trained and unpub-
lished model used in the context of Keller et al.2 that can infer the ratings scores of
any chemical on the DREAM verbal descriptors, given its chemoinformatic
properties. For both tasks, the objective is to predict the test molecule’s Dravnieks
ratings. Consequently, we also refer to the DREAM data as our source and the
Dravnieks data as our target. We present three classes of model for each task,
ratings, semantic, and mixed. Altogether the combination of the tasks and model
classes results in six models, which we describe below.

As before, the real or imputed DREAM ratings scores for each molecule i can be
collected into a 19-dimensional perceptual vector pS,i. In addition, for each
DREAM descriptor d, we have a semantic vector sS,d, which is a 300-dimensional
vector computed as described in the section describing the semantic vectors. We
collect these into a source semantic matrix SS of dimension 19 × 300 where again 19
is the number of DREAM perceptual descriptors.

We want to learn the ratings scores for any arbitrary set of descriptors—we call
these our target descriptors. We assume that we can compute the semantic vectors
corresponding to each of these perceptual descriptors d, denoted by sT,d. Taking
advantage of the structure inherent in these target semantic vectors is key to our
method. We collect these into a target semantic matrix ST of dimension DT × 300
where DT is the number of target descriptors. In the case of the results presented in
the body of this paper, DT= 131, because there are 131 Dravnieks descriptors that
we use.

In this framework, our goal is to estimate the ratings scores for the target
(Dravnieks) descriptors for each test molecule i, denoted by pT,i.

In order to set a point for comparison, we propose a baseline model that takes
the mean rating score for each target-set descriptor, across the training set of
molecules for which ratings are available:

pT ¼ 1
Training Setj j

X
i2Training Set

pT;i ð2Þ

This is then used as the baseline estimate of the ratings scores across the target-
set descriptors for a given new test molecule i. In the case where no training ratings
are available for the target descriptors, we take the baseline to be the constant
vector 0.

The first model class is composed of the semantics-only models for the direct
and imputed tasks (DirSem and ImpSem, respectively). These semantics-only
models assume that a distributional semantic space derived from a linguistic corpus
shares structure with the olfactory-perceptual space in which perceptual ratings
scores exist. Consequently, we seek to test whether we can leverage the structure of
the semantic space to predict ratings in the perceptual ratings space. To learn the
semantics-only model S we proceed by supposing there exists a matrix S of
dimension 19 × 131 that roughly maps from the semantic vectors for the source set
of perceptual descriptors to the semantic vectors (collected into the matrix ΣS) for

the target set of perceptual descriptors (collected into the matrix ΣT:

ΣT � S′ΣS: ð3Þ

Our semantics-only models make the assumption that S is also an appropriate
transformation for mapping from the perceptual ratings for the source set of
descriptors to the perceptual ratings for the target set for each molecule i:

pT;i � SpS;i: ð4Þ

In order to estimate S, we use elastic net regression. The regularization
parameters are set by nested 10-fold cross-validation.

Note that of the three model types described in this section, the semantics-only
models are the only ones that do not rely on having access to any ratings scores for
the source set (i.e., no pT is required for training). However, to compare this model
directly with the models that do use such information, we tested the effect of
adding information about the mean rating to the model. Therefore, the final
estimate for molecule i under this model, when target descriptors training
molecules are available, would be:

bpT;i ¼ SpS;i þ pT : ð5Þ

The only difference between DirSem and ImpSem is in the nature of pS,i and pT .
Recall that in DirSem these are derived from real DREAM ratings data, while in
ImpSem they are predictions of the chemoinformatics-to-perception model.

The ratings-only models DirRat and ImpRat rely on having access to ratings
scores for the target descriptors, for some training set of molecules. They assumes
that there is some function R that maps from ratings scores on the source
descriptors to ratings scores on the target descriptors for each molecule i:

pT;i � RpS;i: ð6Þ

Once again, we estimate R using elastic net regression, with regularization
weights set by nested 10-fold cross-validation. We also add information about the
mean rating to the model, if available, so our final estimate under this model is:

bpT;i ¼ RpS;i þ pT : ð7Þ

For the mixed models direct and imputed we simply average the predictions of
the semantics-only and ratings-only models:

bpT;i ¼
1
2
ðRþ SÞpS;i þ pT: ð8Þ

In preliminary investigations, we also looked at other ways to combine the
information in the semantics-only and ratings-only models, such as training a
single regression model on the set union of the descriptors’ semantic vector values
and molecule ratings, but a simple average performed best.

Evaluating performance. For each model, we vary the number of training
molecules for which target descriptor ratings are available. We can then measure
the median Pearson correlation between model M’s estimate bpT;i and the ground
truth pT,i for each test molecule i as:

rðiÞM;G ¼ r bpðiÞT ; pT;i
� �n o

: ð9Þ

We use these correlations to assess whether the model’s performance differs
significantly from the baseline model, by computing Z-scores. For the Semantics-
Only model when we do not use any training molecules, the baseline is simply a
correlation of zero, so the Z-score can be obtained using the Fisher r-to-Z
transformation:

ZM;G;i ¼
1
2
log

1þ rM;G;i

1� rM;G;i

 !
: ð10Þ

However, for the other models, note that the correlation coefficient produced by
model and the correlation coefficient produced by the Baseline model are not
independent random variables. Thus, to determine whether these two correlations
differ significantly, we must take their dependence into account, which the
standard Fisher transformation does not do. Instead, we can use the method
developed by ref.47:

ZM;G;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 3

p ZG;B;i � ZM;B;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� sÞp ; ð11Þ
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where

s ¼
rG;B;i 1� r2G;M � r2M;B;i

� �
� 1

2 ðrG;M;irM;B;iÞ 1� r2G;M;i � r2M;B;i � r2G;B;i

� �

1� r2G;M;i

� �
1� r2M;B;i

� � : ð12Þ

We can then compute the median of these Z-scores for all molecules in the test
set:

median

i 2 Test Set

ZM;G;i

Permutation tests for evaluating smoothness in semantic prediction. We
performed a permutation test by randomly permuting the semantic nearest
neighbors of each descriptor, and then re-computing the correlation between the
prediction performances (measured by Pearson’s correlation) of each point and of
its permuted nearest neighbor. The resulting simulated correlations exceeded the
true correlation of r= 0.4170 in 0 of the 10,000 permutations.

For each descriptor, the k-nearest neighbor (k-NN) algorithm predicts the
descriptor’s prediction performance (measured by Pearson’s r2) by taking the
distance-weighted average of the prediction performance of the k-nearest
neighbors. The mean squared error of this algorithm is then computed, and the
significance is evaluated using a permutation test. The permutation test is
performed by randomly permuting the semantic nearest neighbors of each
descriptor, and then re-computing the mean squared error of the resulting k-NN
predictions. The mean squared error of 2000 such permutations was never below
that of the true mean squared error.

Tests for similarity between ratings and semantic vectors correlation matri-
ces. To estimate the degree of structural similarity between the correlation matrix
defined by Dravnieks and DREAM ratings (Fig. 2a), and that defined by the
corresponding semantic vectors (Fig. 2b), we implemented two tests. In the first
one, we computed the Procrustes dissimilarity between the rating matrix and the
semantic matrix, and compared it against the expected dissimilarity between the
original rating matrix and random permutation surrogates of the semantic matrix.
A Wilcoxon test yields p < 0.05. For the second test, we found for each DREAM
descriptor the Dravnieks descriptor with which it is maximally correlated, both in
the ratings and semantic matrices. A Spearman test for the correlation between
these two sequences yields r= 0.74, p < 10−4. Conversely, the test for the maxima
estimated along the Dravnieks descriptors yields r= 0.5, p < 10−9.

Organization of semantic and rating spaces. The dendrogram in Fig. 4d was
created by computing the cosine distance between the semantic vectors of the
Dravnieks descriptors, fed into an agglomerative hierarchical cluster tree algorithm
using the average over all element of a cluster to determine the distance between
clusters (linkage function48). The 2D projections in Fig. 2c and d were created
using multidimensional scaling (mdscale function48) with cosine distance for both
maps. For the semantic organization, the fastText 300-dimensional vectors corre-
sponding to the DREAM descriptors were used; for the ratings organization, each
descriptor was represented as vector of ratings over molecules.

Additional information on elastic net regression. LASSO and elastic net are
regression algorithms that impose a regularization penalty on the regression
weights in order to reduce model complexity and avoid overfitting.

For a regression model of the form

Y ¼ AX; ð13Þ

the regression weights in LASSO are estimated in order to minimize the following
loss function:

X
i

Yi � ðAXÞi
�� ��2

2
þλ1

X
i

Aik k1; ð14Þ

where the first term is the squared error of the prediction, and the second term is a
regularization penalty (a penalty on the regression weights), and λ1 is a
regularization strength parameter. LASSO’s regularization penalty leads to a model
that is sparse (i.e., produces few nonzero regression weights). This results in
relatively more parsimonious and interpretable model. However, the LASSO loss
function is not convex, so it does not produce a unique solution when the number
of features is greater than the number of samples. When two features are highly
correlated, LASSO will arbitrarily assign only one of the two features a nonzero
weight, even if both contribute equally to the prediction in the ground truth model.
This can lead to poor prediction performance.

Elastic net regression attempts to get around LASSO’s drawbacks. The
regression weights are computed according to

bA ¼ argmin

A; λ1; λ2

X
i

Yi � AXik k22þλ1
X
i

Aik k1þλ2
X
i

Aik k22; ð15Þ

where the first term is the squared error of the prediction, the second term is the L1
(or LASSO) regularization penalty, the third term is the L2 (or ridge regression)
regularization penalty49, and λ1 and λ2 are the corresponding regularization
strengths. Elastic net regression seeks to combine the benefits of LASSO and ridge
regression. Like LASSO, it results in a parsimonious, interpretable, sparse model
where most of the regression coefficients are zero. However, like ridge regression,
elastic net has a convex loss function and produces a unique solution even when
the number of features is greater than the number of samples. Elastic net also
overcomes the arbitrary feature selection drawback of LASSO. See49 for more
details.

Sequentially selecting prototypical features. We now describe the technical
details of the method used to create Fig. 3a. For a more thorough treatment please
refer to ref.28.

Let X be the space of all covariates from which we obtain the samples X(1) and
X(2); in our particular case, these will be the perceptual ratings over molecules.
Consider a kernel function k : X ´X ! R and its associated reproducing kernel
Hilbert space (RKHS) K endowed with the inner product k(xi, xj)= 〈ϕ(xi),ϕ(xj)〉
where ϕxðyÞ ¼ kðx; yÞ 2 K is continuous linear functional satisfying ϕx:h! h(x)=
〈ϕx,h〉 for any function h 2 K : X ! R.

The maximum mean discrepancy (MMD) is a measure of difference between
two distributions p and q where if μp ¼ Ex�p½ϕx � it is given by:

MMDðK; p; qÞ ¼ sup

h 2 K
Ex�p½hðxÞ� � Ey�q½hðyÞ�
� �

¼ sup

h 2 K
hh; μp � μqi:

Our goal is to approximate μp by a weighted combination of m sub-samples Z ⊆
X(2) drawn from the distribution q, i.e., μpðxÞ �

P
j:zj2Z

wjkðzj; xÞ where wj is the

associated weight of the sample zj∈X(2). We thus need to choose the prototype set
Z ⊆ X(2) of cardinality (|.|) m where n(1)= |X(1)| and learn the weights wj that
minimizes the finite sample MMD metric with the additional non-negativity
constraint for interpretability, as given below:

dMMDðK;Xð1Þ;Z;wÞ
¼ 1

ðnð1ÞÞ2
P

xi ;xj2Xð1Þ
kðxi; xjÞ � 2

nð1Þ
P
zj2Z

wj

P
xi2Xð1Þ

kðxi; zjÞ

þ P
zi ;zj2Z

wiwjkðzi; zjÞ; subject towj � 0;8zj 2 Z:

ð16Þ

Index the elements in X(2) from 1 to n(2)= |X(2)| and for any Z ⊆ X(2) let LZ ⊆
[n(2)]= {1, 2,…,n(2)} be the set containing its indices. Discarding the constant
terms in (16) that do not depend on Z and w we define the function

l wð Þ ¼ wTμp �
1
2
wTKw ð17Þ

where Ki,j= k(yi, yj) and μp;j ¼ 1
nð1Þ

P
xi2Xð1Þ

kðxi; yjÞ; 8yj 2 Xð2Þ is the point-wise

empirical evaluation of the mean μp. Our goal then is to find an index set LZ with

|LZ| ≤m and a corresponding w such that the set function f : 2 nð2Þ½ � ! R
þ defined

as

f LZð Þ � max

w : suppðwÞ 2 LZ ;w � 0

l wð Þ ð18Þ

is maximized. Here supp(w)= {j:wj > 0}. We will denote ζ LZð Þ the maximizer of set
LZ.

The above problem is NP-hard to solve. The ProtoDash algorithm, however,
efficiently solves this problem and is shown to have a tight approximation
guarantee28. If Q denotes the 476 × 1924 perceptual matrix then we set X(1)= X(2)
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=QT and run the following algorithm.. .

The order in which elements are added to L is the order depicted in Fig. 3a.

Predictions of paradigm odors for molecular families. We extracted every term
used to describe the paradigm odors for any of the 35 molecules in 4 families: 9
molecules from the family of alkyl aldehydes, 9 molecules from primary alcohols, 8
molecules from 2-ketones, and 9 molecules from carboxylic acids, that appeared in
The Good Scents Company and Perfumer and Flavorist libraries. We included 80
descriptors used to describe all the 35 molecules, ignoring instances where the term
was only weakly associated–e.g., fruity nuance or weak hint of apple. We then
predicted for these 35 molecules the 19 DREAM perceptual descriptors from the
Dragon molecular descriptors of the molecules and then used the Semantic model
to obtain ratings for the 80 terms. Besides the AUC, we also computed for each
molecule a p-value by performing a one-sided t-test for the difference between the
means of the predictions for the terms that were used to describe the molecule and
the terms that were not used to describe the molecule. A Kolmogorov–Smirnov test
on these p-values reveals that they are not uniformly distributed (p < 1e–6), hence,
overall predicted ratings for descriptors that are used to for a molecule rank much
higher than the ones that are not.

Data availability
All relevant data are available from the authors. The code to predict DREAM
descriptors is available here: https://github.ibm.com/adhuran/Olfaction The code
to predict Dravnieks descriptors is available here: https://github.com/edg2103/
odormatic.
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