
1638  |   	﻿�  CPT Pharmacometrics Syst Pharmacol. 2022;11:1638–1648.www.psp-journal.com

Received: 15 March 2022  |  Revised: 16 September 2022  |  Accepted: 18 September 2022

DOI: 10.1002/psp4.12874  

A R T I C L E

Evaluation of machine learning methods for covariate data 
imputation in pharmacometrics

Dominic Stefan Bräm   |   Uri Nahum   |   Andrew Atkinson   |   Gilbert Koch   |   
Marc Pfister

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any 
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics.

Dominic Stefan Bräm and Uri Nahum contributed equally to this work. 

Gilbert Koch and Marc Pfister share senior leadership.  

Pediatric Pharmacology and 
Pharmacometrics, University Children's 
Hospital Basel (UKBB), University of 
Basel, Basel, Switzerland

Correspondence
Dominic Stefan Bräm, Pediatric 
Pharmacology and Pharmacometrics, 
University Children's Hospital 
Basel (UKBB), University of 
Basel, Spitalstrasse 33, 4056 Basel, 
Switzerland.
Email: dominic.braem@ukbb.ch

Abstract
Missing data create challenges in clinical research because they lead to loss of statis-
tical power and potentially to biased results. Missing covariate data must be handled 
with suitable approaches to prepare datasets for pharmacometric analyses, such as 
population pharmacokinetic and pharmacodynamic analyses. To this end, various 
statistical methods have been widely adopted. Here, we introduce two machine-
learning (ML) methods capable of imputing missing covariate data in a pharma-
cometric setting. Based on a previously published pharmacometric analysis, we 
simulated multiple missing data scenarios. We compared the performance of four 
established statistical methods, listwise deletion, mean imputation, standard multi-
ple imputation (hereafter “Norm”), and predictive mean matching (PMM) and two 
ML based methods, random forest (RF) and artificial neural networks (ANNs), to 
handle missing covariate data in a statistically plausible manner. The investigated 
ML-based methods can be used to impute missing covariate data in a pharmaco-
metric setting. Both traditional imputation approaches and ML-based methods per-
form well in the scenarios studied, with some restrictions for individual methods. 
The three methods exhibiting the best performance in terms of least bias for the 
investigated scenarios are the statistical method PMM and the two ML-based meth-
ods RF and ANN. ML-based approaches had comparable good results to the best 
performing established method PMM. Furthermore, ML methods provide added 
flexibility when encountering more complex nonlinear relationships, especially 
when associated parameters are suitably tuned to enhance predictive performance.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Missing covariate data is an important topic in the context of pharmacometric 
analyses. Currently, covariate imputation is handled with standard statistical 
methods.
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INTRODUCTION

Characterizing the behavior of a drug in patient popula-
tions of interest is an integral part for efficacious and safe 
treatments. Pharmacometric analysis of clinical data1–4 
and, in particular, population pharmacokinetic and phar-
macodynamic (PK-PD) analyses is a key contribution to 
achieving this goal. Pharmacometric models that identify 
and quantify effects of patients' characteristics (i.e., covar-
iates), on key model parameters, such as volume of dis-
tribution and clearance are indispensable for optimizing 
and personalizing dosing of new and existing medicines 
in adult and pediatric patients.

A common challenge with clinical data is that there 
is missing covariate information.5 There can be different 
reasons for missing entries, and these may influence the 
structure of missing data and affect pharmacometric anal-
yses. As pharmacometric analyses are used for decision 
making in drug development and clinical practice, a bi-
ased analysis can have a negative impact on patients and 
must be avoided. As such, it is critical to correctly handle 
missing covariate data in pharmacometric analyses.

Rubin et al. introduced a set of key definitions for miss-
ing data. Data where the occurrence of missing values are 
assumed to be independent of any variable in the dataset 
is called missing completely at random (MCAR)6; for ex-
ample, when patients miss a clinical examination due to 
random public transport breakdowns. If the probability of 
missing data in one variable is assumed to be related to 
one or more other observed variables in the dataset, the 
data are classified as being missing at random (MAR); 
for example, when older people miss more examinations 
than younger patients due to more difficulties getting to 
the hospital. Missing not at random (MNAR) describes 
data where it is assumed that the missingness depends on 

unobserved data; for example, when sicker people miss 
hospital examinations more often than healthy people.

The simplest way of dealing with missing values is 
called “listwise deletion” (LD) where all entries with 
missing values are removed from the analysis, resulting 
in less data being available for the analysis. A more com-
plex approach is to fill in or “impute” missing data so 
that all patient data, including the imputed values, can 
then be analyzed. Many different methods are available 
for imputation,7,8 which have also been fully or partially 
implemented in pharmacometrics.9 One prominent im-
putation method is multiple imputation,10–12 where the 
missing data are imputed several times to generate mul-
tiple “complete” datasets. Each complete dataset is then 
analyzed separately and the results are combined using 
so-called “Rubin's rules”.10 This procedure is often pre-
ferred because the variance of the estimated parameters 
in the analysis model are inflated to better consider the 
uncertainty coming from missing values.

Besides these classical statistical methods, machine 
learning (ML) has recently become increasingly relevant 
in many areas of today's scientific and daily life. Several 
ML methods such as random forest (RF) and artificial 
neural networks (ANNs) have already been introduced to 
impute missing values.13–16 ML-based methods are mainly 
data driven and often not based on an explicitly stated 
parametric model. In this study, the two ML methods—RF 
and ANN—are investigated and compared with standard 
statistical methods for their potential to impute missing 
covariate values in a clinical dataset being prepared for 
subsequent pharmacometric analysis. Here, we describe 
the applied ML methods for a broad audience in terms of 
statistical and pharmacometric experience.

In this study, we investigate four established statisti-
cal methods and two ML-based imputation methods to 

WHAT QUESTION DID THIS STUDY ADDRESS?
Are the machine-learning (ML) based approaches random forest and artificial 
neural networks capable to handle missing covariate data in a statistical plausible 
manner and how do they perform compared to established statistical methods?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
We demonstrated that ML-based approaches can be used to impute missing co-
variate information for pharmacometric modeling such as population pharma-
cokinetic analyses. They are largely independent of the underlying relationship 
and even without optimization, such as parameter tuning, they provide compara-
ble results to the best performing classical statistical methods.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Results from this evaluation study provides useful information on various statisti-
cal and ML-based methods supporting pharmacometricians and clinical pharma-
cologists in selecting the best suitable method to impute missing covariate data.
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handle missing covariate data. Because data collection in 
neonates, infants, and older children is particularly cum-
bersome and challenging due to difficulties in enrolling 
study subjects and drawing blood samples, methods to 
handle missing covariate values may be particularly rel-
evant in this clinical field. As such, we selected a dataset 
from a previously published study in neonates.17 This 
pediatric dataset provided a population-specific set of co-
variates relevant for pharmacometric analysis and evalua-
tion of imputation methods.

METHODS

We performed a simulation study to evaluate and compare 
four standard statistical imputation methods and two 
ML-based imputation methods to handle various levels 
of missing covariate data in the context of population 
PK analyses under MCAR and MAR assumptions. The 
simulation study included the following seven steps, as 
illustrated in Figure 1: first, obtain descriptive statistics 

of relevant covariates from the clinical pediatric dataset; 
second, generate a reference covariate PK dataset with 
a complete set of clinically relevant covariates for a 
generic drug with predefined population PK parameters 
and parameter distributions; third, apply a standard 
i.v. bolus one-compartment population PK model to 
estimate model parameters utilizing reference covariate 
PK dataset; fourth, generate reduced PK datasets with 
various levels of missing covariate information; fifth, 
apply four established statistical methods and two ML-
based methods to impute missing covariate information; 
sixth, apply same pharmacometric model to estimate 
model parameters utilizing imputed covariate PK 
dataset; and seventh, assess and compare performance 
of investigated imputation methods in terms of model 
parameter estimations.

The applied standard i.v. bolus one-compartment 
population PK model had the following three key com-
ponents: population volume of distribution (Vpop), popu-
lation clearance (CLpop), and one covariate of interest in 
neonatology, effect of birth weight (BW) on volume of 

F I G U R E  1   A flow chart of the 
presented simulation study. PK, 
pharmacokinetic.
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distribution (�V). Steps of the simulation study are de-
scribed in the following sections.

All simulations and analyses were conducted in R, ver-
sion 4.0.4,18 using an interface to Monolix.19

First step – Provide descriptive statistics  
of original dataset

The presented simulation study was based on a subset of 
data collected in neonates with extremely low BW (van 
Donge et al.17) consisting of 215 neonates with complete 
BW and birth length (BL) information. BW and BL in this 
dataset were summarized with a multivariate normal dis-
tribution (see Table S1).

Second step – Generate reference covariate 
population PK dataset

A simulated reference covariate population PK dataset 
was generated to allow comparison of the different impu-
tation methods. First, the relationship between BW and 
BL was created. Second, the �V  was generated depending 
on the BW. Third, the one-compartment PK concentration 
data for a generic drug was simulated for the 215 patients. 
Fourth and finally, additional covariates were added to 
the PK dataset.

To investigate whether a method is highly dependent 
on the relationships in the dataset to impute, two types 
of relationships between BW and BL were investigated. 
In datasets with linear relationships, baseline BW and 
BL values were sampled from the multivariate normal 
distribution derived from descriptive statistics of BW and 
BL in the original dataset. In datasets with nonlinear re-
lationships, BL was sampled from the univariate normal 
distribution observed in the original dataset. To generate 
nonlinear relationships between BW and BL, the BW was 
simulated utilizing a maximum effect (Emax) function with 
Hill coefficient. Two different covariate models relating 
BW with the �V  V  were investigated.

A linear covariate model was applied according to

where Vpop is the population value, �V the covariate effect, 
BWref =mean(BW) the reference value for BW and �V a 
zero mean, normally distributed random variable with SD 
�V. Model parameters were set to Vpop = 6 and �V = 0.001. 
A nonlinear covariate model was applied according to

with analogous parameter definitions. In order to have a 
strong nonlinear relationship in the dataset that cannot be 
approximated with a linear model, Vpop was set to 6 and �V  
to 8. Clearance (CL) was sampled from a log-normal distri-
bution without a covariate effect.

To rule out the possibility that the results are specific to 
the model parameter volume of distribution V, the perfor-
mance of imputation methods was also evaluated with a 
covariate effect of BW on the other key PK parameter CL. 
Structural similar linear and nonlinear covariate models 
were applied as shown above.

The individual serum concentration C(t) of a generic 
drug was simulated for five timepoints (t = 0, 1, 3, 8, and 
12 h) with a PK one-compartment i.v. model:

where d is the applied dose. This simple PK model with only 
one covariate effect was selected in order to allow a clear 
evaluation based only on a small set of model parameters.

To simulate a realistic setting, gestational age (GA) and 
sex were randomly generated and included in the covari-
ate PK dataset.

Third step – Apply population PK model to 
estimate reference parameters

To evaluate and compare performance of imputation meth-
ods, the point estimate Q and the standard error σ of phar-
macometric model parameters Vpop, CLpop, and �V were 
estimated from the generated reference covariate PK dataset 
without missing values. To this end, a one-compartment i.v. 
population PK model was fitted to the concentration-time 
data using nonlinear mixed effects modeling. Estimated 
model parameters Vpop, CLpop, and �V served as “ground 
truth” (also called reference model parameters in the fol-
lowing) for comparison with model parameters estimated 
with population PK datasets with imputed covariates.

These population PK analyses were performed with 
the R-interface package lixoftConnectors20 for Monolix.19

Fourth step – Create reduced population 
PK datasets with missing covariate 
information

Missingness was introduced to the covariate PK dataset 
by removing values in the baseline variable BW. Scenarios 
with four different proportions of missing covariate data 
(10%, 20%, 30%, and 40%) were generated. Additionally, 
scenarios were defined in which the missing values were 

V = Vpop
(

1 + �V
(

BW − BWref

))

e�V

V = Vpop

(

BW

BWref

)�V

e�V

C(t) =
d

V
e−

Cl
V
t ,
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either within the range of the non-missing BW values, 
or they were above the maximal non-missing BW. Note 
that the missingness assumption was still MAR because 
the missingness process was dependent on an observed 
variable. If this would not be the case, the missingness 
would be MNAR. It should also be noted that the scenario 
with 20% missing covariate data was considered to be the 
core evaluation scenario in this study, albeit this is a rather 
high level of missingness for a clinical study but possible 
in retrospective clinical datasets, especially in pediatrics.

The missingness under MCAR and MAR was gener-
ated with the ampute function from the mice package.21 
Under MCAR, the probability for a BW value to be missing 
was equally distributed among all samples. Under MAR, 
the missing probability was calculated based on the logis-
tic function giving a higher missing probability with in-
creasing observed estimate of V. We do not address MNAR 
missingness in the paper.

Fifth step – Impute missing covariate 
information with various methods

In an initial step, the i.v. bolus one-compartment popula-
tion PK model was fitted without any covariate effect to 
the PK dataset with all subjects. Individual estimates for 
V were also utilized during data imputation leveraging 
available information in the covariate PK dataset.22 Thus, 
the following variables were included in each imputation 
method: BW, BL, GA, sex, and estimated V.

Four established statistical methods and two ML-based 
methods to handle missing values were evaluated and 
compared in this study. The methods can be separated in 
single and multiple imputation methods (Table 1). Single 
imputation methods impute the missing values once. 
Thus, one completed dataset is generated and resulting 
parameters with this dataset are the final parameter esti-
mates. Multiple imputation methods generate m multiple 
completed datasets. These datasets are analyzed separately 
resulting in m sets of parameter estimates. These multiple 
parameter sets are combined to one single set of param-
eter estimates according to Rubin's rules (details in the 
sixth step). In this study, the default value of m = 5 in the 
R package mice21 was applied.

In the following section, we introduce each of the 
evaluated statistical and ML-based imputation methods. 
Further information, including small examples and the 
exact implementation, can be found in Appendix S1.

Four standard statistical imputation methods

LD refers to the deletion of records with at least one miss-
ing value (i.e., in this study, a missing BW value), followed 
by fitting the PK model, with data from patients without 
any missing values (i.e., using only the complete cases).

Mean imputation simply replaces all missing data in a 
variable (i.e., BW) by the average of the observed values 
for this variable.

Norm imputation is implemented as a standard statisti-
cal method for continuous variables in the mice package.21 
It fits a Bayesian linear regression model to the complete 
cases (i.e., those following LD) with BW as the dependent 
variable of the regression. Subsequently, the method ran-
domly samples m parameter sets from the posterior pa-
rameter distribution, and then uses each of the respective 
parameter sets in turn to impute the missing values from 
the associated linear model, finally generating m multiple 
imputed complete datasets.12

Predictive mean matching (PMM) imputation is 
another standard method in the mice package. PMM 
performs a Bayesian linear regression to calculate the sim-
ilarity between each data point with a missing value and 
all complete cases (similar to Norm above). In turn, for 
each missing value, the method then selects the most sim-
ilar complete cases as potential donor candidates. The BW 
from one randomly sampled donor candidate is taken to 
replace the missing value in one dataset. This procedure 
is then repeated for the remainder of the missing values 
in the dataset yielding a single complete dataset. This pro-
cedure is then repeated m times, generating m multiple 
imputed complete datasets.

Two ML-based imputation methods

RF is based on an assembly of multiple decision trees,23 
with a stochastic component where, for each individual 

LDa Mean Norm PMM RF ANN

Single imputation X X

Multiple imputation X X X X

Abbreviations: ANN, artificial neural network; LD, listwise deletion; PMM, predictive mean matching; 
RF, random forest.
aEven though LD does not impute the missing values it is listed as single imputation method because only 
one dataset for the analysis is generated.

T A B L E  1   An overview of the six 
methods to handle missing values and the 
related separation into single and multiple 
imputation methods
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decision tree, a random subset of data points and variables 
is sampled. The random choice of samples per decision 
tree means that RF can be implemented as a multiple 
imputation approach.24

ANNs are function approximators mapping input vari-
ables to output variables. It has been shown that under 
some assumptions, ANNs can approximate any func-
tion.25 The parameters in an ANN get calibrated during 
a training step based on a gradient-based optimizer. The 
data for this training step consisted of the complete cases 
only. Note that ANNs were implemented as a multiple im-
putation approach as well.

For the Norm and PMM imputations, the mice function 
of the mice package was utilized. For the RF algorithm, 
the missForest package was used.24 For Norm, PMM, and 
RF, we applied the default settings of the corresponding R 
packages. The ANN was generated through the torch pack-
age.26 For ANN, an initial network structure was proposed 
without a full grid search for an optimal architecture or 
hyperparameter tuning. This was less than optimal, but 
meant there were comparable implementations using de-
fault settings as for the other methods (see Appendix S1 
for details on the network structure).

Sixth step – Apply population PK model 
to re-estimate model parameters utilizing 
imputed covariate datasets

The same population PK model was applied to re-estimate 
parameters with imputed covariate datasets. For the single 
imputation methods, the point estimate Q and the standard 
error � of the model parameters Vpop, CLpop, and �V were 
estimated directly from the single generated complete co-
variate PK dataset. For the multiple imputation methods, 
point estimates Q̂l and standard errors �̂l were estimated 
for each completed dataset, resulting in m sets of estimated 
model parameters. These sets were combined to single esti-
mates Q and � according to Rubin's rules27 such that

where Ŵ  is the within imputation variance

and B̂ is the between imputation variance

These population PK analyses were also performed with the 
R-interface package lixoftConnectors20 for Monolix.19

Seventh step – Assess and compare 
performance of imputation methods

The procedures presented in the second to sixth steps 
were repeated 50 times with different reference covariate 
PK datasets to distinguish between stochastic and system-
atic errors in the subsequent results. For each repetition, 
the relative bias between the “ground truth” estimates, Q 
and σ, and estimates from the missing-value methods, Q 
and �, were calculated as follows:

In addition, the coverage rate28 (CR) was investigated over 
all 50 repetitions. Note that because we are interested in the 
imputation step only, CR was defined as the proportion of 
confidence intervals that contain the estimated reference pa-
rameters from step three28–30 in contrast to CR when we are 
interested in the estimation step where the CR calculation is 
based on the true parameter values. A t-distribution was as-
sumed for the confidence interval estimation. Note that the 
following equation was applied to compute the degrees of free-
dom of the t-distribution for the multiple imputation methods:

where Ŵ  is the within imputation variance, B̂ is the be-
tween imputation variance, and m is the number of imputed 
datasets.

Performance of evaluated imputation methods was as-
sessed with following three criteria: (i) similar point esti-
mates as the reference PK dataset without missing values; 
hence, the point estimate bias (Biasσ) should be distributed 
closely around zero; (ii) increased standard errors due to the 
increased uncertainty coming from the missing data; hence, 
standard error biases Biasσ should be less than zero; and (iii) 
CR of approximately the same as the nominal confidence 
interval of 95%, with a lower CR considered a drawback in 
terms of the performance criteria of the approach.6,28–30

Q =
1

m

m
∑

l=1

Q̂l
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RESULTS

In this section, we highlight results from the core evalua-
tion scenario with 20% missing covariate information as a 
realistic proportion of missing values (e.g., in retrospective 
studies (Tables 2 and 3)). Results from the scenarios with 
10%, 30%, and 40% missing covariate data are summarized 
in Tables S2 and S3. We begin by presenting the results 
from scenarios with linear relationships and then go on 
to those with nonlinear relationships. As mentioned pre-
viously, the relationship between the two covariates BW 
and BL, and that between BW and key PK parameter vol-
ume of distribution were investigated. Additionally, the 
performance of imputation methods with covariate effects 
of BW on CL are briefly summarized in a later section.

Under linear MCAR assumptions, all classical meth-
ods (LD, mean, Norm, and PMM) estimate the model pa-
rameters flawlessly with desired CRs (Figure S1). Only the 
estimated interindividual variability (IIV) for V, �V , in-
creased with mean imputation. This was also the case for 
all other investigated scenarios (Figures S2 and S4). This 
finding is expected as the mean imputed BW values could 
not explain the variability in V. Together with graphical 
examinations of the simulated datasets, we considered 
these results as validation for the process of missing data 
generation and fitting the PK analysis model. The other 
scenarios under MCAR assumptions are not discussed in 
detail here because MCAR assumptions are usually con-
sidered unrealistic.6

Performance of imputation methods 
under linear relationships between BL and 
BW and between BW and Vpop

Standard statistical imputation methods – For the data in 
which there is a linear relationship between BL and BW 
and between BW and Vpop, under the MAR assumption 
for missingness in BW, LD provided a slightly decreased 

coverage rate of 92% for the covariate effect �V  compared 
to the desired 95%. This can also be observed in a skewed 
bias distribution (Figure 2a). As expected, the population 
estimates for the volume of distribution Vpop are biased 
with LD and mean imputation, as shown in Figure  2c, 
with a coverage rate of 82% and 24%, respectively. The 
multiple imputation methods Norm and PMM showed 
unbiased results with coverage rates above 95% for �V  and 
Vpop.

ML-based imputation methods – The ML methods RF 
and ANN provided coverage rates above 95% for both es-
timated parameters. However, the standard error biases 
of the RF and the ANN imputation were very small com-
pared with the multiple imputation methods, as shown in 
Figures 2b,d.

Performance of imputation methods 
under nonlinear relationships between 
BL and BW and between BW and Vpop

Standard statistical imputation methods – For the data in 
which there is a nonlinear relationship between BL and 
BW and between BW and Vpop with MAR conditions, LD 
provided a mildly decreased coverage rate of 90% for �V  
and it was not biased for Vpop. In contrast, mean impu-
tation showed strongly biased results for Vpop (Figure 3c) 
with a decreased coverage rate of only 2%. Even though 
the covariate effect biases are skewed from a distribution 
around zero with mean imputation (Figure 3a), strongly 
increased standard errors (Figure  3b) resulted in a cov-
erage rate above 95%. The multiple imputation method 
Norm provided biased results for �V  and Vpop resulting in 
reduced coverage rates of 42% and 84%, respectively. The 
method PMM was slightly biased for the covariate effect 
resulting in a coverage rate of 90%, whereas the coverage 
rate for Vpop was unbiased.

ML-based imputation methods – The coverage rates for 
RF and ANN were slightly decreased for both volume of 

LD Mean Norm PMM RF ANN

Linear

MCAR 100% 100% 100% 100% 100% 100%

MAR 92% 100% 100% 100% 100% 100%

Nonlinear

MCAR 94% 100% 92% 100% 94% 90%

MAR 90% 100% 42% 90% 92% 94%

Outside observed range 100% 94% 90% 50% 30% 64%

Abbreviations: ANN, artificial neural network; �V , volume of distribution; BW, birth weight; LD, listwise 
deletion; MAR, missing at random; MCAR, missing completely at random; PMM, predictive mean 
matching; RF, random forest.

T A B L E  2   The coverage rate of 
the covariate effect �V for the missing 
data handling methods under different 
scenarios with 20% missing values in BW
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distribution (92% and 90%, respectively) and covariate ef-
fect (92% and 94%, respectively) compared to the desired 
95%.

Performance of imputation methods 
with missing values outside known 
covariate range

Standard statistical imputation methods – Assuming a 
linear relationship between the covariates and under 
MAR, when the unknown covariate values were not in 
the observed value range and needed to be extrapolated, 
all methods except LD had biased estimates (refer to 
Figure 4a). LD had a coverage rate above 95% for both 
�V  and Vpop. Mean imputation was strongly biased with 
a coverage rate of 0% for Vpop. Norm imputation provided 
slightly biased results with coverage rates of 90% and 
88% for �V  and Vpop, respectively. PMM was not able to 
impute values outside of the observed value range, re-
sulting in strongly biased coverage rates of 50% for �V  
and of 2% for Vpop.

ML-based imputation methods – ANN provided better 
results with coverage rates of 64% and 74% for �V  and Vpop , 
respectively. Similar to PMM, RF was not able to impute 
values outside of the observed value range, resulting in 
strongly biased coverage rates for �V  (30%) and for Vpop 
(2%).

Performance of imputation methods with 
covariate effects of BW on CL

The evaluated imputation methods delivered structural 
similar results when there was a covariate effect of BW 
on CL (Figures  S5 and S6) compared with the results 
when there was a covariate effect of BW on V  (Figures 2 
and 3).

Stress tests with higher proportions of 
missing covariate data

In the “stress test,” higher proportions of missing covariate 
data, such as 30% and 40%, led to similar results, but 

LD Mean Norm PMM RF ANN

Linear

MCAR 100% 100% 100% 100% 100% 100%

MAR 82% 24% 100% 100% 100% 100%

Nonlinear

MCAR 98% 76% 100% 100% 98% 100%

MAR 98% 2% 84% 98% 92% 90%

Outside observed range 100% 0% 88% 4% 2% 74%

Abbreviations: ANN, artificial neural network; BW, birth weight; LD, listwise deletion; MAR, missing at 
random; MCAR, missing completely at random; PMM, predictive mean matching; RF, random forest; 
Vpop, population volume of distribution.

T A B L E  3   The coverage rate of the 
population estimates for the volume 
of distribution Vpop for the missing 
data handling methods under different 
scenarios with 20% missing values in BW

F I G U R E  2   Linear MAR scenario with 20% missing values. 
This plot shows the relative point estimate and standard error 
biases for the covariate effect (a, b) and the volume of distribution 
(c, d) with the corresponding coverage rates. ANN, artificial neural 
network; LD, listwise deletion; MAR, missing at random; PMM, 
predictive mean matching; RF, random forest.
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increasingly extreme results in terms of bias compared to 
the core evaluation scenario with 20% missing covariate 
data (refer to Tables S2 and S3).

DISCUSSION

To our knowledge, this is the first simulation study that 
investigates ML imputation methods in the field of phar-
macometrics and compares these to classical methods. We 
investigated and compared four classical statistics meth-
ods and two ML-based methods to handle missing covari-
ate data in a pharmacometric analysis. This research work 
contributes to the awareness of such novel ML-based im-
putation methods, enhances our understanding where 
they may benefit pharmacometric projects, and where 
classical statistical methods may be the preferred choice.

Whereas we focus on results from models with a co-
variate effect on the volume of distribution, the struc-
tural similar results from models with a covariate 

effect on the CL indicate that our findings are not model 
parameter-specific.

Results from the performed analyses confirm previous 
studies concluding that mean imputation is strongly biased 
under some scenarios and that LD can result in biased esti-
mates under the MAR assumption.31–33 This finding is not 
surprising because both methods may result in biased esti-
mates if the missingness process is not MCAR. Even though 
LD resulted in rather small relative bias in the evaluated 
cases, and it may also perform well under MAR assump-
tions in some scenarios,6,34,35 the exclusion of samples from 
the dataset may reduce the statistical power of the analy-
sis. Therefore, both LD and mean imputation require care-
ful considerations concerning the incomplete dataset and 
should be avoided in cases with increased proportions of 
missing data, given the availability of other more statistically 
robust imputation methods.6,36 However, LD is often used 
for the primary analysis in a study to provide a benchmark 
with which to compare with the multiply imputed results in 
subsequent supplementary or sensitivity analyses.

Standard statistical imputation methods – Multiple im-
putation using the Norm method from the mice package 
only led to unbiased results when the relationships in the 
data and the imputation model were consistent. As we de-
liberately did not account for nonlinearity in the multiple 
imputation model utilizing the Norm method, the results 
are hardly surprising. Nonetheless, this confirms the neces-
sity to perform exploratory analyses prior to imputation to 
determine possible nonlinear relationships, and then to pro-
ceed accordingly when using this approach. The other mul-
tiple imputation method, PMM, provided unbiased results 

F I G U R E  3   Nonlinear MAR scenario with 20% missing values. 
This plot shows the relative point estimate and standard error 
biases for the covariate effect (a, b) and the volume of distribution 
(c, d) with the corresponding coverage rates. ANN, artificial neural 
network; LD, listwise deletion; MAR, missing at random; PMM, 
predictive mean matching; RF, random forest.

F I G U R E  4   Linear MAR scenario with 20% missingness and 
missing values outside of observed value range. This box-plot 
shows the relative point estimate (a) and standard error (b) biases 
of the covariate effect on the volume of distribution with the 
corresponding coverage rates where the missing values are not in 
the range of the available values. ANN, artificial neural network; 
LD, listwise deletion; MAR, missing at random; PMM, predictive 
mean matching; RF, random forest.
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irrespective of the linear or nonlinear covariate relationship. 
Further, PMM was found to outperform the default settings 
of all the other investigated imputation methods, with the 
proviso that imputing missing values outside of the observed 
value range led to biased results. This succinctly highlights 
the potential benefits and drawbacks of PMM where the 
availability of a suitable donor pool of similar patients is key.

ML-based imputation methods – Results from the ML-
based method RF demonstrates the great potential of this 
method for imputation tasks. Even though observed biases 
were slightly increased under some conditions, we should 
take into consideration that default settings of the R pack-
age were used, and only basic data preparation steps were 
performed. Similar to PMM, RF is limited to imputing val-
ues within the observed value range. Optimized implemen-
tation of the ML-based approaches with an adaptation of 
parameters, such as the number of trees in the RF or the 
network structure of the ANN, can further improve results. 
Parameter-tuning is one of the great advantages of ML-based 
approaches. Of the two ML methods, the best results were 
obtained with ANN. In most scenarios, ANN provided simi-
lar coverage rates to PMM. In contrast to PMM and RF, in the 
scenario with missing values outside of the observed value 
range, ANN shows some capability to extrapolate values.

We verified that the differences between the results 
for linear and nonlinear relationships do not arise from 
the differences in the magnitude of the model parameters 
by performing an evaluation with accordingly adjusted 
model parameters in the linear model where similar per-
formance patterns were observed.

A limitation of this simulation study is the number of 
performed multiple imputations. Even though m = 5 is the 
default setting in the mice package, currently, a larger num-
ber of multiple imputations is usually performed to achieve 
robust standard error estimation. Because we were investi-
gating various methods in multiple scenarios, including pop-
ulation PK analyses with the R interface to Monolix, more 
multiple imputations were not feasible due to long run times. 
Similarly, the number of simulated datasets might be con-
sidered low for a simulation study. Nevertheless, the Monte 
Carlo error was observed to be small compared with ob-
served biases. To reduce complexity, we focused on missing 
data under the MCAR and MAR assumptions, but acknowl-
edge the importance of methods that investigate plausible 
MNAR departures from MAR.6,8,37 This is certainly an area 
for additional research activities. Further, the applied defini-
tion of CR differs from the common definition because the 
previously estimated reference parameters were assumed to 
be the ground truth in contrast to the true parameters used 
for simulation. However, this procedure is in accordance 
with other evaluations focusing on imputation methods.28–30

This evaluation of imputation methods demonstrates 
that the application of some conventionally applied 

imputation methods, such as LD and mean/median imputa-
tion require strong assumptions to be made about the miss-
ingness process (i.e., MCAR), which are often not thought 
to be appropriate. Additionally, a deep understanding of 
the relationships in the dataset is required when applying 
model-based imputation methods, such as Norm imputa-
tion. We also showed that the ML-based methods RF and 
ANN appropriately impute missing covariate data within a 
pharmacometrics framework, leading to broadly similar re-
sults in terms of bias compared with established statistical 
methods, such as PMM. The ML-based approaches have in-
creased flexibility concerning nonlinear and interaction rela-
tionships compared with the standard approaches, and they 
provide potential for further enhanced performance through 
optimized parameter tuning. This feature is particularly rele-
vant for covariate analysis in the pharmacometric field.
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