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Cryptococcus neoformans is an environmental yeast that can cause opportunistic

infections in humans. As infecting animals does not form part of its normal life-cycle,

it has been proposed that the virulence traits that allow cryptococci to resist immune

cells were selected through interactions with environmental phagocytes such as

amoebae. Here, we investigate the interactions between C. neoformans and the social

amoeba Dictyostelium discoideum. We show that like macrophages, D. discoideum

is unable to kill C. neoformans upon phagocytosis. Despite this, we find that the

yeast pass through the amoebae with an apparently normal phagocytic transit and are

released alive by constitutive exocytosis after ∼80min. This is the canonical pathway in

amoebae, used to dispose of indigestible material after nutrient extraction. Surprisingly

however, we show that upon either genetic or pharmacological blockage of constitutive

exocytosis, C. neoformans still escape from D. discoideum by a secondary mechanism.

We demonstrate that constitutive exocytosis-independent egress is stochastic and

actin-independent. This strongly resembles the non-lytic release of cryptococci by

vomocytosis from macrophages, which do not perform constitutive exocytosis and

normally retain phagocytosed material. Our data indicate that vomocytosis is functionally

redundant for escape from amoebae, which thus may not be the primary driver for

its evolutionary selection. Nonetheless, we show that vomocytosis of C. neoformans

is mechanistically conserved in hosts ranging from amoebae to man, providing new

avenues to understand this poorly-understood but important virulence mechanism.
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INTRODUCTION

Cryptococcus neoformans is a basidiomycete yeast found globally in a wide variety of natural
environments. Unusually for an environmental yeast, C. neoformans is also a pathogen
of animals. Most significant is the fatal infection of the severely immunocompromised,
with cryptococcal meningitis caused by C. neoformans responsible for 15% of AIDS-related
deaths (Rajasingham et al., 2017). The interaction of C. neoformans with its host is
highly complex, and what differentiates normal immunity from the development of life

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2018.00108
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2018.00108&domain=pdf&date_stamp=2018-04-09
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jason.king@sheffield.ac.uk
mailto:s.a.johnston@sheffield.ac.uk
https://doi.org/10.3389/fcimb.2018.00108
https://www.frontiersin.org/articles/10.3389/fcimb.2018.00108/full
http://loop.frontiersin.org/people/519716/overview
http://loop.frontiersin.org/people/444942/overview
http://loop.frontiersin.org/people/463988/overview
http://loop.frontiersin.org/people/22776/overview


Watkins et al. Mechanisms of Cryptococcal Escape From Amoebae

threatening cryptococcal meningitis is well defined (Tenforde
et al., 2017).

Macrophages have been repeatedly demonstrated to be
critical for protection against C. neoformans infection. However,
macrophages may also have a role in pathogenesis in the
immunocompromised as cryptococci are able to grow and
survive within macrophages and may use macrophages as
a Trojan horse to disseminate from the lung. In vitro,
almost every aspect of macrophage antimicrobial activity
is either avoided or manipulated by C. neoformans, which
are able to survive and replicate intracellularly, following
uptake by phagocytosis (Johnston and May, 2013; Ballou
and Johnston, 2017). Survival traits include the generation
of a characteristic polysaccharide capsule, which is both
anti-phagocytic and helps protect the yeast from the host
antimicrobial machinery if it is engulfed, as well as melanin
production which serves as a potent antioxidant—protecting
the yeast from the phagosomal oxidative attack and the
immunomodulatory activity of cell wall chitin (Casadevall
et al., 2000; Nosanchuk and Casadevall, 2006; Wiesner et al.,
2015).

An additional pathogenic mechanism is the remarkable ability
of C. neoformans to promote its non-lytic expulsion from
host cells in a process known as vomocytosis (Alvarez and
Casadevall, 2006; Ma et al., 2006). This enables the yeast to
escape whilst leaving the host phagocyte intact, thus preventing
immune stimulation and promoting dissemination. Whilst it
has been shown that vomocytosis is suppressed by host actin
polymerization (Johnston and May, 2010) and can be modulated
by host Annexin A2 and Mitogen Activated Protein kinase
(ERK5) activity (Stukes et al., 2016; Gilbert et al., 2017) little
is known of the underlying molecular mechanisms underlying
expulsion. Nonetheless, vomocytosis has been observed in both
cell culture and in vivo models and is thought to significantly
contribute to C. neoformans virulence (Alvarez and Casadevall,
2006; Ma et al., 2006; Bojarczuk et al., 2016; Johnston et al., 2016;
Gilbert et al., 2017).

As with other opportunistic pathogens, it is unlikely that
interactions with mammalian macrophages have been the
evolutionary drivers of C. neoformans virulence. Cryptococci
are free-living fungi with a life cycle that is not dependent
on infecting an animal host. It has therefore been proposed
that the mechanisms that allow C. neoformans to survive and
grow in macrophages have primarily evolved to avoid predation
by phagocytes in its natural environment, such as amoebae
(Steenbergen et al., 2001; Casadevall, 2012; Watkins et al., 2017).

Like leukocytes, amoebae are professional phagocytes,
using their chemotactic and phagocytic abilities to capture
and kill environmental microbes for food. Despite the
large evolutionary distance between them, much of the
machinery and mechanisms for phagocytosis and phagosome
maturation are highly conserved between amoebae and
mammalian immune cells (Boulais et al., 2010). Traits that
have evolved to help yeast and bacteria avoid being killed
by amoebae in the environment are therefore likely to have
similar effects when they encounter mammalian immune
cells.

Previous studies have demonstrated similarities in the
interactions between C. neoformans with amoebae and
macrophages. C. neoformans is able to both survive phagocytosis
and replicate intracellularly within Acanthamoeba castellanii,
ultimately being released alive without causing lysis of the
host amoeba (Steenbergen et al., 2001; Chrisman et al., 2010).
Due to its amenability to genetic manipulation, the social
amoeba Dictyostelium discoideum has been used a model host
for a number of human pathogens and is also susceptible to
C. neoformans infection (Steenbergen et al., 2003). Importantly,
passage through D. discoideum caused a stimulation in
C. neoformans capsule expansion and melanization together
with a corresponding increase in subsequent virulence in mice
(Steenbergen et al., 2003). Interactions with amoebae can
therefore directly influence interactions between C. neoformans
and mammalian immune cells.

The fate of internalized material in animal cells is variable
and complex. There are examples of the expulsion of internalized
material from a variety of cell types, particularly in the context
of antigen presentation (Chen and Jondal, 2004; Peters et al.,
2006; Griffiths et al., 2012; Le Roux et al., 2012; Turner et al.,
2016). However, animal macrophages (notably tissue resident
cells, such as alveolar macrophage) have the ability to retain
particulate matter that may otherwise be damaging (Bai et al.,
2015). In contrast, the constitutive exocytosis of phagocytosed
material by amoeba has been demonstrated in diverse species
including D. discoideum, Amoeba proteus, Entamoeba histolytica
and A. castellanii (Weisman and Korn, 1967; Ravdin et al., 1988;
Christofidou-Solomidou and Stockem, 1992; Clarke et al., 2010)
and thus appears to be a necessary and general feature of free-
living amoebae. Therefore macrophages and amoebae differ in
their retention of phagocytosed material.

Recently it was shown that constitutive exocytosis in
D. discoideum is dependent on the activity of the WASH
(WASP And SCAR Homolog) complex (Carnell et al., 2011).
WASH is a direct activator of the ARP2/3 (Actin Related
Protein 2/3) complex, causing the polymerization of actin on
the surface of vesicles and driving membrane protein sorting
and recycling (Derivery et al., 2009; Gomez and Billadeau, 2009;
Zech et al., 2011; Seaman et al., 2013). Whilst an early phase
of WASH activity drives the retrieval of cell surface proteins
from phagosomes (Buckley et al., 2016), a second phase of
activity occurs after 40–60min of digestion, driving the removal
of the vacuolar (V)-ATPase and phagosomal neutralization.
This facilitates hydrolase retrieval (King et al., 2013) and is a
prerequisite for exocytosis. Consequently D. discoideum cells
lacking WASH have a complete block in constitutive exocytosis
(Carnell et al., 2011).

As constitutive exocytosis represents the normal mechanism
of non-lytic release of phagosomal contents, we hypothesized
that this may be involved in the escape of live C. neoformans from
amoebae. We show that C. neoformans survive phagocytosis by
D. discoideum, but follow an apparently normal phagosomal
transit and are normally released alive by WASH-dependent
constitutive exocytosis. However, when constitutive exocytosis is
blocked, C. neoformans still escape in a WASH and actin-
independent manner reminiscent of vomocytosis. This
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demonstrates redundant, mechanistically different egress
mechanisms with implications for the understanding of the
evolutionary drivers of cryptococcal virulence.

MATERIALS AND METHODS

Strains and Cell Culture
For all experiments the Ax2 axenic strain of D. discoideum
was used, both as “wild type” as well as the parental of the
previously publishedWASH-mutant strain (Carnell et al., 2011).
D. discoideum were cultured in filter-sterilized HL-5 medium
(Formedium, Norfolk, UK) at 22◦C. Cells expressing GFP fused
to the vatM subunit of the vacuolar-ATPase were generated using
plasmid pMJC25 (Carnell et al., 2011).

Unless otherwise stated, C. neoformans var. grubii (serotype
A) strain H99α stably expressing mCherry was used (Gibson
et al., in review). The previously published plb1 and cap59
mutants were generated from the alternative wild-type parent
H99, which was used as control when appropriate (Chen
et al., 2000; Voelz et al., 2010). C. neoformans were grown in
YPD medium at 28◦C prior to experiments, but washed and
resuspended in HL5 medium before infecting D. discoideum. C.
neoformans were heat-killed by incubation at 65◦C for 30min,
before washing in PBS. UV-killing was performed by exposure
of C. neoformans cultures to 4 J of UV using a UVIlink CL-5087
cross-linker illuminator. Killing was always confirmed by plating
samples on YPD agar to check absence of growth.

Infections and Microscopy
Prior to imaging, 2× 106 D. discoideum cells were seeded in 2ml
HL5 medium in glass-bottom 35mm dishes (Mat-Tek), left to
adhere for 30min. Then 2 × 105 C. neoformans cells, 4.5µm
green fluorescent YG unmodified beads (Polysciences Inc.,
Pennsylvania, USA), or TRITC-labeled heat killed S. cerevisiae
(kind gift from Thierry Soldati; University of Geneva) were
added prior to imaging. This differed for latrunculin treatment
experiments: amoebae were mixed with yeast at a ratio of 1:1
and left for 1 h for phagocytosis to occur before addition of 5µm
Latrunculin A (Cayman chemical Co.).

Long term time-lapse movies were recorded using a Nikon
TI- E with a CFI Plan Apochromat λ 20x N.A.0.75 at 22◦C.
Images were captured on a large-format Andor Neo 5.5 s CMOS
camera for 12 h, imaging 4 fields of view every 30 s. Transit times
were determined as the time from phagocytosis to release. Events
where cells could not be tracked for a minimum of 500min
post-phagocytosis were excluded from the analysis.

Spinning disc microscopy was performed on a Perkin-Elmer
Ultraview VoX spinning disk confocal microscope running on
an Olympus 1 × 81 body with an UplanSApo 60x oil immersion
objective (NA 1.4). Images were captured on a Hamamatsu
C9100-50 EM-CCD camera.

Statistical Analysis
Mann Whitney test was used to test significance between
continuous data and Fisher’s exact test for categorical data.
P-values below 0.05 (withmodification for multiplicity of testing)

were considered statistically significant. All statistical tests were
performed with GraphPad Prism version 7.

RESULTS

Cryptococcus neoformans Is Constitutively
Exocytosed by Amoebae
To determine whether C. neoformans utilizes a pathogen-specific
mechanism of release or follows the normal phagocytic pathway
of engulfment and constitutive exocytosis in amoeba we first
compared the transit of C. neoformanswith that of inert particles.

Using time lapse microscopy, we followed the phagocytosis
and release of C. neoformans compared to heat killed non-
pathogenic yeast Saccharomyces cerevisiae and 4.0µm latex
beads by D. discoideum. All three cargoes were of a similar
size (between 3 and 5µm) and all were exocytosed from
amoebae (Figures 1A–C). However, unlike the vomocytosis of
C. neoformans from macrophages which happens stochastically
and inefficiently over a period of many hours (Ma et al., 2006;
Johnston and May, 2010), 100% of phagosomes fused with
the plasma membrane, exocytosing their contents within 4 h of
engulfment in all cases.

Surprisingly, whilst we attempted to use killed C. neoformans
as controls, both heat- or UV-killing of the yeast reduced
phagocytosis by D. discoideum by 90% (Figure 1H). This effect
was further compounded in WASH-null amoebae, in which
phagocytosis of UV-killed C. neoformans was never observed in
3 independent experiments, consistent with previous reports of
phagocytosis defects in these mutants due to reduced surface
levels of phagocytic receptors (Buckley et al., 2016). The reason
why killed C. neoformans resist phagocytosis is unclear, but it was
not possible to observe sufficient events for analysis and therefore
heat-killed S. cerevisiae were used as non-pathogenic controls in
subsequent experiments.

From the time-lapse movies, we were able to define
precise transit times for phagosomes containing the different
cargoes, tracking individual particles from engulfment to release
(Figures 1D–F). Comparison of the transit time demonstrated
that both fungal cells took slightly longer to complete the
phagocytic cycle than latex beads however, there was no
significant difference between heat killed S. cerevisiae and
C. neoformans (median transit time latex beads = 61min, heat
killed S. cerevisiae = 82min and C. neoformans = 84min,
Figure 1G). Importantly the C. neoformans were able to resist
killing by the amoebae and were exocytosed alive, as indicated
by subsequent budding and dividing after egress consistent with
previous studies (Steenbergen et al., 2003). Therefore, despite
their ability to survive phagocytosis byD. discoideum, transit time
of C. neoformans is indistinguishable from normal constitutive
exocytosis.

The V-ATPase Is Rapidly Recruited to
Phagosomes Containing C. neoformans

and Removed Prior to Exocytosis
Unlike the vomocytosis of cryptococci, a number of molecular
requirements for constitutive exocytosis in amoebae have
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FIGURE 1 | Cryptococcus neoformans is constitutively exocytosed from Dictyostelium discoideum amoeba. (A–C) Example exocytosis of (A) 4.5 um green

fluorescent latex beads (images start at 40min after phagocytosis) (B) heat killed Saccharomyces cerevisiae (images start at 60min after phagocytosis) and (C)

C. neoformans strain Kn99mCherry from wild type D. discoideum strain Ax2 (images start at 60min after phagocytosis). Time 0 s indicates point of exocytosis. Scale

bars 5µm. (D–F) Frequency histograms of combined transit times measured from three independent 12 h time lapses. (D) Latex beads 126 transit times. (E) Heat

killed S. cerevisiae 66 transit times. (F) C. neoformans 57 transit times. (G) Comparison of transit times for latex beads, heat killed S. cerevisiae and C. neoformans.

(H) Quantification of phagocytic events for live, heat killed and UV killed cryptococci in Ax2 and WASH null cells. P-values are Mann-Whitney test.
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been identified. We therefore next asked whether passage of
C. neoformans through D. discoideum followed the normal path
of maturation and constitutive exocytosis.

During normal transit, phagosomes rapidly accumulate the V-
ATPase and acidify within 2–3min of engulfment; the V-ATPase
is subsequently retained for ∼45min to allow digestion before
retrieval and phagolysosomal neutralization prior to constitutive
exocytosis (Clarke et al., 2002, 2010). Using cells expressing
GFP-fused to the VatM subunit of the V-ATPase, we monitored
recruitment to phagosomes following engulfment of cryptococci.
V-ATPase was present, on average, within 114± 44 s (Figure 2A,
S.D., n = 6) of phagocytosis consistent with published data for
inert phagosomes (Clarke et al., 2002; Buckley et al., 2016). To
test if V-ATPase recruitment was maintained, we also measured
the proportion ofC. neoformans-containing phagosomes positive
for GFP-VatM after 20min incubation of cryptococci with
amoebae—before any post-lysosomal transitions should have
occurred (Figure 1F). V-ATPase was clearly visible on 90.0%
of phagosomes (68/76 from three independent experiments).
However, when we looked after 1 h, we were able to observe
recycling of the V-ATPase from live (budding) C. neoformans-
containing phagosomes prior to exocytosis (Figure 2B). Both
phagosomal transit time and V-ATPase dynamics are therefore
unaffected by pathogenic C. neoformans indicating that the
normal mode of release is through canonical constitutive
exocytosis.

C. neoformans Can Escape From Amoebae
by Both WASH-Dependent and
-Independent Mechanisms
To test the hypothesis that Cryptococci-containing phagosomes
are normally expelled through the constitutive exocytosis
pathway, we investigated exocytosis in WASH-null cells. In
D. discoideum, WASH is essential for V-ATPase recycling and
constitutive exocytosis, allowing us to specifically genetically
ablate this pathway (Carnell et al., 2011).

In agreement with previous studies we found that phagosomes
containing heat killed S. cerevisiae were never released from
WASH-null amoebae within our 12 h period of observation
(Figure 3A). In contrast, phagosomes containing C. neoformans
were still exocytosed but with significantly altered dynamics
(Figure 3B). Whilst >90% of C. neoformans-containing
phagosomes are exocytosed within 2 h in wild type amoebae
(Figure 1F), release from WASH-null cells was much more
variable with between 20 and 60% escaping over 12 h
(Figure 3C). Cryptococcus-containing phagosome transit
was much slower through WASH-null cells with very little
overlap with the exocytosis from wild-type amoebae (ca.
Figures 1F, 3C) and was much less synchronous, appearing
to occur stochastically any time from 3 to >10 h (Figure 3D).
Notably, both this variation and timing is comparable to that
reported for vomocytosis of cryptococci from animal cells
(Johnston and May, 2010).

The actin cytoskeleton is a negative regulator of vomocytosis
in mammals, but essential for constitutive phagosome exocytosis
in D. discoideum (Ma et al., 2006; Carnell et al., 2011). Therefore,

we predicted that inhibition of actin polymerization would
copy the phenotype of WASH-null Dictyostelium for both heat
killed S. cerevisiae and C. neoformans containing phagosomes.
When we measured the percentage exocytosis of heat killed
S. cerevisiae containing phagosomes we found that while 100%
of phagosomes were exocytosed by untreated amoebae we
only observed a single exocytosis event out of 90 phagosomes
analyzed over 12 h when actin polymerization was blocked
by latrunculin A treatment after phagocytosis (Figure 3E). In
contrast, ∼20% of C. neoformans-containing phagosomes in
latrunculin A-treated amoebae were released over the same
period (Figure 3F). Transit times were again significantly longer
than with untreated amoebae, and were indistinguishable to
the phenotype observed with WASH-null amoebae (Figure 3G).
Thus, whilst cryptococci are normally released by constitutive
exocytosis from D. discoideum, they can also escape by a
mechanistically different route upon either pharmacological or
genetic blockade of the constitutive pathway, highly reminiscent
of vomocytosis.

C. neoformans Mutants cap59 and plb1 Do
Not Exhibit Defects in Vomocytosis in
Amoebae
We next tested whether cryptococcal virulence factors that
affect vomocytosis from mammalian cells play conserved roles
in egress from D. discoideum. C. neoformans mutants with
defects in polysaccharide capsule formation or deletion of the
phospholipase PLB1 both exhibit reduced rates of vomocytosis
and pathogenicity in animal cells (Cox et al., 2001; Noverr
et al., 2003; Chayakulkeeree et al., 2011; Evans et al., 2015).
However, when we measured the rates of release of acapsular
cap59 and plb1 mutant strains from wild-type D. discoideum
we found that release of both mutants was unaffected: there
were no significant differences in either frequency or transit
time compared to the parental C. neoformans strain (H99) both
with and without blockage of the constitutive pathway with
latrunculin A (Figures 4A,B). This was an intriguing finding,
suggesting differences in the signaling pathways to vomocytosis
between amoebae and macrophages but a conservation of
molecular mechanism.

In the Absence of Constitutive Exocytosis
C. neoformans Can Persist and Grow
Intracellularly
Constitutive exocytosis of indigestible phagosomal material is
critical for organisms that rely on phagocytosis for nutrition.
Furthermore, amoebae may ingest microbes such as cryptococci
that are able to actively resist phagosomal killing. Therefore,
we investigated if, in the absence of constitutive exocytosis,
cryptococci posed a greater threat to amoebae.

We observed no cell lysis of either wild-type or WASH-null
cells infected with C. neoformans as indicated by the continued
motility of the amoebae throughout the phagocytic cycle and
after fungi egress. Low levels of amoeba lysis were observed
upon latrunculin A treatment, most likely due to the severe
effects of complete actin depolymerization. Killing and digestion
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FIGURE 2 | Phagosomes containing Cryptococcus neoformans acquire V-ATPase following phagocytosis that is lost prior to exocytosis. (A) Confocal time lapse

microscopy of C. neoformans phagocytosis by wild type D. discoideum strain Ax2. Representative time lapse from three independent experiments. Images were

captured every 10 s. VatM is a subunit of the D. discoideum V-ATPase complex. Arrow indicates phagocytosed cryptococcal cell. Inset box is a magnification of

phagosome containing cryptococcal cell demonstrating acquisition of V-ATPase. (B) Confocal time lapse microscopy of C. neoformans exocytosis by wild type D.

discoideum strain Ax2. Representative time lapse from three independent experiments. Images were captured every 5 s. Arrow indicates exocytosed cryptococcal

cell. Inset box is a magnification of exocytosed cryptococcal cell demonstrating absence of V-ATPase prior to exocytosis. Scale bars 10µm.

of yeast is indicated by the transformation of the phagosome to
a granular and irregular shape, whereas growth can be inferred
from yeast budding. When constitutive exocytosis was blocked
with latrunculin A on average, more than 80% of cryptococci
persisted within Dictyostelium phagosomes without signs of

death and digestion, with 13% actively budding over the 12 h of
the experiment (Figures 5A,B). In this respect the plb1 mutant
behaved similarly to wild type cryptococci. The acapsular strain
cap59 was phagocytosed twice as efficiently as the wild type
cryptococcus strain (11 internalized cap59 cryptococci per 100
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FIGURE 3 | Exocytosis of Cryptococcus neoformans from Dictyostelium is dependent on WASH and the actin cytoskeleton. (A) Heat killed S. cerevisiae are not

exocytosed from WASH null D. discoideum. Example from 12h time lapse imaging of heat killed S. cerevisiae in WASH null D. discoideum representative of 60

phagosomes containing heat killed S. cerevisiae from three independent experiments (images start at 500min after phagocytosis). (B) C. neoformans are exocytosed

from WASH null D. discoideum. Example from 12h time lapse imaging representative of 62 phagosomes containing C. neoformans from three independent

experiments (images start at 200min after phagocytosis). Scale bars 5µm. (C) Quantification of the percentage of exocytosis of C. neoformans and heat killed

S. cerevisiae from WASH null D. discoideum from three independent 12 h time lapses. (D) Frequency histogram of combined 35 transit times measured from three

independent 12 h time lapses. (E) Exocytosis of heat killed S. cerevisiae from wild type Ax2 but not WASH null or latrunculin A treated Ax2 D. discoideum.

Quantification of the percentage of exocytosis from three independent 12 h time lapses. Total of 60 phagosomes were analyzed from each condition. P-values are

Fishers test. (F) Exocytosis of C. neoformans from wild type Ax2, WASH null, and latrunculin A treated D. discoideum. Quantification of the percentage of exocytosis

from three independent 12 h time lapses. Total of 60 phagosomes were analyzed from each condition. P-values are Fishers test. (G) Transit times of C. neoformans

through WASH null and latrunculin A treated Ax2 D. discoideum are not significantly different. P-values are Mann-Whitney test.

amoeba vs. 5.3 cryptococci per 100 amoeba, 300 amoeba analyzed
from three independent experiments). However, the acapsular
cap59 strain appeared to be growth-arrested withinD. discoideum
phagosomes, as budding was never observed (0/90 phagosomes,

P = 0.0011 compared to H99, Fishers test; Figure 5B). Whilst
this is consistent with other studies (Feldmesser et al., 2000;
Steenbergen et al., 2001) surprisingly, we also never observed
the collapse of cap59-containing phagosomes within the 12 h
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FIGURE 4 | Exocytosis and vomocytosis of C. neoformans cap59 and plb1

mutants are indistinguishable from wild type H99. (A) Quantification of the

percentage of non-constitutive exocytosis of C. neoformans mutants from

wild-type Ax2 D. discoideum treated with latrunculin A from three independent

12 h time lapses. Total of 45 phagosomes were analyzed for wild type H99, 90

for cap59 and 90 for plb1. P-values are Fisher’s exact test. (B) Transit times of

C. neoformans H99 wild type, mutant cap59 and plb1. Phagosomes analyzed

the same as (A). P-values for between cryptococcal strain significance tests

are non-significant in all cases. P-values are Mann-Whitney test.

indicating yeast death. This implies that either acapsular cells
survive under growth arrest, or that death of cap59 cells occurs
over a longer period than we are able to observe in this
assay. Nonetheless, in the absence of constitutive exocytosis,
yeast are able to replicate intracellularly within the retained
phagosomes.

DISCUSSION

In this work we have investigated the interactions between the
environmental yeast C. neoformans and an environmental
amoeba, D. discoideum. As C. neoformans can evade
human immune cells and cause opportunistic infection in
immunocompromised individuals we sought to test the
hypothesis that the yeast virulence mechanisms had evolved to
protect against amoebae in the environment.

In agreement with previous reports (Steenbergen et al.,
2003), we found that C. neoformans were almost completely
impervious to predation by D. discoideum; we consistently
observed lower rates of C. neoformans phagocytosis compared
to other particles, and even when the yeast were engulfed
the amoebae were unable to kill them. This is similar to
the interactions with mammalian macrophages, indicating that
C. neoformans employs similar phagocyte evasion strategies.
Chief amongst these is the characteristic cryptococcal capsule

FIGURE 5 | Outcomes of interaction between cryptococcal cells and

amoebae with inhibition of constitutive exocytosis. Quantification of outcome

from three independent 12 h time lapses. Numbers of phagosomes analyzed

the same as Figure 4A. (A) Percentage of fungal cells digested by amoebae

over 12 h. (B) Percentage of fungal cells that budded while intracellular in

amoebae over 12 h. P-values are Fisher’s exact test.

which is highly anti-phagocytic and also provides protection
from oxidative attack. Consistent with this both we, and others
found capsule deficient yeasts were unable to grow within
amoebae (Steenbergen et al., 2001, 2003) and we found that the
acapsular strain was taken up twice as frequently as the wild
type.

Whilst C. neoformans typically persist and proliferate in
macrophages for many hours before escaping by vomocytosis,
we found they passed through D. discoideum via an apparently
normal phagosomal transit in just ∼80min. This short time
period provides limited opportunity for intracellular growth of
fungal cells or the lysis of amoebae. Whilst others have shown
that C. neoformans are able to grow (and therefore extract
nutrients) when co-incubated with amoebae over several days
(Steenbergen et al., 2001, 2003). The relatively short amount of
time spent inside the amoeba implies that much of this growth
is extracellular and intracellular growth has not been directly
demonstrated by high resolution time lapse imaging (Steinman
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et al., 1976; Derengowski et al., 2013; Fu and Casadevall,
2018). We were unable to identify intracellular proliferation
in the absence of the constitutive exocytosis inhibition. It
therefore seems unlikely that C. neoformans has successfully
evolved mechanisms to support intracellular replication within
amoebae that exhibit rapid phagosomal transit, as demonstrated
for D. discoideum, Amoeba proteus, Entamoeba histolytica and
A. castellanii (Weisman and Korn, 1967; Ravdin et al., 1988;
Christofidou-Solomidou and Stockem, 1992; Clarke et al., 2010).

Although D. discoideum are unable to kill phagocytosed
C. neoformans the transit time is identical to that of heat-
killed non-pathogenic yeast. This suggests that there is no
major subversion of normal phagosome maturation. Consistent
with this we find that the V-ATPase is both recruited, and
retrieved from phagosomes with normal dynamics. This is in
contrast to a recent study in macrophages, demonstrating that
C. neoformans is able to disrupt phagosomematuration to inhibit
acidification and proteolysis to permit intracellular proliferation
(Smith et al., 2015). As the crypotococcal-containing phagosome
in macrophages is permeabilized shortly after phagocytosis by
macrophages (Tucker and Casadevall, 2002) V-ATPase delivery
may be intact in both systems, but ineffective due to proton
leakage.

Surprisingly, although C. neoformans are released alive from
D. discoideum by canonical, WASH-dependent constitutive
exocytosis, we found they were still expelled when the
constitutive pathway was blocked. This second pathway strongly
resembles vomocytosis from macrophages, being non-lytic,
stochastic and inhibited by actin (Alvarez and Casadevall,
2006; Ma et al., 2006; Johnston and May, 2010). Vomocytosis
remains mechanistically poorly understood and defined, but
it seems highly likely that the WASH-independent egress of
C. neoformans from D. discoideum is an analogous process.

Whilst laboratory strains have mutations that facilitate
macropinocytosis and phagocytosis of large particles, wild-type
isolates of D. discoideum are bacterivores and cannot engulf
yeasts (Bloomfield et al., 2015). Therefore althoughD. discoideum
provides a genetically tractable model for amoebae in general, it

is highly unlikely to be an environmental host for cryptococci.
The high phagocytic throughput of amoebae necessitates a
mechanism to dispose of indigestible material, and unlike
macrophages, there is no advantage in retaining phagosomes
indefinitely to restrict an inflammatory response. As constitutive
exocytosis appears to be sufficient for successful escape of C.
neoformans on its own, the evolutionary drivers of a secondary,
redundant escape mechanism are unclear. Whether other, more
environmentally-relevant amoeba behave differently, or another
environmental interaction altogether selects for this virulence
trait requires further study.

Whatever the evolutionary basis, we have shown that
vomocytosis-like egress is a mechanistically distinct process
from constitutive exocytosis and is conserved in hosts from
D. discoideum to man. The genetic tractability of Dictyostelium
amoebae present an unparalleled opportunity to study the
molecular cell biology of host cryptococcal interactions, and the
differences in the environmental niche of C. neoformans and
infection of humans.
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