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INTRODUCTION 
 
Tumor immunotherapy has developed rapidly in recent 

years. Due to its effectiveness and safety [1, 2], it has 

attracted widespread attention from researchers and 

clinicians, especially immunotherapy related to PD-

1/PD-L1 inhibitors for lung cancers [3–15]. However, 

even in patients with the same type of tumor, 

immunotherapy response rates were quite variable, and 

in some patients the rates were relatively low [3–15]. 
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ABSTRACT 
 

Due to its effectiveness, cancer immunotherapy has attracted widespread attention from clinicians and 
scientific researchers. Numerous studies have proven that effective stratification of cancer patients would 
promote the personalized application of immunotherapy. Therefore, we used the transcriptome data of 
nearly 1,000 patients with non-small cell lung cancer (NSCLC) to construct a new immune subgroup. We 
found that the new immune subgroup, named cluster 2, was a mixture of lung adenocarcinoma (LUAD) and 
lung squamous cell carcinoma (LUSC), and showed poor overall survival, which was further verified in the 
independent validation set. Immune infiltration correlation analysis showed that the Mast cell type and its 
status subdivisions had a predictive effect on the prognosis of NSCLC, especially in LUAD. Phenotypic 
analysis suggested that epithelial-mesenchymal transition (EMT) was positively correlated with 
immunosuppression, supporting the correlation between tumor phenotype and immune background. 
Although immune subtypes failed to significantly distinguish the progression-free survival (PFS) of 
immunotherapy patients, they showed the expected trend; the sample size needs to be further expanded 
for verification. In addition, some results indicated that the two cancer types, LUAD and LUSC, might require 
independent analyses. 
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According to the corresponding immune indicators, 

researchers have reported that the stratification of cancer 

patients was helpful for predicting the patients’ 

prognosis or immunotherapy response rates [16, 17]. For 

clear cell renal cell carcinoma, it was reported that the 

potential interaction between immune phenotype and 

somatic changes affected the efficacy of PD-1 inhibitors 

[18, 19]. The correlation between immune subgroup and 

immunotherapy response was also observed in a study 

on non-small cell lung cancer (NSCLC) [20]. Based on 

the aforementioned research [16–20], it was speculated 

that there may be some inherent correlations between 

immune subgroup and NSCLC, which affect the 

response rate of immunotherapy and may further affect 

the prognosis of patients. 

 

With the development of sequencing technology and 

bioinformatic analysis methods, a large quantity of 

cancer-related genome, transcriptome, and immune-

related information can be obtained through sequencing 

or reanalysis of sequencing results [21–24]. 

Bioinformatic analysis has become a common approach 

for investigating cancer-related indicators [21–24]. It had 

been reported that the intermediate immune infiltration 

cluster (Cluster B) was associated with a worse 

prognosis independently of known clinicopathological 

features in breast cancers [25]. In order to clarify the 

inherent relationship between immune subgroup and 

NSCLC, bioinformatic analyses and online sequencing 

results were used to construct a new kind of immune 

subgroup based on the immune infiltration cluster 

method [25]. Bioinformatic analyses were completed 

mainly using the R programming language. 

 

MATERIALS AND METHODS 
 

The cancer genome atlas (TCGA) expression profile 

data 

 

TCGA Pan-Cancer Atlas integrated pan-cancer RNA-

seq data was downloaded from the Genomic Data 

Commons (GDC) website (https://gdc.cancer.gov/ 

about-data/publications/pancanatlas). Based on the 

disease and sample labels, only samples from the 

original site of LUAD (n=506) and LUSC (n=482) (*-

01A) were extracted. Genes for which the expression 

was 0 in all samples were removed, and fragments per 

kilobase of exon model per million mapped reads 

(FPKM) values were normalized to log2. Only one 

technical duplication remained. 

 

Gene expression omnibus (GEO) validation data 

download and preprocessing 

 

GSE4573 chip data was downloaded from the GEO 

database, and the tumor samples (HG-U133A platform) 

were extracted, comprising a total of 130 samples. The 

chip data was standardized based on the Robust 

Multichip Average method. The expression value of 

each gene was calculated based on the relationship 

between the corresponding probe and the gene. For 

cases in which a gene corresponded to multiple probes, 

we chose the mean value of these probes as the 

expression value of the gene. The sample characteristics 

of TCGA and GEO are shown in Table 1. 

 

Identification of immune subtypes based on 

consensus clustering 

 

770 immune-related genes were collected from the 

nCounter® PanCancer Immune Profiling Panel, and the 

correlation matrix was calculated among samples  

based on their expression. Consensus clustering  

was implemented based on the R package 

ConsensusClusterPlus, and the clustering method and 

distance measurement corresponded to Ward.D2 and 

Pearson correlation distance, respectively. Based on the 

change in value of the area under the consistent 

connected dominating set (CDS) and CDS curve, the 

number of consistent clusters was determined to be 4. 

Since there was only one sample in category 4, it was 

removed in the subsequent analysis. 

 

Immune cell infiltration ratio and immune-related 

evaluation score 

 

The infiltration ratio of 22 immune cell types in tumor 

samples was calculated based on the gene expression 

deconvolution algorithm CIBERSORT [26]. The 

expression feature Leukocyte signature Matrix 22 

(LM22) of immune cell signature genes was constructed 

using the CIBERSORT algorithm in advance. This 

expression matrix contained the expression patterns of 

547 genes in 22 types of cells [naive B cells, memory B 

cells, Plasma cells, CD8 T cells, naive CD4 T cells, 

resting memory CD4 T cells, activated memory CD4 T 

cells, follicular helper T cells, regulatory T cells 

(Tregs), gamma delta T cells, resting NK cells, 

activated NK cells, Monocytes, M0 Macrophages, M1 

Macrophages, M2 Macrophages, resting Dendritic cells, 

activated Dendritic cells, resting Mast cells, activated 

Mast cells, Eosinophils, and Neutrophils]. For the 

normalized expression profile data, we used the default 

immune cell feature matrix LM22, randomly 100 times 

to obtain the immune infiltration ratio of each sample. 

Then, the state of the immune cells was distinguished 

according to the method used by Thorsson [27]. When 

calculating and analyzing the differences in the 

proportion of immune cell infiltration, the proportion of 
infiltration for each cell type was first standardized by 

z-score; then, the significance of the difference was 

calculated based on the Kruskal-Wallis test. Lymphoid 

https://gdc.cancer.gov/about-data/publications/pancanatlas
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Table 1. Basic characteristics of the data included in the study. 

 TCGA_NSCLC (N=996) GSE4573 (N=130) Overall (N=1126) 

Histology    

  LUAD 509 (51.1%) 0 (0%) 509 (45.2%) 

  LUSC 487 (48.9%) 130 (100%) 617 (54.8%) 

Stage    

  Stage I 509 (51.1%) 73 (56.2%) 582 (51.7%) 

  Stage II 277 (27.8%) 34 (26.2%) 311 (27.6%) 

  Stage III 165 (16.6%) 23 (17.7%) 188 (16.7%) 

  Stage IV 33 (3.3%) 0 (0%) 33 (2.9%) 

  Missing 12 (1.2%) 0 (0%) 12 (1.1%) 

Gender    

  Female 401 (40.3%) 48 (36.9%) 449 (39.9%) 

  Male 595 (59.7%) 82 (63.1%) 677 (60.1%) 

Age (years)    

  Mean (SD) 66.2 (9.34) 67.5 (9.86) 66.4 (9.41) 

  Median [Min, Max] 67.0 [38.0, 90.0] 68.0 [42.0, 91.0] 67.0 [38.0, 91.0] 

  Missing 28 (2.8%) 0 (0%) 28 (2.5%) 

Smoking_Pack_years    

  Mean (SD) 47.5 (28.9) 62.7 (43.9) 49.5 (31.6) 

  Median [Min, Max] 40.0 [0.150, 200] 60.0 [0, 300] 45.0 [0, 300] 

  Missing 237 (23.8%) 18 (13.8%) 255 (22.6%) 

 

and myeloid scores were calculated based on 

Nanodissect [28]. 

 

Prediction of immune subgroups based on binomial 

logistic regression 

 

An immune subgroup prediction model was developed 

based on the binomial logistic regression method, and 

optimized by L1 regularization (lasso) and full subset 

regression. The model was validated by shuffle-split 

with five-fold cross-validation. These five models were 

integrated into an ensemble model to output the final 

classification index. 

 

Survival analysis 

 

Kaplan-Meier graphs were generated using the R 

package survminer. The Maximum Selection Test 

(Maximally Selected Log-Rank Statistic, R package 

survminer::surv_cutpoint) method was used to identify 

the best cutpoint for high/low infiltration or high/low 

expression. 

 

RESULTS 
 

Constructing a new immune subgroup of NSCLC 

 

The flow diagram is provided in Supplementary Figure 1. 

Based on the expression levels of 770 immune-related 

genes derived from the nCounter® Pan-Cancer Immune 

Profiling array, a consistent clustering of 988 NSCLC 

samples was put into practice. Based on the change in 

the area under the consistent CDS and CDS curve, the 

number of consistent clusters was selected to be 4 

(Supplementary Figure 2). Since there was only one 

sample in category 4, it was removed in the subsequent 

analysis. In the identified subgroups, most of the 

samples in cluster 1 (n=394) were squamous 

carcinomas, almost all of the samples in cluster 3 

(n=331) were adenocarcinoma, and the samples in 

cluster 2 (n=272) were a mixture of the two cancer 

types (Figure 1A). To confirm that these three clusters 

were related to the tumor immune microenvironment 

(TIME), the Nanodissect algorithm was used to score 

total lymphocytes and myeloid cell infiltration. The 

three clusters were found to be significantly correlated 

with the scores of lymphocytes, myeloid cells and 

stromal cells (Wilcoxon rank-sum test, p<0.0001, 

Figure 1B). 

 

Based on pathological evaluation, the lymphatic 

invasion of cluster 2 was the highest and differed 

significantly from the other two groups, while no 

difference in lymphatic invasion was found between 

clusters 1 and 3. The levels of stromal cells in the three 

subgroups were found to be significantly different; 

cluster 2 was considered to have the highest level 

(Figure 1B1, 1B2). Based on the expression level of 
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Figure 1. (A) Expression of immune-related genes in TCGA non-small cell lung cancer data. Pearson correlation distance and ward.D2 were 

used for unsupervised clustering. The top annotations represent the subgroups, cancer types, and TCGA cancer subtypes identified based on 
consistent clustering. (B) Lymphocyte and myeloid cell infiltration and stromal cell distribution among subgroups. (B1) Lymphocyte infiltration 
in different clusters; (B2) stromal cell distribution in different clusters; (B3) myelocyte infiltration score in different clusters; (B4) lymphocyte 
infiltration score in different clusters. The Wilcoxon rank-sum test (*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001) was used for 
statistical difference testing among different groups. 



 

www.aging-us.com 12695 AGING 

infiltration score, cluster 2 was also shown with the 

highest level of lymphatic invasion, while myeloid 

infiltration was found to be gradually increased in the 

three subgroups (Figure 1B3, 1B4). 

 

Among the three clusters, the enrichment scores of all 

immune-related pathways showed significant 

differences. Most of the pathways showed stronger 

signal in cluster 2, and were significantly higher than 

the other two groups (Kruskal test, *, P <0.05; **, P 

<0.01; ***, P <0.001; ****, P <0.0001; Supplementary 

Figure 3). Among the three clusters, all suppressive 

immune checkpoint genes showed significant 

expression differences. The vast majority of pathways 

showed significantly high expression in cluster2 

(Kruskal test, *, P <0.05; Supplementary Figure 4). 

Among them, the macrophage CD86 and the widely 

used ICB target-CD274 are both significantly highly 

expressed in cluster 2. 

Building an immune subgroup prediction model 

 

In order to accurately distinguish lung cancer subgroups 

without relying on unsupervised clustering, we then 

used binomial logistic regression and L1 regularization 

(lasso) to construct a subgroup classifier to distinguish 

cluster 2 from other subgroups (cluster 1 and cluster 3). 

It was confirmed by five-fold crossover that our model 

had good predictive power (ROC-AUC=0.975, PR-

AUC=0.940, Figure 2A, 2B). Furthermore, we 

performed a new round of binomial logistic regression 

to distinguish cluster 1 and cluster 3, which also 

achieved extremely high performance (ROC-

AUC=0.997, PR-AUC=0.998). 

 

Prognostic efficacy of immune subgroups 

 

To complete our observations, we mapped patient 

survival based on the identified immune subgroups. 

 

 
 

Figure 2. Subgroup prediction model based on binomial logistic regression and prognostic efficacy of immune subgroups.  
(A) Distinguishing the predictive power of cluster 2 from the other two groups. (B) Distinguishing the predictive power of cluster 1 from 
cluster 3. The upper part is ROC-AUC, and the lower part is PR-AUC. (C) In all NSCLC samples, immune subgroups cannot significantly 
distinguish the overall survival of patients. (D) In the GEO independent verification set, the immune subgroup can significantly distinguish the 
prognosis of patients. Among patients with lung squamous cell carcinoma (E) or those older than 60 years (F), immune subgroups can 
significantly distinguish the prognosis of the patients. 
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Unfortunately, immune subgroup failed to distinguish 

the overall survival of patients effectively in TCGA-

NSCLC (log-rank test, p>0.05, Figure 2C). In the 

independent validation set, patient survival could be 

distinguished effectively by the identified immune 

subgroups (log-rank test, p<0.05, Figure 2D). After 

considering the effects of age, tumor stage, gender, and 

cancer type, it was found that the current immune 

subgroup could significantly distinguish the overall 

survival from others when patients were over 60 years 

or had squamous cell carcinoma (log-rank test, p<0.05, 

Figure 2E, 2F). In addition, progression-free survival 

(PFS) of Stage II NSCLC patients could also be 

significantly distinguished by immune subgroup (log-

rank test, p<0.05, Supplementary Figure 5). 

 

Molecular indicators of immune subgroups 

 

Subsequently, we systematically analyzed the molecular 

and clinical indicators of immune subgroups, including 

genomic alterations, pathological typing, and immune 

infiltration. By comparing the three immune subgroups, 

we found that EGFR and KRAS were significantly 

different in the subgroups (chi square test, p<0.05, 

Figure 3A), and mainly appeared in cluster 3. EGFR 

and KRAS were mutually exclusive in cluster 2 and 

cluster 3 (chi square test, p<0.05). Analyzing the 

correlation between the three subgroups and clinical 

information, we found that smoking was significantly 

related to immune subgroup, mainly apparent in cluster 

3 (chi square test, p<0.05). However, the immune 

subgroup had nothing to do with American Joint 

Committee on Cancer (AJCC) Stage or chemotherapy 

(chi square test, p>0.05). In addition, the silent mutation 

and non-silent mutation loads of cluster 3 were found to 

be at the lowest level among the clusters, significantly 

lower than those of cluster 1 and cluster 2 (Wilcoxon 

rank-sum test, Figure 3B); there was no significant 

difference in tumor mutation burden (TMB) between 

cluster 2 and cluster 1. Turning our attention to PD-1 

and PD-L1, we found that the expression levels of these 

two molecules (z-score of log2-transformed FPKM) in 

the cluster 2 subgroup were significantly higher than 

those of the other two subgroups (Wilcoxon rank-sum 

test, Figure 3C). 

 

Immune cell infiltration in different subgroups 

 

Based on the CIBERSORT method, we calculated the 

immune cell infiltration of each sample. 

 

We found that 22 immune cell types and their status 

subdivisions showed significant differences in the three 

subgroups. Among them, M1 Macrophages were found 

 

 
 

Figure 3. Differences in molecular indicators among immune subgroups and subtype-related immune cell infiltration.  
(A) Mutation landscape in all clusters. KRAS and EGFR mutations occurred significantly in cluster 3 (chi square test, p<0.05). (B) Tumor 
mutation burden (Silent and Non-silent) in different clusters. Cluster 3 had the lowest tumor mutation burden. (C) Expression levels of PD-
1/PD-L1 in different clusters. Cluster 2 had the highest levels of PD-1 and PD-L1 expression. The numerical statistical test was based on the 
Wilcoxon rank sum test (*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001). (D) Differences in immune cell infiltration subtypes. Statistical 
significance was calculated using the Kruskal-Wallis test (*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001). (E) Immune cell infiltration 
significantly associated with cluster 2 (based on logistics regression identification, p<0.05). 
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to be have the greatest infiltration in cluster 2, while 

resting Mast cells had the greatest infiltration in cluster 

3 (Figure 3D and Supplementary Figure 6). Using the 

generalized linear model, we identified the immune cell 

types that could explain the difference between cluster 2 

and cluster 1_cluster 3 (Figure 3E). 

 

We then observed the correlation between immune cell 

infiltration and the prognosis of NSCLC, and found that 

Mast cells and their status subdivisions were 

significantly associated with the prognosis of patients 

(Figure 4A). To further subdivide cancer types, we 

found that the Mast cell type and its status subdivisions 

could still distinguish the prognosis of patients in 

LUAD from the others, while Monocytes in LUSC 

patients was found to be related to the overall survival 

of patients (Figure 4B). Prior research suggested that 

the Mast cell type and its phenotype might be related to 

the prognosis of NSCLC [29]. Furthermore, it was 

reported that Mast cells might have a prognostic effect 

on lung cancer [30]. Our results showed that activated 

and resting Mast cells were significantly associated with 

better and worse prognoses, respectively, which further 

supports the prognostic role of the Mast cell type and its 

status subdivisions in NSCLC. Unlike previous reports, 

in LUSC, we found that Monocytes were associated 

with a better prognosis [31–34]. 

 

Functional differences in different subgroups 

 

Based on the MSigDB cancer hallmark gene set, we 

used the Gene Set Enrichment Analysis (GSEA) 

method to identify the cluster 2-related functional 

differences. The results showed that compared with 

cluster_1_and_3, cluster 2's dysregulated genes were 

enriched in a variety of pathways related to malignant 

cancer progression, including stem cell biology and 

EMT-related pathways corresponding to cancer-related 

functions (Figure 4C). Further visualizing the important 

cancer-related pathways, we found that cluster 2 had 

 

 
 

Figure 4. Prognostic efficacy of immune cell infiltration in TCGA-NSCLC and the functional differences involved in cluster 2. 
(A) Prognostic efficacy of immune cell infiltration in TCGA-NSCLC: Forest plot of the prognostic efficacy of immune cells. Single factor cox 
regression was used to evaluate the significance of the correlation between cell infiltration ratio and Overall Survival (OS). (B) Prognostic 
efficacy of immune cell infiltration in TCGA-NSCLC: In the corresponding metabolic subtypes, the Kaplan-Meier curve of the two groups of 
patients with high and low cell infiltration (Low). The log-rank test was used for calculating the difference in OS between the high and low 
groups. The division threshold was based on the maximum selection method. (C) Functional differences involved in cluster 2: Identifying the 
functional differences based on the GSEA method. The MSigDB cancer hallmark gene set was used. (D) Functional differences involved in 
cluster 2: Visualization of important cancer-related pathways. (E) Functional differences involved in cluster 2: Visualization of important 
immune-related pathways. 
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more EMT, KRAS and TNF signaling pathways, which 

was consistent with the worse prognosis associated with 

this cluster (Figure 4D, 4E). At the same time, we found 

that cluster 2 also had an enriched immune-related 

factor and active inflammatory response. 

 

In order to further explain the relationship between 

immune subgroup and cancer cell phenotype, we 

calculated the signature score of the aforementioned 

gene set based on the Gene Set Variation Analysis 

(GSVA) method for each sample. This score reflected 

the activity of each pathway in the immune subgroup. 

Immune subgroups could be distinguished clearly by 

unsupervised clustering of gene set scores (Figure 5A). 

Through the unsupervised clustering of GSVA 

enrichment scores, we found that those signatures 

appeared with high scores in cluster 2, but displayed 

erratic patterns in other subgroups. In order to formally 

determine which gene set score could explain cluster 2, 

we used the logistics model to test the contribution of 

each gene set to cluster 2 and cluster_1_and_3. The 

results indicate that pathways such as EMT and IL2-

STAT5-SIGNALING have a positive contribution to 

cluster 2, while cluster_1_and_3 is related to 

inflammatory response (Figure 5B). 

 

Since the immune subgroups were related to a variety of 

immune-related pathways, we then checked the 

relationship between immune cell infiltration and the 

aforementioned cancer-related pathways. We found that 

 

 
 

Figure 5. The functional differences involved in cluster 2 and the correlation between immune infiltration and cluster 2.  
(A) GSVA score spectrum of functional gene set in cluster 2. (B) Application of logistic regression to identify pathways that were significantly 
related to cluster 2. (C) Correlation between cluster function and immune infiltration. (D) Gene mutation characteristic blueprint of TCGA-
NSCLC immune subgroup. 39 oncogenes mutated in >6% samples in the three immune subgroups of TCGA-NSCLC (missense mutation, dark 
blue; insert deletion, light blue). The bar graph on the right represents the mutation frequency of each gene in the sample population, and 
the colored bar graph on the left represents whether the occurrence of the gene mutation was related to the immune subgroup (chi-square 
test). Each column represents a patient, and the colored bar chart at the top indicates the immune subgroup to which the patient belonged: 
the subtype of NSCLC, the patient's gender, age group, and tumor grade. (E) Copy number variation blueprint of TCGA-NSCLC immune 
subgroups; the status of 26 oncogenes with copy number changes in >10% samples in the three immune subgroups of TCGA-NSCLC (copy 
number amplification, red; copy number deletion, blue). The bar graph on the right represents the copy number variation frequency of each 
gene in the sample population. The colored bar chart on the left represents whether the occurrence of copy number variation of the gene 
was related to the immune subgroup (chi-square test). Each column represents a patient, and the colored bar chart at the top indicates the 
immune subgroup to which the patient belonged: the subtype of NSCLC, the patient's gender, age group, and tumor grade. 
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the activity scores of these pathways were significantly 

correlated with infiltration of a variety of immune cells 

(Pearson’s correlation test, p value<0.05, Figure 5C). It 

was worth noting that EMT was significantly associated 

with all immune cells and their status subdivisions. The 

high EMT score was highly positively correlated with 

infiltration of a variety of inhibitory immune cells (e.g., 

M1 Macrophages, resting Dendritic cells, and 

regulatory T Cells), and negatively correlated with the 

infiltration of killer immune cells (e.g., CD8 T Cells and 

Activated NK Cells). 

 

Subgroup-associated clinical features (EMT and 

proliferation) mutations, CNV, etc. 

 

We observed the mutation signature blueprints of 

TCGA-NSCLC samples in three different immune 

subtypes, and compared the mutations of some key 

oncogenes (from Oncology Knowledge Base; OncoKB) 

among different immune subgroups (Figure 5D). Most 

of the oncogenes with mutation frequency greater than 

10% appeared with missense mutations. Among 

different immune subgroups, the mutations of TP53, 

KRAS, KMT2D, NFE2L2, PIK3CA, EGFR, LRRK2, 

SETBP1, CDKN2A, PIK3CG were found to be 

distributed in a significantly biased manner (Figure 5D) 

[35, 36]. In TCGA-NSCLC patients, we found that 

CDKN2A, CDKN2B and MTAP mainly had copy 

number deletions (Figure 5E), whereas PIK3CA, SOX2, 

BCL6 had a large number of copy number 

amplifications and were significantly concentrated in 

cluster 1. 

 

Immunotherapy in different subgroups 

 

We further evaluated the relationship between 

immune subgroup and immunotherapy (Figure 6). 

Based on the previous model, we divided 

immunotherapy patients into cluster 2 and 

cluster_1_and_3. We found that 31.4% (11/35) of PD 

patients, 22.9% (8/35) of PR patients, and 11.4% 

(4/35) of SD patients belonged to the cluster 2 

subgroup, whereas 8.6% (3/35) of PD patients, 2.9% 

(1/35) of PR patients and 22.9% (8/35) of SD patients 

belong to the cluster_1_and_3 subgroup. When 

comparing (CR & PR) vs. PD, there was no 

significant association between efficacy and immune 

subgroup (chi square test, p>0.05, Figure 6A). The 

PFS in the cluster 2 subgroup was shorter than that in 

the cluster_1_and_3 subgroup, although no significant 

difference was found (log-rank test, p>0.05, Figure 

6B). Observing the expression levels of PD-1, PD-L1, 

and PD-L2, we found that the expression levels of 
these genes in the cluster_1_and_3 subgroup were 

significantly higher than those in the cluster 2 

subgroup (Figure 6C). 

DISCUSSION 
 

Among all patients with lung cancer, NSCLC 

accounts for more than 85% of cases, making it the 

most common pathological type in clinical work and 

the leading cause of cancer-related deaths [37]. In 

recent years, immunotherapy for NSCLC has been 

developing rapidly, especially for PD-1/PD-L1 

inhibitors [38–42]. While tumor immunotherapy has 

achieved satisfactory anti-tumor efficacy, predictive 

indicators related to therapeutic efficacy and 

prognosis have also been gradually reported [16–19, 

43]. Based on the aforementioned reports on immune 

predictive indicators, we designed the present study in 

order to comprehensively evaluate the impact of 

immune-related indicators or immune grouping 

methods on the therapeutic efficacy and prognosis of 

NSCLC [16–19, 43]. 

 

Based on the expression levels of 770 immune-related 

genes derived from the nCounter® PanCancer Immune 

Profiling array, 988 NSCLC samples were clustered 

uniformly, and three cluster subgroups were obtained 

(Figure 1A), cluster 1 (n=394), cluster 2 (n=272) and 

cluster 3 (n=331), corresponding to the three most 

common pathological types in NSCLC: squamous cell 

carcinoma, adenosquamous cell carcinoma, and 

adenocarcinoma [44, 45]. We found that these three 

clusters were significantly correlated with the scores of 

lymphocytes, myeloid cells and stromal cells (Wilcoxon 

rank-sum test, p<0.0001, Figure 1B). Based on the 

Nanodissect algorithm to score total lymphocytes and 

myeloid cell infiltration (Figure 1B), we inferred that 

these three clusters may be related to the tumor immune 

microenvironment. This laid the foundation for us to 

further construct the immune subgroup prediction 

model (Figure 2A, 2B). 

 

At present, immune checkpoint inhibitor therapies, 

especially for PD-1/PD-L1 inhibitors [3–15, 46, 47], 

have been developing rapidly for NSCLC, and a large 

number of indicators related to the efficacy of 

immunotherapy and patient prognosis have also been 

reported [48–50]. However, the prognostic efficacy of 

immune subgroups has rarely been reported. After 

considering the effects of age, tumor stage, gender, and 

cancer type, we found that overall survival could be 

significantly distinguished by immune subgroup when 

patients were over 60 years of age or had squamous cell 

carcinoma (log-rank test, p<0.05, Figure 2E, 2F). In 

addition, the PFS survival of Stage II NSCLC patients 

could also be significantly distinguished by immune 

subgroup (log-rank test, p<0.05, S Figure 3). In the 

cluster 2 subgroup, the expression levels of PD-1 and 

PD-L1 (z-scores of log2-transformed FPKM) were 

significantly higher than in the other two subgroups 
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(Wilcoxon rank-sum test, Figure 3C). Because the 

cluster 2 subgroup had higher TMB (Silent mutation per 

Mb and Non-silent mutation per Mb) and higher PD-1 

and PD-L1 expressions, it may be implied to have a 

better response to immunotherapy [51, 52]. The 

aforementioned findings would be helpful for us to 

judge the prognosis of patients in clinical work. 

 

Through the analysis of immune cell infiltration in 

different subgroups (Figure 3D, 3E), we found that the 

tumor-promoting immune cell types M1 Macrophages 

[53], regulatory T Cells [54], activated memory CD4 T 

Cells [49, 55], and resting memory CD4 T Cells mainly 

existed in cluster 2, which might explain the reason for 

the worse prognosis with the cluster 2 subgroup. The 

analysis results showed that the Mast cell type and its 

status subdivisions are significantly associated with 

patient prognosis (Figure 4A). To further subdivide the 

cancer type, the Mast cell type and its status 

subdivisions could significantly distinguish the 

prognosis of patients in LUAD from others, while the 

presence of Monocytes in LUSC patients was 

 

 
 

Figure 6. Correlation between immune subgroups and the efficacy of immunotherapy. (A) Efficacy of immunotherapy in different 
immune subgroups. (B) Progression-free survival in different immune subgroups. (C) Expression differences of PD-1 (C1), PD-L1 (C2) and PD-
L2 (C3) in different subgroups. 
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significantly related to the overall survival of these 

patients (Figure 4B). Our analysis results were similar 

to those in prior reports [29, 30]. At the same time, the 

results also verified the feasibility of our analysis 

method from another aspect. Furthermore, our results 

showed that activated and resting Mast cells were 

significantly associated with better and worse 

prognoses, respectively, which further supports the 

prognostic role of the Mast cell type and its status 

subdivisions in NSCLC (Figure 4B1, 4B2). It has been 

reported that circulating Monocytes are associated with 

angiogenesis and poor prognosis in numerous cancers 

[31–34]. In LUSC, we found that Monocytes were 

associated with a better prognosis (Figure 4B3). This 

inconsistency may be due to the following reasons: (1) 

differences caused by the differentiation of monocytes 

into different cells (mainly including macrophages) 

after entering tissues; (2) specificity of tissue origin of 

LUSC. 

 

Through our analysis, we found that more active 

pathways related to malignant progression of cancer were 

enriched in the cluster 2 subgroup (Figure 4C), which was 

consistent with the worse prognosis of this subgroup 

(Figure 4D). At the same time, we found that cluster 2 

also has a strong immune-related factor and inflammatory 

response (Figure 4E). However, TCGA-NSCLC data are 

basically chemotherapy related. Therefore, the 

relationship between this strong immune response and the 

worse prognosis cannot be explained clearly. 

 

In order to further explain the relationship between 

immune subgroups and cancer cell phenotype, we 

calculated the signature score of the aforementioned 

gene set based on the GSVA method for each sample. 

Immune subgroups could be distinguished clearly by 

unsupervised clustering of gene set scores (Figure 5A). 

The analysis results indicated that cluster 2 was 

positively influenced by pathways such as EMT and 

IL2-STAT5-SIGNALING, whereas cluster_1_and_3 

was related to inflammatory response (Figure 5B). 

Furthermore, we found that the activity scores of these 

pathways were significantly correlated with infiltration 

of a variety of immune cells (Figure 5C). Notably, EMT 

was significantly associated with all immune cells and 

their status subdivisions. EMT score was highly 

positively correlated with infiltration of a variety of 

inhibitory immune cells (e.g., M1 Macrophages, resting 

Dendritic cells, and regulatory T Cells; Figure 5C), and 

negatively correlated with the infiltration of killer 

immune cells (e.g., CD8 T Cells and activated NK cells; 

Figure 5C). This may further explain the poor prognosis 

of patients in the cluster 2 subgroup [56, 57]. 
 

We observed the mutation signature blueprints of TCGA-

NSCLC samples in three different immune subtypes, and 

compared the mutations of some key oncogenes (from 

OncoKB) among different immune subgroups (Figure 5D, 

5E). The mutation frequency of TP53 was as high as 51%, 

which tended to appear in clusters 1 and 2, while cluster 3 

had less mutation enrichment [58, 59]. As a rare oncogene 

related to the potential treatment of NSCLC, PIK3CA also 

showed a similar tendency for mutation enrichment, with 

more mutations in cluster 1 and 2 samples. It was reported 

that PIK3CA mutations could confer a relapse-free 

survival advantage for squamous cell carcinoma in 

NSCLC [35]. On the contrary, EGFR and KRAS 

mutations were abundantly enriched in cluster 3 samples, 

which was consistent with the function of suppressing 

immune infiltration as reported in some studies [36]. In 

our results, we also observed that the samples in cluster 3 

had lower lymphocyte infiltration (Figure 1B). Both the 

enrichment of mutant genes and the alterations in copy 

number of related genes were basically consistent with 

previous reports [35, 36, 60, 61]. In other words, the use 

of our analysis method will make it easier for clinicians to 

judge the immune infiltration characteristics, mutations 

and prognostic survival of tumor patients, hence 

facilitating the formulation of treatment plans. 

 

We further evaluated the relationship between immune 

subgroups and immunotherapy (Figure 6). The PFS in 

cluster 2 subgroups was shorter than those of 

cluster_1_and_3 subgroups, although no significant 

difference was found (log-rank test, p>0.05, Figure 6B). 

Observing the expression levels of PD-1, PD-L1, and 

PD-L2, we found that the expression levels of these 

genes in the cluster_1_and_3 subgroup were 

significantly higher than those in the cluster 2 group 

(Figure 6C), which might partly explain the slightly 

better PFS of the cluster_1_and_3 subgroup [51]. 

 

CONCLUSIONS 
 

The immune infiltration cluster 2 subgroup was a 

mixture of LUAD and LUSC, and showed poor overall 

survival, which was further verified in the independent 

validation set. Immune infiltration correlation analysis 

showed that the Mast cell type and its status 

subdivisions had a predictive effect on the prognosis of 

NSCLC, especially in LUAD. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Flow diagram of the study. 

 

 
 

Supplementary Figure 2. Assessment of the optimal number of clusters. (A) The optimization process of Consensus Cumulative 
Distribution Function (CDF). The abscissa axis represents the consensus index; the ordinate axis represents the CDF value. (B) The change of K 
value in Delta area. The abscissa axis represents the change of K value, and the ordinate axis represents relative change in area under CDF 
curve. 
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Supplementary Figure 3. The enrichment scores of immune-related pathways are significantly different in the three clusters: 
The x-axis is 17 different immune-related pathways, derived from ImmPort. The y-axis is the pathway enrichment score calculated 

based on the Gene Set Variation Analysis (GSVA) method. Perform Kruskal test in clusters (*, P <0.05; **, P <0.01; ***, P <0.001; ****, P 
<0.0001). 
 

 
 

Supplementary Figure 4. The average expression of immune checkpoint genes in each cluster: Suppressive immune 
checkpoints are significantly different in the three clusters. The expression value is normalized by log2-transformed and zscore. * 
Indicates that there is a significant difference in gene expression between the three clusters (Kruskal test, *, P <0.05). 
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Supplementary Figure 5. Survival analysis in different clusters corresponding to different stages: Immunization subgroups 
can significantly distinguish the progression-free survival of Stage II NSCLC patients from others. The Stage IV sample size was 
too small, so it was deleted. The abscissa axis represents survival time, and the ordinate axis represents survival probability. The red curve 
represents cluster 2, the blue curve represents clusters _1 and_3. (A) Survival analysis curve of stage I NSCLC patients. (B) Survival analysis 
curve of stage II NSCLC patients. (C) Survival analysis curve of stage III NSCLC patients. 
 

 
 

Supplementary Figure 6. Distribution of immune cell infiltration in different clusters. 


