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Abstract

Climate change and global warming have serious adverse impacts on tropical forests. In

particular, climate change may induce changes in leaf phenology. However, in tropical dry

forests where tree diversity is high, species responses to climate change differ. The objec-

tive of this research is to analyze the impact of climate variability on the leaf phenology in

Thailand’s tropical forests. Machine learning approaches were applied to model how leaf

phenology in dry dipterocarp forest in Thailand responds to climate variability and El Niño.

First, we used a Self-Organizing Map (SOM) to cluster mature leaf phenology at the species

level. Then, leaf phenology patterns in each group along with litterfall phenology and climate

data were analyzed according to their response time. After that, a Long Short-Term Memory

neural network (LSTM) was used to create model to predict leaf phenology in dry diptero-

carp forest. The SOM-based clustering was able to classify 92.24% of the individual trees.

The result of mapping the clustering data with lag time analysis revealed that each cluster

has a different lag time depending on the timing and amount of rainfall. Incorporating the

time lags improved the performance of the litterfall prediction model, reducing the average

root mean square percent error (RMSPE) from 14.35% to 12.06%. This study should help

researchers understand how each species responds to climate change. The litterfall predic-

tion model will be useful for managing dry dipterocarp forest especially with regards to forest

fires.

Introduction

Forest ecosystems are considered as key atmospheric carbon sinks in the global carbon cycle

[1]. Recent research has highlighted concerns that forests are adversely affected by climate

change, reducing their carbon sink capacity and negatively impacting other ecosystem services
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[2]. One feature induced by climate change is a shift of weather conditions and patterns,

including more frequent extreme weather anomalies [3]. For example, it has been suggested

that climate change has increased the intensity and frequency of the El Niño phenomenon [4].

During 2015–2016, one of the strongest El Niño events in the 21st century was reported [5].

This El Niño significantly reduced the amount of rainfall in Southeast Asia and worldwide,

and was associated with higher temperatures when compared with the long-term average cli-

mate [6]. Related research [7] found the event had significant impacts on forest carbon uptake

and species responses which did not appear in the long-term average climate because forests

can absorb atmospheric carbon dioxide through photosynthesis.

Phenology is defined as the investigation of temporal patterns in the life cycle of living

organisms, correlated with environmental factors during each time period [8]. One important

pattern of the forests is the changes in leaf phenology as they respond to various environmental

drivers. However, as tropical forest ecosystems are highly diverse, understanding the species-

specific responses to such drivers is desirable in order to evaluate the impacts of climate change

and implement effective ecosystem management. While some studies have reported on the

response of forest to climate change at a community level by using remote sensing data [9–11],

there is limited research that studies the relationship between leaf phenology and climate at the

species level, especially in tropical dry forest (a subtype of the tropical forest) [12, 13]. Studying

the relationship between leaf phenology and climate in tropical dry forests is a challenge

because tropical dry forests, although highly diverse, shows similar adaptation patterns across

some species. For example, Sindora siamensis has the same phenology pattern with Phyllanthus
emblica [14]. Still, it is well-known that in addition to the photoperiod, seasonal variations in

three main factors, namely rainfall, soil moisture and temperature, are responsible for most

phenological changes in the tropical dry forests [15]. In the current study, we tried to classify

the response patterns of tropical forests based on variations in these three factors.

The objective of this research was to study the impact of climate change on leaf phenology

in Thailand’s tropical forests. However, it is difficult to understand the behavior of each species

in dry dipterocarp forests (DDFs) because the relationships between leaf phenology and cli-

mate change in the tropical dry forest are highly variable and time dependent [14]. In addition

to seasonal patterns, there may be stationary changes to mean phenology (i.e., from global

warming). In the past, linear regression has been widely applied for analyzing the relationship

between climate change and leaf phenology, prediction models for forest management were

created based on this analysis. This technique is easy to implement and can illuminate the

basic relationships between variables [11–13, 16, 17]. However, the linear regression technique

assumes a linear relationship between independent and dependent variables, which is often an

oversimplification. A linear model may not be able to capture the complex relationship

between climate change variables and leaf phenology. Therefore, this research applied a combi-

nation of more powerful techniques to overcome the difficulties in understanding and model-

ing these phenomena.

One approach to characterize leaf phenology patterns is to use Machine Learning tech-

niques (ML). These techniques are well-known and widely used for analyzing complex data.

ML has been applied to modeling and prediction problems in many forestry and ecological

studies [18–20]. Self-Organizing Map (SOM) is an ML technique that clusters data based on

patterns of similarity. SOM reduces the complexity of high-dimensional data to two dimen-

sions, thus facilitating visualization and analysis [21]. In studying relationship between organ-

isms and their environment, SOM has been effectively applied for clustering numerous

organisms [22]. In some forest research, SOM not only helped reduce the complexity of infor-

mation [23, 24], but was also successful in identifying groups of leaf phenology patterns in

DDFs. In fact it provided the best performance when compared with other algorithms [14].
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Cross-correlation is another technique that can help model the relationship between cli-

mate variables and leaf phenology. Cross-correlation can be used to analyze the temporal pat-

terns relating two sequences of data, in terms of lag time [25], that is, the typical time

difference between the change in a controlling and controlled variable. Since leaf phenology

and climate measures both vary over time, the cross-correlation technique can be used to clar-

ify the detailed behavior of trees in the tropical dry forest subjected to climate stresses.

As noted above, a linear regression model may not be adequate to capture the relationships

between climate variables and leaf phenology, which tend to be non-linear. Long Short-Term

Memory (LSTM) is a deep learning technique that is suitable for sequential data [26]. LSTM

has been previously applied to analyze the relationship between forests and CO2 emissions [27,

28]. LSTM has also been used to monitor and create a phenology prediction model from

remote sensing data [29–31].

In this study, the leaf phenology patterns in DDF are grouped using SOM to reduce the

complexity of data. Then, the cross-correlation technique is applied to analyze the chronologi-

cal relationship between the tropical dry forest and the climate at both the community and spe-

cies levels according to the lag time between leaf phenology changes and litterfall. Lastly, we

generate a prediction model for the litterfall data based on the LSTM technique by using the

results from the lag time analysis.

Materials and methods

Fig 1 summarizes the methodology used in this research. The process starts with leaf phenol-

ogy data of each species, that is, measurements of leaf cover at different times. These data are

clustered to reduce the diversity of DDF by using the Self-Organizing Map. Then the output, a

grouping of trees with similar leaf phenology patterns, is analyzed using cross correlation tech-

niques to get the lag time period between the microclimate data and the phenology patterns.

The lag time (also called response time in this paper) shows the dynamics of leaf phenology

changes in response to microclimate change. Next, the lag time data are used to adjust the

microclimate data by shifting it to correspond to the phenology changes. The time-shifted

microclimate data are then used as inputs to create a litterfall prediction model.

Data

This research utilized data collected from a secondary dry dipterocarp forest (DDF) area in

Ratchaburi, Thailand (13˚ 35’ 13" N: 99˚ 30’ 4" E, 110 m a.s.l.). There are three main sets of

data, explained in more detail below: leaf phenology patterns of each species between 2015–

2018; litterfall data between 2009–2018; and microclimate data from the same period. The sea-

sons in this study were divided into dry and wet season following the monsoon rainfall. Nor-

mally the dry season starts in November and continues until April, while the wet season runs

from May until October [12].

Leaf phenology patterns of each species. The mature leaf phenology of 888 trees covering

12 species was manually observed and scored into the 0–4 range over three years (from March

2015 to April 2018). The observed scores were defined based on the percentage of mature

leaves on the tree. A score of 0 indicates 0% mature leaves, 1 indicates between 1% and 25%

mature leaves, 2 indicates between 26% and 50% mature leaves, 3 indicates between 51 and

75% mature leaves, and 4 indicates from 76 to 100% mature leaves [12, 13]. The data gathering

period included the El Niño 2015/2016 phenomenon which was the most severe event of this

type since 1950. The 12 observed tree species are included: Litsea glutinosa (Lour.) C.B.Rob,

Croton oblongifolius Roxb., Lannea coromandelica (Houtt.) Merr., Erythrophleum succiru-

brum Gagnep, Dipterocarpus obtusifolius Teijsm. ex Miq, Shorea roxburghii G.Don, Shorea
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siamensis Miq, Sindora siamensis, Phyllanthus emblica, Shorea obtuse Wall. ex Blume, Xylia

xylocarpa (Roxb.) Taub. var. kerrii, Ellipanthus tomentosus.

Litterfall data. Monthly litterfall data were collected for 10 years (from June 2009 to April

2018) by the litter trap technique [32]. The fallen leaves were dried at 75 C for 48 hours and

weighed. During this 10-year period, two El Niño events occurred. We used this dataset to cre-

ate a prediction model to forecast the leaf phenology of the dry dipterocarp forest to guide

future forest management. The monthly litterfall data are shown in Fig 2.

Microclimate data. Microclimate data related to the leaf phenology were collected from

the sensors mounted on a 10-m eddy covariance flux tower. Measured variables included rain-

fall, soil moisture, Photosynthetically Active Radiation (PAR), Maximum temperature (Tmax),

Fig 1. Block diagram of the methodology.

https://doi.org/10.1371/journal.pone.0255962.g001
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Minimum temperature (Tmin), and Maximum of Vapor Pressure Deficit (VPDmax). A pho-

toperiod dataset was also included in this research, from the geosphere library version 1.5–10

provided in the R language [12, 33]. The microclimate data were compiled for 10 years (from

June 2009 to April 2018) and aggregated by monthly averaging. The microclimate data are

shown in S1 Fig in S1 Appendix.

Self-Organizing-Map (SOM)

Although each tree species responds differently to climate, some have similar patterns. To

reduce complexity, the tree species were clustered based on their mature leaf phenology by

using SOM. Fig 3 shows the process of leaf phenology clustering. The first step is creating the

2-D SOM map. The second step is the grouping each unit of the 2D-SOM map phase. In this

step the leaf phenology model is created. Then, the leaf phenology of each tree was clustered

from the model.

SOM is an unsupervised machine learning technique which creates a two-dimensional map

from complex data. The map represents the similarities or groupings of the input data. SOM

contains two layers which are the multiple-dimension input layer (X1. . .XN) and the two-

dimensional output layer. The layers are connected with weights (W1j. . ..WNj) as shown in Fig

4. In general, SOM has 2 main types of topologies which are grid and hexagon topology. In

this research, the patterns of leaf phenology are clustered by using the hexagon topology.

SOM requires the number of desired clusters as an initial parameter. We tried 3 clustering

optimization methods to determine the optimal number of clusters: elbow method [34], gap

statistic method [35] and average silhouette method [36]. All three techniques indicates that

the optimal cluster number is 5.

The training process creates the two-dimensional layer of the SOM map. The size or the

number of cell of 2D-map is set to 5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of samples

p
which is an empirical value used

in many studies [37, 38]. The weight value that is used for learning the characteristics of each

input is preserved in each unit of the 2D-map. At the beginning of the training process, the

weight in each unit is randomly generated. Then an input is selected to train the 2D-SOM

map. In our work, the input is the mature leaf phenology pattern of one tree. The Euclidean

distance is calculated to represent the difference between weight and input. After calculating

the distance between the weight of each unit and input, the node that has a minimum Euclid-

ean distance is selected as the winner to adjust the weight [21].

After training 2D-SOM map, the hierarchical clustering (HC) technique was applied to

divide the group of the 2D-SOM map. Each weight unit of the SOM map was used as the input

Fig 2. Monthly litterfall data during 2009–2018 used in this study.

https://doi.org/10.1371/journal.pone.0255962.g002
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Fig 3. Flowchart illustrating the process of leaf phenology clustering based on SOM.

https://doi.org/10.1371/journal.pone.0255962.g003
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in hierarchical clustering. In this research, the Ward method [39] was used as a criterion to

find similarity clusters. The squared Euclidean distance was used to find the dissimilarity of

each unit by using Eq (1),

dði; jÞ ¼
X

k

ðxik � xjkÞ
2

ð1Þ

where d is the dissimilarity between unit i and j, x is the unit of the SOM map. After each unit

was grouped, the dissimilarity of each group was updated by using Eq (2),

dnew
ðiþjÞk ¼

1

ni þ nj þ nk
ðni þ nkÞdik þ ðnj þ nkÞdjk þ nkdk
h i

ð2Þ

where n is the number of units in each cluster.

Lag time analysis

We analyzed the lag time between the microclimate data and the leaf phenology (species level

and community level) to identify which microclimate variables affected both the leaf phenol-

ogy patterns of each species and the litterfall of the forest. To study the lag time at the species

level, five clusters of leaf phenology patterns that were grouped from the clustering process

were used as inputs. At the community level, the litterfall data were used to analyze the

response time. The cross-correlation technique was applied to understand the lag time of the

two independent time series [40]. The the microclimate data and the leaf phenology are the

time series data in the current study.

The cross-correlation technique was based on the calculation of the correlation between

two shifted sequences, representing two different variables that are related. For example,

Fig 4. The structure of SOM algorithms.

https://doi.org/10.1371/journal.pone.0255962.g004
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Table 1 shows shifted rainfall and leaf phenology data gathered for four months. The values of

Rainfall and Pattern1 in the columns were shifted monthly ranging from 0 to 4 months to be

used as inputs to calculate cross-correlation. The shifted patterns are shown in Table 1. The

rows that were Not a Number (NaN) were removed. Therefore, the data used for analysis

started from 9/1/2015. Table 2 shows the cross-correlation matrix between four-month shfited

data of rainfall and leaf phenology Pattern1 from Table 1. While each row of Rainfall, Reain-

fall_1mt, Reainfall_2mt, Reainfall_3mt, Reainfall_4mt columns is x variable in Eq (3), each

row of Pattern1, Pattern1_1mt, Pattern1_2mt, Pattern1_3mt, Pattern1_4mt is y variable in

Table 1. Example of four-month shifted data.

Date

m/d/

yyyy

Rainfall_0mt Rainfall_1mt Rainfall_2mt Rainfall_3mt Rainfall_4mt Pattern1_0mt Pattern1_1mt Pattern1_2mt Pattern1_3mt Pattern1_4mt

5/1/

2015

62.8 NaN NaN NaN NaN 2.9 NaN NaN NaN NaN

6/1/

1015

7.9 62.8 NaN NaN NaN 3.2 2.9 NaN NaN NaN

7/1/

2015

35.0 7.9 62.8 NaN NaN 3.3 3.2 2.9 NaN NaN

8/1/

2015

72.9 35.0 7.9 62.8 NaN 3.6 3.3 3.2 2.9 NaN

9/1/

2015

141.4 72.9 35.0 7.9 62.8 4.0 3.6 3.3 3.2 2.9

10/1/

2015

177.8 141.4 72.9 35.0 7.9 3.9 4.0 3.6 3.3 3.2

11/1/

2015

22.9 177.8 141.4 72.9 35.0 2.2 3.9 4.0 3.6 3.3

12/1/

2015

18.6 22.9 177.8 141.4 72.9 0.0 2.2 3.9 4.0 3.6

1/1/

2016

18.2 18.6 22.9 177.8 141.4 0.0 0.0 2.2 3.9 4.0

2/1/

2016

2.8 18.2 18.6 22.9 177.8 0.0 0.0 0.0 2.2 3.9

3/1/

2016

8.0 2.8 18.2 18.6 22.9 0.1 0.0 0.0 0.0 2.2

4/1/

2016

0.9 8.0 2.8 18.2 18.6 0.2 0.1 0.0 0.0 0.0

aNot a Number (NaN) represents for empty value
b Xmt denotes the number of months shifted where X = [0,1,2,3,4]

https://doi.org/10.1371/journal.pone.0255962.t001

Table 2. The cross-correlation matrix between four-month shfited data of rainfall and pattern1.

Rainfall_0mt Rainfall_1mt Rainfall_2mt Rainfall_3mt Rainfall_4mt

Pattern1_0mt 0.69 0.51 0.17 -0.19 -0.37

Pattern1_1mt 0.53 0.68 0.49 0.13 -0.20

Pattern1_2mt 0.31 0.52 0.66 0.45 0.10

Pattern1_3mt 0.12 0.31 0.51 0.62 0.42

Pattern1_4mt -0.09 0.11 0.29 0.48 0.60

aXmt denotes the number of months shifted where X = [0,1,2,3,4]

https://doi.org/10.1371/journal.pone.0255962.t002
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Eq (3).

r ¼
nð
P

xyÞ � ð
P

xÞð
P

yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½n
P

x2 � ð
P

xÞ2�½n
P

y2 � ð
P

yÞ2�
q ð3Þ

Long Short-Term Memory prediction model

Deep learning Long Short-Term Memory (LSTM) was used to create a model to predict litter-

fall from microclimate data. Models trained using non-shifted and shifted data were com-

pared, in order to examine whether considering the lag time between the microclimate data

and the leaf phenology would help improve the performance of the prediction model.

Fig 5 shows the structure of the LSTM model. C represents a cell state. Cell state is the core

of LSTM. In theory, cell state contains the relevant information throughout the processing of

the sequence. X is sequence input, while h represents for output of each state which is an

amount of litterfall. There are three inputs. The first input of the present cell is X(t) that con-

tains microclimate data at time (t) and litterfall data at time (t-1), second, the output from pre-

vious cell(t-1) is h(t-1) that is the predicted amount of litterfall, and the last cell state from the

previous cell(t-1) is C(t-1). The outputs of current cell(t) in LSTM are cell state C(t) and output

h(t). The cell state C(t) serves to decide whether the incoming information should be remem-

bered or not. C(t) can be calculated using Eq (4),

Cð0Þ ¼ 0;CðtÞ ¼ yf ðtÞCðt � 1Þ þ yiðtÞtanh ðycðtÞÞ ð4Þ

where yf(t) is the output of the forget gate, yi(t) is the output of the input gate and yc(t) is the

output of the output gate which are calculated using Eqs (5), (6) and (7), respectively.

yf ðtÞ ¼ sðð
X

m
Whfm � hmðt � 1ÞÞ þ ð

X

m
WXfm � XmðtÞÞ þ bf Þ ð5Þ

yiðtÞ ¼ sðð
X

m
Whim � hmðt � 1ÞÞ þ ð

X

m
WXim � XmðtÞÞ þ biÞ ð6Þ

Fig 5. LSTM structure.

https://doi.org/10.1371/journal.pone.0255962.g005
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ycðtÞ ¼
X

m
Whcm � hmðt � 1Þ þ

X

m
WXcm � XmðtÞ þ bc ð7Þ

While σ is the sigmoid function, Whm and WXm are the learning weight of input h(t-1) and

input X(t) in the forget gate, and bi is the bias value. The output h(t) of each cell state can be

calculated using Eq (8),

hðtÞ ¼ yo � tanhðCðtÞÞ ð8Þ

yo(t) is the output of the output gate which can be calculated using Eq (9),

yoðtÞ ¼ sðð
X

m
Whom � hmðt � 1ÞÞ þ ð

X

m
WXom � XmðtÞÞ þ boÞ ð9Þ

Experimental settings and evaluation method

Evaluating the performance of the clustering algorithms. The performance of SOM

algorithm was compared with the output from KMeans, Hierarchical Clustering (HC) and

Gaussian Mixture Model (GMM). To validate the performance of the clustering algorithms,

the SDbw validity index was used [41]. This metric simultaneously evaluates 5 characteristics:

monotonicity, noise, density, sub-clusters, and skewed distributions. SDbw takes the scattering

and density of information in each cluster to measure the inter-cluster separation. A smaller

index indicates better clustering results. The SDbw validity index is calculated by using Eq (10),

SDbw ¼ SCATT þ DENS BW ð10Þ

where SCATT represents the average scattering for clusters that is calculated based on Eq (11).

SCATT ¼
Pc

i¼1
ksðviÞk

cksðSÞk
ð11Þ

While σ(vi) is the standard deviation of Euclidean distance of the data in each cluster, σ(S)

which is the standard deviation of Euclidean distance of all data is used as a normalization fac-

tor to constrain the range of SCATT value. The variable c represents the number of clusters. A

smaller value of SCATT indicates better results since it is desirable that each cluster has low

variance. DENS_BW is inter-cluster density that is defined by Eq (12),

DENSBW ¼

Pc
i¼1
ð
Pc

j ¼ 1

j 6¼ 1

denseðuijÞ
maxðdensðvi ;densðvjÞÞÞ

Þ

cðc � 1Þ
ð12Þ

where dens(vi) is the density of each cluster and dense(uij) is the density between cluster i and

j. The density of each cluster and between two clusters can be calculated from Eq (13),

denseðvÞ ¼
Xnij

i¼1
f ðXi; vÞ ð13Þ

where nij is a number of data in each cluster. v is the centroid of dense(vi) and dense(uij). Eq

(14) represents the amount of data in the neighborhood area that can find from function f(Xi,

v).

f ðx; yÞ ¼
0; if dðx; vÞ > stdev

1; otherwise
ð14Þ

(
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Where d(x,v) is the Euclidean distance between each data and the centroid and stdev is the

average standard deviation of data point that used as a neighborhood area. stdev can be calcu-

lated from Eq (15),

stdev ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPc

i¼1
ksðviÞk

p

c
ð15Þ

Evaluating the performance of the prediction model. The LSTM algorithm used in this

research was implemented in Python using Keras Application Programming Interface (API)

[42]. The performance of the LSTM technique was compared to state-of-the-art prediction

algorithms including Linear Regression [43], Regression Tree [44], Artificial Neural Network

(ANN) algorithms [45], and ARIMAX [46]. To test whether the response time analysis affected

the predictive modeling, the performance of the model trained with the general input data and

that of the model trained with the shifted input data (the results from the lag time analysis pro-

cess) were compared.

As the data used in this research are sequential data, the root mean square percent error

(RMSPE) was used to evaluate the performance of the experimental technique [47]. RMSPE

can be calculated using Eq (16),

RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðPredictedi � ActualiÞ

2

n
� 100%

s

ð16Þ

where n represents the number of samples of testing data. To prevent model overfitting, 5-fold

cross-validation [48] was used and the models were run 10 times when testing the performance

of the algorithms.

Experimental results

Clustering leaf phenology patterns. The clustering results of each algorithm are shown

in Table 3. Table 3 shows that the number of trees in each species that were included in some

cluster in Self-Organizing Map (SOM) is higher than other algorithms which means SOM

does a better job than other algorithms of covering the full data set. The SDbw index for each

algorithm is shown in Table 4. It is obvious that SOM provided the best index, while GMM

provided the worst index. The indices for SOM, KMeans, and Hieratical Clustering (HC) are

fairly similar to each other. This may be because Euclidean distance is used to measure the dis-

similarity of SOM, KMeans, and HC, but Gaussian Mixture Model (GMM) clustering is based

on probability. Since, SOM provided better performance than other algorithms, we concluded

that the leaf characteristics of each species should be grouped using SOM. From Table 3, the

clustering result of SOM and HC are similar. In SOM and HC, while L. coromandelica was

clustered into the 1st group, D. obtusifolius and E. tomentosus were clustered into 2nd group.

The third group produced by the clustering contained most species in study area, including L.

glutinosa, C. oblongifolius, S. siamensis, Sindora siamensis, P. emblica, S. obtuse and X. xylo-

carpa. E. succirubrum and S. roxburghii was clustered into the 4th and 5th group respectively.

As shown in Fig 6, the leaf phenology patterns of 12 species were clustered in to 5 groups

and can be described as follows:

• Group 1: Long completely deciduous period (�5 months) both during the El Niño phenom-

enon and in normal years.

• Group 2: Incompletely deciduous both during the El Niño phenomenon and in normal

years.
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• Group 3: Short completely deciduous period (�1 months) both during the El Niño phenom-

enon and in normal years but with a longer deciduous period (�6 months) in the El Niño

phenomenon.

• Group 4: Incompletely deciduous in the usual season. By contrast, in the El Niño phenome-

non, the leaf phenology is completely deciduous for a short period (�3 months).

• Group 5: Incompletely deciduous in the usual season. By contrast, in the El Niño phenome-

non, leaf phenology is completely deciduous for a long period (�6 months).

Lag time analysis between the microclimate data and the leaf phenology covering severe

drought versus normal seasons. In general, leaf phenology is highly sensitive to climate fac-

tors and climate factors lead the phenological change. However, the phenology responds to

various climate factors with apparent and different lag time [49]. Considering the lag time

effects is quite important for better understanding of vegetation-climate interaction and devel-

opment of the models [49–52]. The results of lag time analysis between leaf phenology patterns

and microclimate data are visualized as a heatmap. Fig 7 provides an example. The figure

shows the relationship between the leaf phenology of L. coromandelica which was clustered

into group 1 and the minimum temperature. The heat map shows that L. coromandelica has a

high correlation after the minimum temperature lasting for one month. Therefore, we are able

Table 3. Clustering results of 12 species obtained by considering each tree based on SOM compared with other algorithms [14].

Species Name Self-Organizing Map Hieratical Clustering K-Mean Gaussian Mixture Model R. Kaewthongrach

et. al [12]

Group number Number of

trees (%)

Group number Number of

trees (%)

Group number Number of

trees (%)

Group

number

Number of

trees (%)

Group number

L.

coromandelica
1 100% 1 100% 1 100% 1 100% 1

D. obtusifolius 2 97.14% 2 95.71% 2 94.28% 2 91.30% 2

E. tomentosus 2 100% 2 94.44% 2 86.96% 2 98.57% 2

L. glutinosa 3 75% 3 75% 3 100% 5 86.96% 5

C. oblongifolius 3 78.26% 3 73.91% 3 50% 2 75% 5

Shorea
siamensis

3 95.31% 3 89.06% 5 54.34% 3 58.92% 3

Sindora
siamensis

3 100% 3 100% 3 100% 2 100% 3

P. emblica 3 100% 3 100% 5 87.50% 3 46.88% 3

S. obtuse 3 76.47% 3 70.59% 5 89.06% 2 100% 5

X. xylocarpa 3 100% 3 100% 5 100% 3 80% 3

E. succirubrum 4 87.50% 4 100% 4 52.94% 4 62.50% 4

S. roxburghii 5 97.14% 5 86.95% 2 100% 2 50% 5

Average

number of

trees (%)

92.24% Average

number of

trees (%)

90.47% Average

number of

trees (%)

84.59% Average

number of

trees(%)

78.08%

https://doi.org/10.1371/journal.pone.0255962.t003

Table 4. The results of internal validation by using the SDbw validity index [14].

Clustering Algorithms SDbw index

Self-organizing map 0.772

Kmean 0.780

Hieratical Clustering 0.787

Gaussian Mixture Model 0.829

https://doi.org/10.1371/journal.pone.0255962.t004
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to conclude that L. coromandelica adapted themselves following the one-month minimum

temperature. The detailed results of the lag time analysis are shown in S2 Fig in S2 Appendix.

Table 5 shows the time relationship between each group of the leaf phenology patterns and

the microclimate data derived from the cross-correlation technique. L. coromandelica was

clustered into the 1st group and D. obtusifolius and E. tomentosus were clustered into the 2nd

group. These species do not adapt their leaf phenology to follow rainfall and soil moisture.

Fig 6. The five main leaf phenology patterns clustered by SOM [14]. The shades of grey represent for the average

amount of mature leaf phenology. The darker greys represent more mature leaves.

https://doi.org/10.1371/journal.pone.0255962.g006

Fig 7. Heatmap of cross-correlation between the 1st group of leaf phenology patterns and the minimum temperature. Number in each

cell is a correlation value between row and column. The color in each cell represents the correlation value, range between -1 to 1. The dark

blue color represents the highest positive correlation (1), White represents no correlation (0), and Dark red represents the highest negative

correlation (-1). The threshold color column shown in the righthand side represent the level of correlation value. The cells that have black

border represent the highest correlation between leaf phenology and minimum temperature.

https://doi.org/10.1371/journal.pone.0255962.g007
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However, they adapt themselves to follow Tmin and photoperiod in different periods. On the

other hand, the tree species that were clustered into Group 3 (L. glutinosa, C. oblongifolius,
Shorea siamensis, Sindora siamensis, P. emblica, S. obtuse, X. xylocarpa), Group 4 (E. succiru-
brum) and Group 5 (S. roxburghii) adapt themselves to follow rainfall and soil moisture. As

most of the dominant species in the study area [12] were clustered into Group 3, soil moisture

and rainfall can be considered as the key driving factors of leaf phenology patterns in this forest

ecosystem. The relationship between the litterfall data at the community level and the micro-

climate resembles the leaf phenology pattern in Group 3. Furthermore, the results show that

relationships between the leaf phenology in DDF and Tmax, VPD, and PAR are negative. That

is, mature leaf phenology increases when Tmax, VPD, and PAR decrease and vice versa. On

the other hand, while the mature leaf phenology decrease, Tmax, VPD and PAR are increase.

After comparing the results from Table 5 with the average of the leaf phenology pattern in

DDF in Fig 6, we found that the result from Table 5 supports the clustering of leaf phenology

at the species level based on SOM algorithms. The results from Fig 6 and Table 5 show that the

leaf phenology patterns in Group 1 and Group 2 do not change in the severe drought period

because neither group is sensitive to rainfall nor soil moisture, but they both are sensitive to

Tmin and photoperiod. As the duration of day time in Thailand is not significantly different in

each season even during the El Niño phenomenon, the leaf phenology the first group and the

second group do not change during the El Niño phenomenon. On the other hand, the leaf phe-

nology pattern in Groups 3, 4 and 5 are sensitive to rain and soil moisture in different periods.

Therefore, the El Niño occurrence in 2015/2016 caused their leaf phenology to become

completely deciduous for a longer period as a result of the delay of rainfall. Moreover, the

result from the Table 5 shows that the species that fall into the incompletely deciduous leaf

phenology pattern include Group 2, Group 4, and Group 5, which adapt themselves simulta-

neously with Tmax, VPDmax and PAR. Nevertheless, the result shows that the phenology of E.

succirubrum in Group 4 and S. roxburghii in Group 5 are quite similar to each other. More-

over, the periods during which E. succirubrum and S. roxburghii respond to the microclimate

are very similar. Hence, the leaf phenology of E. succirubrum and S. roxburghii can be consid-

ered as falling into the same group.

Litterfall prediction model with machine learning techniques. Litterfall phenology was

predicted by using microclimate data. LSTM was applied to create a prediction model. The

RMSPE was employed to evaluate the performance of the prediction model. Table 6 shows the

performance results of the litterfall phenology prediction model based on LSTM compared

with other state-of-the-art approaches including ANN, ARIMAX, Regression Tree, and Linear

Regression. Table 6 also compares the performance results with two training data sets, the

Table 5. The lag time between each leaf phenology pattern and microclimate.

Rainfall Soil moisture Tmin Photoperiod Tmax VPDmax PAR

Litterfall +1 0 +2 +3 -2 -1 -2

1st Group 0 0 or -1 +1 +2 -2 -2 -2

2nd Group 0 0 or -1 +1 +3 0 0 0 or -1

3rd Group +1 0 +1 +3 -1 or -2 -1 -1

4th Group +1 0 or +1 +1 +3 -1 0 -1

5th Group +1 0 or +1 +2 +3 -1 0 0

“+” means the changes of the leaf phenology pattern are detected after the changes of microclimate variables, “-”means the changes of the leaf phenology pattern are

detected before the changes of microclimate variables. Number 1–3 represents the number of months lag between the leaf phenology change and the microclimate

change. Number 0 mean leaf phenology patterns change at the same time as with microclimate.

https://doi.org/10.1371/journal.pone.0255962.t005
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original dataset and the shifted dataset. The shifted dataset was derived from the lag time anal-

ysis process. As can be seen from columns 3 and 4 in Table 6, most of the models that used

shifted parameters based on the lag period from the cross-correlation analysis approach as

input factors produce better performance than those that used the original parameters. Only

the result from ARIMAX produce a lower average and minimum RMSPE using the original

parameters than shifted parameters as shown in row 3 in Table 6. Linear regression, which was

the least accurate approach based on RMSPE, was slightly better with the original parameters

than the shifted parameters as shown in row 5 in Table 6. As indicated in the underlined

RMSPE in columns 3 and 4, LSTM provides better results than other approaches for almost

every metric except the minimum RMSPE, with both the original and the shifted parameters.

Furthermore, the values of the mean, the minimum, and the maximum of RMSPE are not

markedly different. The best result of the litterfall prediction model is from the LSTM

approach using shifted parameters as an input factor which has a mean RMSPE equal to

12.06%. This is an improvement of more than 2% over the non-shifted data, which produces a

mean RMSPE of 14.35%.

Discussion

Understanding of the relationship between the behavior of each tree species and climate in the

tropical dry forest is one of the challenges in forest ecological studies. There are many tree spe-

cies in the tropical dry forest that have different characteristic phenologies, meaning that they

respond differently to the climate. In this research, the behavior of 12 species in DDF with

respect to microclimate was investigated by applying a machine learning approach that is suit-

able to predict sequence data. Due to the variety of characteristics of leaf phenology in the

observed data, SOM was applied to reduce the complexity from 12 species into 5 main groups.

The experimental results have shown that SOM provides the best clustering performance

Table 6. The performance of litter fall prediction models as evaluated by RMSPE.

Algorithms Stat Original Parameters Shifted Parameters

LSTM Mean 14.35 12.06

Min 12.59 11.50

Max 15.32 12.51

SD 1.03 0.40

ANN Mean 17.04 16.15

Min 16.22 15.06

Max 18.77 18.01

SD 1.04 1.33

ARIMAX Mean 23.26 24.79

Min 17.01 18.56

Max 30.49 29.48

SD 5.07 4.56

Regression Tree Mean 23.32 22.56

Min 17.63 9.69

Max 29.01 30.72

SD 4.58 8.08

Linear Regression Mean 16.74 16.67

Min 10.74 10.46

Max 21.08 21.21

SD 3.85 4.28

https://doi.org/10.1371/journal.pone.0255962.t006
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when compared with other state-of-the-art algorithms. In addition, the results in this research

were also compared with the results from previous research [12] as shown in Table 3, indicate

that groups 1, 2 and 4 in the last column of Table 3 were clustered in the same way. However,

group 3 and 5 were clustered differently. L. glutinosa, C. oblongifolius, and S. obtuse in group 3

in this research were clustered into group 5 in [12]. The reason that these 3 species were

grouped into group 5 in the last column of Table 3 is due to the fact that the average phenology

of 3 species, which was used as clustering input in the last column of Table 3, is more similar

to group 5 than group 3. However, when considering the information of every tree, the num-

ber of trees that were clustered in group 3 is 75%, 78.26%, and 76.47% respectively in the SOM

algorithm. These results show that the clustering of leaf characteristics for each species should

consider each tree individually. This permits extraction of more specific and informative

results than the average phenology data.

The clustering results from SOM were used as input data for lag time analysis to improve

our understanding of response of species groups to climate drivers. In this part, litterfall data

was used to study how the DDF in the study area responds to the microclimate at the commu-

nity level. The results show that the cross-correlation approach can explain how different spe-

cies adapt themselves to microclimate. Even though the correlation value between rainfall and

leaf phenology is not high, most of the tree species including L. glutinosa, C. oblongifolius, S.

siamensis, Sindora siamensis, P. emblica, S. obtuse, X. xylocarpa, E. succirubrum, S. roxburghii
adapt themselves to follow rainfall and soil moisture. A possible explanation for the low corre-

lation between rainfall and leaf phenology is that rainfall data are highly variable while change

in leaf phenology is a slow process.

Because this study used the information covering both normal and severe drought seasons,

it can examine different drought-related patterns in each tree species. The results produced

five different groups of tree species. For two groups, a precipitation deficit apparently does not

affect their behavior. However, in both severe drought and general dry season, one group is

completely deciduous with a long duration and another group is incompletely deciduous. The

next group is completely deciduous for approximately one month in usual dry season but has

longer period, up to four months, during a severe drought event. Furthermore, in the normal

dry season the remaining two groups are incompletely deciduous but completely deciduous

during the El Niño phenomenon. The former group has deciduous period in El Niño phenom-

enon shorter than the latter group.

The cross-correlation approach describes how the leaf phenology patterns differ from each

other. The results support the hypothesis of Hernández et al. and Kaewthongrach et al. [12, 15]

which states that most phenological changes in dry tropical forests are caused by three leading

factors: seasonal variation in rainfall, seasonal variation in soil moisture and temperature and

photoperiod. In our results, the leaf phenology of the first and second groups are affected by

minimum temperature and day length more than rainfall which corresponds to the study by

[53, 54]. In addition, because most species in the study area are in the third group, which is

affected by El Niño, the amount of litterfall was increased during El Niño which created severe

drought conditions. However, the experimental results have not been able to clearly explain

the behavior of trees at the species level because there may be many parameters in the ecosys-

tem that affect the phenology of trees. In this research, we present the facts obtained from

experimental results that explain the behavior of trees using mathematical techniques, based

on the collected leaf phenology and microclimate data, and these points need further study

into the details.

The results from lag time analysis tended to improve the performance of the prediction

model. The LSTM approach which provides the best solution overall, improves its mean

RMSPE value from 14.35% to 12.06% when time-shifted data are used as input.
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Our research enables us to gain an insight into the behavior of each species cluster in DDF.

The results from our study have some implications. Litterfall seasonality is one of the charac-

teristics that represents the behavior of trees at the community level. During the dry period,

the litterfall on the forest floor can serve as fuel for forest fires. Therefore, the litterfall predic-

tion model can be used for wildfire pevention and management as well as for afforestation and

reforestation for sustainable land management.

Conclusions

The goal of this research was to better understand the behavior of each tree species in the sec-

ondary dry dipterocarp forest in response to climate in both usual season and El Nino phe-

nomenon. Recognizing the biodiversity of DDF, we used SOM to cluster 12 species of trees

from DDF into groups based on leaf phenology patterns. Then, we studied the characteristics

of leaf phenology patterns in response to microclimate. Microclimate variables included rain-

fall, soil moisture, photosynthetically active radiation (PAR), maximum temperature (Tmax),

minimum temperature (Tmin), and maximum of Vapor pressure deficit (VPDmax). We ana-

lyze the lag time between microclimate data, leaf phenology patterns and litterfall data by a

cross-correlation approach to get response time data. Then, the response time data is used as

an input of LSTM to create the prediction model that will predict the amount of litterfall

according to the microclimate data.

The results show that SOM is the most suitable clustering appraoch for leaf phenology data

compared to other state-of-the-art approaches as it provides the lowest SDbw index and the

highest coverage of individual data points. The 12 species in DDF were clustered into 5 main

groups according to their leaf phenology patterns which respond differently to microclimate

data. The results also showed that leaf phenology patterns of the dominant species in DDF,

group 3, was affected by the El Niño phenomenon. However, there are some species in groups

1 and 2 whose phenology is related to day length and minimum temperature rather than scant

rainfall caused by El Niño phenomenon.

Furthermore, we found that an LSTM-based model was effective for predicting litterfall

based on microclimate data. Since the leaf phenology and microclimate data are related in

time, incorporating the response lag into the litterfall prediction model improved that model’s

performance.

Supporting information
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S2 Appendix. The detail results of lag time analysis.

(PDF)

Acknowledgments

We would like to thank for all the suggestions of leaf phenology from all specialist in The

Joint Graduate School of Energy and Environment and Center of Excellence on Energy

Technology and Environment, KMUTT.

Author Contributions

Conceptualization: Taninnuch Lamjiak, Rungnapa Kaewthongrach, Amnat Chithaisong.

Formal analysis: Taninnuch Lamjiak, Booncharoen Sirinaovakul, Jumpol Polvichai.

PLOS ONE Characterizing and forecasting the responses of tropical forest leaf phenology to El Nino by ML algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0255962 August 26, 2021 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255962.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255962.s002
https://doi.org/10.1371/journal.pone.0255962


Methodology: Taninnuch Lamjiak.

Project administration: Taninnuch Lamjiak.

Resources: Rungnapa Kaewthongrach, Phongthep Hanpattanakit.

Supervision: Booncharoen Sirinaovakul, Amnat Chithaisong, Jumpol Polvichai.

Validation: Taninnuch Lamjiak, Rungnapa Kaewthongrach, Booncharoen Sirinaovakul,

Amnat Chithaisong, Jumpol Polvichai.

Visualization: Taninnuch Lamjiak.

Writing – original draft: Taninnuch Lamjiak.

Writing – review & editing: Rungnapa Kaewthongrach, Booncharoen Sirinaovakul, Amnat

Chithaisong, Jumpol Polvichai.

References
1. Waring RH, Running SW. Forest Ecosystem Analysis at Multiple Time and Space Scales. Forest Eco-

systems. 2007:1–16. https://doi.org/10.1016/B978-012370605-8.50005–0

2. Lee DK. Challenging forestry issues in Asia and their strategies. The future of forests in Asia and the

Pacific: outlook for 2020. 2009:65–76.

3. Basso E, Compagnucci R, Fearnside P, Magrin G, Marengo J, Moreno AR, et al. Effects of Changes in

Climate Variables on Health. Climate change 2001: impacts, adaptation, and vulnerability. 2002.

4. Kara A, Juan MD, Maria GG, Catherine MH, David M, Camila P, et al. Will seasonally dry tropical forests

be sensitive or resistant to future changes in rainfall regimes. Environmental Research Letters. 2017;

12(2):1–15.

5. L’Heureux ML, Takahashi K, Watkins AB, Barnston AG, Becker EJ, Di Liberto TE, et al. Observing and

predicting the 2015/16 El Niño. Bulletin of the American Meteorological Society. 2017; 98(7):1363–82.

https://doi.org/10.1175/BAMS-D-16-0009.1

6. Loo YY, Billa L, Singh A. Effect of climate change on seasonal monsoon in Asia and its impact on the

variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers. 2015; 6(6):817–23. https://doi.

org/10.1016/j.gsf.2014.02.009

7. Kaewthongrach R, Chidthaisong A, Charuchittipan D, Vitasse Y, Sanwangsri M, Varnakovida P, et al.

Impacts of a strong El Niño event on leaf phenology and carbon dioxide exchange in a secondary dry

dipterocarp forest. Agricultural and Forest Meteorology. 2020; 287:107945. https://doi.org/10.1016/j.

agrformet.2020.107945

8. Walker DI, Olesen B, Phillips RC. Reproduction and phenology in seagrasses. Global Seagrass

Research Methods. 2001:59–78. https://doi.org/10.1016/B978-044450891-1/50004-9

9. Xiao X, Hagen S, Zhang Q, Keller M, Moore B. Detecting leaf phenology of seasonally moist tropical for-

ests in South America with multi-temporal MODIS images. Remote Sensing of Environment. 2006; 103

(4):465–73. https://doi.org/10.1016/j.rse.2006.04.013

10. Doughty CE, Goulden ML. Seasonal patterns of tropical forest leaf area index and CO2 exchange. jour-

nal of Geophysical Research. 2008; 113: G00B06. https://doi.org/10.1029/2007JG000590

11. Diem PK, Pimple U, Sitthi A, Varnakovida P, Kaewthongrach R, Chidthaisong A. Responses of tropical

deciduous forest phenology to climate variation in Northern Thailand. Conference: International Confer-

ence on Environmental Research and Technology (ICERT 2017). 2017:340–5.

12. Kaewthongrach R, Vitasse Y, Lamjiak T, Chidthaisong A. Impact of severe drought during the strong

2015/2016 El Nino on the phenology and survival of secondary dry dipterocarp species in Western Thai-

land. Forests. 2019; 10(11). https://doi.org/10.3390/f10110967

13. Pires JPA, Marino NAC, Silva AG, Rodrigues PJFP, Freitas L. Tree community phenodynamics and its

relationship with climatic conditions in a lowland tropical rainforest. Forests. 2018; 9(114):1–18. https://

doi.org/10.3390/f9030114

14. Lamjiak T, Kaewthongrach R, Polvichai J, Sirinaovakul B, Chidthaisong A. Leaf characteristic patterns

clustering based on self-organizing map. 2019 IEEE Symposium Series on Computational Intelligence

(SSCI), Xiamen, China. 2019: 901–8. https://doi.org/10.1109/SSCI44817.2019.9003082

PLOS ONE Characterizing and forecasting the responses of tropical forest leaf phenology to El Nino by ML algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0255962 August 26, 2021 18 / 20

https://doi.org/10.1016/B978-012370605-8.50005%26%23x2013%3B0
https://doi.org/10.1175/BAMS-D-16-0009.1
https://doi.org/10.1016/j.gsf.2014.02.009
https://doi.org/10.1016/j.gsf.2014.02.009
https://doi.org/10.1016/j.agrformet.2020.107945
https://doi.org/10.1016/j.agrformet.2020.107945
https://doi.org/10.1016/B978-044450891-1/50004-9
https://doi.org/10.1016/j.rse.2006.04.013
https://doi.org/10.1029/2007JG000590
https://doi.org/10.3390/f10110967
https://doi.org/10.3390/f9030114
https://doi.org/10.3390/f9030114
https://doi.org/10.1109/SSCI44817.2019.9003082
https://doi.org/10.1371/journal.pone.0255962


15. Valdez-Hernández M, Andrade JL, Jackson PC, Rebolledo-Vieyra M. Phenology of five tree species of

a tropical dry forest in Yucatan, Mexico: Effects of environmental and physiological factors. Plant and

Soil. 2010; 329:155–71. https://doi.org/10.1007/s11104-009-0142-7

16. Ge Q, Wang H, Rutishauser T, Dai J. Phenological response to climate change in China: A meta-analy-

sis. Glob Chang Biol. 2015; 21(1):265–74. https://doi.org/10.1111/gcb.12648 PMID: 24895088

17. Wang H, Rutishauser T, Tao Z, Zhong S, Ge Q, Dai J. Impacts of global warming on phenology of spring

leaf unfolding remain stable in the long run. International Journal of Biometeorology. 2017; 61:287–92.

https://doi.org/10.1007/s00484-016-1210-3 PMID: 27464955
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