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Abstract: The performance of quasi-spherical gold nanoparticles (GNPs) on the generation of reactive
oxygen species (ROS) to cause cell damage, as irradiated by a two-photon laser, is studied. In this
mechanism, hot electrons are generated from GNPs as irradiated by the two-photon laser, reacting
with the molecules in the medium to produce ROS. We used laser scanning confocal microscopy
with a low-fluence femtosecond Ti:Sapphire laser of 800 nm to observe the generated ROS in A431
cells, which were incubated with GNPs in advance. Subsequently, the cell morphology, cytoskeleton,
and viability were investigated. In comparison with the control (no GNPs), the expression of ROS in
these GNP-treated cells was enhanced after irradiation by the two-photon laser. Additionally, the
disruption of cytoskeletons and the follow-up apoptosis of these GNP-treated cells are significantly
increased as the number of laser shots increases. Moreover, we used N-acetyl-L-cysteine (NAC), an
antioxidant, to inhibit the formation of ROS, to clarify whether the cytoskeletal disruption is caused
by ROS rather than photothermal effects. Our results show that after two-photon irradiation, the
ROS expression in these cells treated with GNPs plus NAC was significantly reduced. In addition,
the cytoskeletal damage of these cells treated with GNPs and NAC was less than that of those treated
with GNPs but without NAC; their cell viability after three days was almost the same with the control.
These results illustrate that the induced ROS from the two-photon excited GNPs is the main cause of
cell damage. The study may pave a way for the use of GNPs as a photosensitized therapeutic agent
for two-photon photodynamic therapy on tumor treatment.

Keywords: reactive oxygen species; gold nanoparticles; two-photon; hot electrons; cell damage; laser
scanning confocal microscopy; cytoskeleton disruption; apoptosis; blebbing; NAC

1. Introduction

Gold nanoparticles (GNPs) attract attention and are widely used in biomedical appli-
cations due to their specific photothermal properties, good biocompatibility, and simple
surface modification [1–3]. The photothermal effect is due to the surface plasmon res-
onance (SPR) of GNPs, which is the collective motion of free electrons interacting with
photons; the energy of photons in the region of visible light to near infrared (NIR) can be
converted into heat. In recent decades, numerous of methods with different surfactants
and reduction reagents were proposed to fabricate GNPs of various shapes and sizes for
tuning the SPR property. Several biomedical applications of photothermal effect of GNPs
were developed, e.g., hyperthermia therapy. Through the endocytosis of cells, the uptake
GNPs can be accumulated in vesicles of cytoplasm. Under continuous wave (CW) laser
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irradiation, the photothermal effect of GNPs occurs at a localized area in the cytoplasm to
induce damage to organelles. For example, blebbing of the membranes of cells treated with
GNPs was observed [4]. If a high-power CW laser is used to irradiate cells treated with
GNPs, the generated heat damages proteins and other indispensable enzyme structures
in the vicinity of GNPs, which leads to cell necrosis [5,6]. In addition, the apoptosis of
these GNP-treated cells irradiated by a nanosecond-pulsed laser was also reported [7].
This is because that the transient heat around GNPs induces nanobubbles to disrupt the
cytoskeletons, leading to cell lysis [7]. On the other hand, a mild irradiation of GNP-treated
cells with a low-power laser may promote cell differentiation [8]. Hence, the cellular fate
can be different depending on the type of laser, fluence and irradiation time.

Recently, using the two-photon effect of femtosecond NIR lasers to generate reactive
oxygen species (ROS) in media or tissue has drawn a lot of attention [9,10]. Two-photon
excitation by a femtosecond laser with ultra-short pulses to generate hot electrons is a
nonlinear effect. Normally, the efficiency of a femtosecond NIR laser (e.g., 800 nm) is
higher than that of a CW laser (e.g., 405 nm). The ROS, such as hydroxyl radicals (OH·)
and superoxide anion O2

−, is essential in biological systems to maintain a stable redox
state. However, excessive ROS could damage cellular organelles (e.g., mitochondria and
cytoskeletons), and induce blebbing and even apoptosis and necrosis [11–13]. Moreover,
the ROS induced by two-photon excitation can be enhanced via the SPR of GNPs [14–23].
The mechanism is that hot electrons can be generated from GNPs by irradiation with a
two-photon laser beam, which then react with the molecules in the medium to produce
ROS [24]. Numerous studies have demonstrated that GNPs or gold nanorods, similar to
photosensitizers, can enhance apoptosis of cancer cells in photodynamic therapy [25–27].
Since NIR light is in the transparency window of biological tissue, an NIR laser is preferred
for use in non-invasive photodynamic therapy. Compared to traditional photosensitizers,
GNPs have several advantages, such as high photostability, good biocompatibility, low
cytotoxicity, high-efficiency in hot-electron generation, and the extra photothermal effect.
However, the disadvantage is that they are non-biodegradable. This means that if the accu-
mulated dose of GNPs is over an acceptable value, the cytotoxicity is induced to varying
degrees. The femtosecond NIR laser is a promising two-photon source for the treatment
of malignant tissues due to the deep tissue penetration and high spatial resolution [28].
Recently, several studies combining two-photon excitation with GNPs in photodynamic
therapy have shown significant progress [14–23]. For instance, Han et al. [29] reported that
dihydrolipoic acid-coated gold nanoclusters could be new photosensitizers with excellent
two-photon absorption and strong ROS generation ability. Gao et al. [30,31] concluded that
gold nanocage-PEG mediated under two-photon irradiation can produce more ROS than
under CW laser excitation. However, several studies have indicated that low concentra-
tions of ROS can promote cell proliferation and differentiation [32,33]. Thus, it is crucial
to control the dose of induced ROS in cells for different purposes. To our knowledge,
few studies investigated the detailed biomedical effects of the combination of low-power
two-photon excitation with GNPs in relation to ROS production [34,35]. Therefore, the
present work focuses on the study of GNPs excited by two photons in the generation of
ROS, and the resulting influence on cell damage (e.g., cytoskeletal disruption) and viability.

The major purpose of this paper is to study the generated ROS from GNPs on cell
damage, so that any other factors inducing cytotoxicity need to be avoided. However, the
surfactant is necessary for the synthesis of the gold nanorods and nanotriangles. Due to the
cytotoxicity of surfactants, we used the surfactant-free- and quasi-spherical GNPs rather
than gold nanorods or nanotriangles, even though they have a higher two-photon effect.
In addition, the uptake of quasi-spherical GNPs of 55 nm in size by cells is better than the
other shaped GNPs (e.g., nanostars). Additionally, a femtosecond NIR laser of was used in
our research to induce hot electrons for generating ROS by the nonlinear two-photon effect,
inducing less heat. Recently, the photodynamic therapy has been applied in the treatment
of breast cancer, particularly on multidrug-resistant cancer cells [36–38]. Therefore, our
aim is to study the feasibility of using GNPs as photosensitizer for the photodynamic
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therapy with two-photon lasers in the treatment of breast cancer. Since A431 cells (a human
epidermoid carcinoma cell line) form a kind of breast cancer cell line, we chose this cell
line for our study.

2. Materials and Methods

All chemicals used in the present study were purchased from Sigma-Aldrich Chemical
Company (St. Louis, MO, USA) unless otherwise stated. The experiments were conducted
under a laser scanning confocal microscope (LSCM) (Zeiss LSM 510 META, Germany) with
a femtosecond Ti:Sapphire laser (Mai Tai with a repetition rate of 116 MHz, Spectra Physics)
of 800-nm wavelength at 20% power of 1.5 W for irradiation. A 100× objective (NA: 1.4)
was used for scanning, where the spot size was about 4 µm2. The two-photon irradiation
was a 2D point scan in a region of 90 µm × 90 µm with 1024 × 1024 points, where the
pixel time of laser irradiation was 1.6 µs at each point. When the output power through all
optical lenses was 70%, the average fluence was 8 J/cm2 at each point.

2.1. Preparation and Characterization of GNPs

The method of synthesizing quasi-spherical GNPs by reducing a gold salt by citrate
was used based on a method in a previous study [2]. Briefly, 100 µL of 0.5 M HAuCl4
and 120 µL of 1% sodium citrate were added to 200 mL of deionized water and boiled for
15 min. The average size of the GNPs synthesized in the study was 55.08 ± 3.21 nm, which
was determined by randomly selecting 100 particles in transmission electron microscopy
(TEM) images, and the absorption spectrum showed a major SPR adsorption peak at
536 nm (Supplement Figure S1). The concentrations of GNP-colloids were measured via an
inductively coupled plasma atomic emission spectroscopy (ICP-OES).

2.2. Cell Culture

In this study, A431 cells (a human epidermoid carcinoma cell line, BCRC 60161) were
used to investigate the biological effect of the induced ROS from two-photon excited
GNPs. The culture medium of A431 cells was Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum and 1% antimicrobial agent. These cells were
maintained at 37 ◦C in a humidified atmosphere with 5% CO2, and we refreshed the
medium once every 3 days.

2.3. Optical Imaging of Cells

Cytoskeleton- and viability staining were used to investigate the effect of ROS induced
from GNPs interacting with a two-photon laser on cells. Hoechst 33342 and Texas Red-X
phalloidin (Thermo Fisher Scientific, Waltham, MA, USA) were used to stain the nucleus
and the F-actin cytoskeleton, respectively, for the image of LSCM. In addition, cell viability
was determined by a fluorescent dye kit (LIVE/DEAD® Viability/Cytotoxicity Kit L-3224;
Molecular Probes, Carlsbad, CA, USA) according to the manufacturer’s protocol. In brief,
after laser irradiation, 200 µL of dye reagent containing 1 µM calcein AM and 2 µM
ethidium homodimer-1 were added in the cell medium at 37 ◦C for 20 min. After being
irradiated by a femtosecond laser with 20% power, the cells were washed three times with
phosphate-buffered saline (PBS), then fixed in a 4% paraformaldehyde solution for 15 min
at room temperature, and finally treated with 0.1% Triton X-100 for 5 min. The samples
were blocked with 1% bovine serum albumin (BSA) in PBS for another 30 min to reduce
nonspecific background staining. After washing out the BSA solution, the samples were
incubated with Texas Red-X phalloidin for 20 min. The samples were then incubated with
Hoechst 33342 solution for 5 min to stain the DNA in the nuclei of these cells. The images
of the samples were then observed under an LSCM (Zeiss LSM 510 META) after being
washed with PBS several times.
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2.4. Detection of ROS Generation

A DCFDA cellular ROS assay kit (Abcam, Cambridge, MA, USA) was used to label
ROS. In brief, after laser irradiation, the samples were washed three times with PBS, and
then the DCFDA solution was added to the cell medium under low light conditions and
incubated for 20 min. The samples were then incubated with Hoechst 33342 solution for
5 min, followed by washing with PBS. The samples were then observed under an LSCM
(Zeiss LSM 510 META); the fluorescence intensity of ROS kit was semi-quantified by Image
J software to represent the amount of generated ROS.

To further clarify the relationship between biological effect and the dose of ROS
generated from the two-photon excited GNPs, N-acetyl-L-cysteine (NAC), which is an
inhibitor of ROS [39,40], was added to the cell medium for 1 h before laser irradiation.

2.5. Statistical Analyses

All experiments were conducted in independent triplicates and, each time, three
samples were tested in parallel. Statistical analyses were performed using the SPSS v.17
software package. The results of statistics were expressed as the mean ± SDs. A nonpara-
metric test was used to analyze the differences between different groups; p < 0.05 was
considered to be statistically significant.

3. Results and Discussion

Numerous factors, such as size, surfactant, surface charge and concentration of GNPs,
cell type, and GNP treatment time, affected the cytotoxicity. Therefore, we characterized the
GNPs and determined the optimal culture conditions before conducting laser irradiation.
Because cells generate ROS after the uptake of GNPs, the concentration of GNP colloid and
incubation time must be well controlled to prevent the cell apoptosis induced by high ROS
levels. Based on our few preliminary studies (Supplementary Figure S2), cells incubated
with 35-ppm GNPs for 3 h produced an optimal condition to investigate the responses of
cells to the generated ROS from two-photon-excited GNPs.

In this study, we used a two-photon laser of 800 nm with 20% power for irradiation;
the average fluence at each laser spot was 8 J/cm2. As shown in Figure 1a, we observed
the membrane blebbing of these GNP-treated cells after two-photon irradiation of 10, 20,
and 30 scans from the bright-field images. The green spots are the scattering expression
from GNPs accumulated in vesicles through organelle fusion [3]. In fact, the bare GNPs
are dispersed in the medium (DMEM). However, the absorption spectrum of GNPs in the
medium (DMEM) becomes broadened in comparison with that in water, and the SPR peak
is red-shifted to 565 nm (Supplementary Figure S1c). This change in optical property could
be attributed to the degree of aggregation of GNPs in the medium (DMEM) and the higher
refractive index of the medium relative to water. Although the GNPs are internalized
individually by cell, these internalized GNPs are eventually aggregated in vesicles through
the organelle fusion after the cellular endocytosis. This natural aggregation of GNPs in
cellular vesicles makes the surface plasmon resonance red-shifted and broadband [41]
Therefore, the two-photon effect of femtosecond NIR laser on these clustered GNPs with
a small gap between GNPs in vesicles is enhanced. In contrast, there is no blebbing in
the morphology of the A431 cells without GNPs after irradiation of 10, 20 and 30 scans
(see Figure 1b). We deduced that this phenomenon of blebbing was due to the induced
ROS from the two-photon excited GNPs causing oxidative stress and leading to damage
to the cytoskeleton [29]. To confirm this hypothesis, we also detected the amount of ROS
generated at different numbers of two-photon irradiation scans. Figure 2 shows that the
ROS amount increases with the number of irradiations for both A431 cells with and without
GNP treatment. Moreover, we found that the expression of ROS for these GNP-treated cells
is more significant than the untreated cells at 20 and 30 scans by comparing Figure 2a with
Figure 2b. Using Image J to quantify ROS generation (Figure 2c), we also found that the
ROS amount in GNP-treated cells increased 2.3-fold and 3.6-fold after irradiation of 20 and
30 scans compared to that of the control sample, respectively. Our results indicated that
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GNPs can enhance the generation of ROS as irradiated by two-photon laser; the amount
of ROS increases with the increase in scan number for two-photon irradiation. ROS are
essential in biological systems; the specific-level maintenance of ROS can promote cell
proliferation and differentiation. However, if the concentration of ROS in a cell is too
high, it may induce oxidative damage of DNA, lipids, and proteins [42]. For example,
the continuous F-actin and microfilaments may be broken into several segments by ROS,
under high oxidation pressure. Therefore, the cytoskeletal structure and cell cortex can be
damaged by excessive ROS. This damage may cause cellular blebbing, and then increase
membrane permeability to cause an unbalanced ionic gradient in cells, finally leading to
apoptosis or even necrosis [43,44]. Moreover, we used LSCM image to study the integrity
of the cytoskeletons. The images of Figure 3a further indicated that the cytoskeletons
of these GNP-treated cells were significantly broken after the two-photon irradiation.
The disruption of the cytoskeletons was more serious with the increasing scan numbers
of irradiation. The results of cytoskeletal damage were consistent with the amounts of
generated ROS, which broke the F-action filaments of the cytoskeletons and cortexes into
shorter segments to cause membrane blebbing (see Figures 1a and 3a). In contrast, the
morphology of the untreated cells’ cytoskeletons after 30 scans of irradiation was relatively
continuous, as shown in Figure 3b.
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Figure 1. Bright-field images of (a) GNP-treated A431 cells irradiated by two-photon laser with 10, 20, and 30 scans, and
(b) the control group (without GNPs). The green spots are the scattering expression from GNPs accumulated in vesicles
through organelle fusion. Scale bar: 10 µm. The images of GNP-treated cells show the blebbing at cellular membranes.

Furthermore, we clarified that the above-mentioned cell damage (disruption of the
cytoskeleton) was mainly caused by ROS rather than the photothermal effect of GNPs.
Thus, we added NAC (5 mM or 10 mM) in the medium to inhibit the ROS induced from
the two-photon excited GNPs. NAC is an antioxidant that acts as a scavenger of ROS. The
results, shown in Figure 4, illustrate that the expression of ROS is significantly reduced
in these NAC-treated cells with and without GNPs after the two-photon irradiation. As
we raised the concentration of NAC (e.g., 10 mM), the inhibiting effect on ROS increased.
For the GNP-treated cells irradiated by a two-photon laser for 30 scans, the expression
of the induced ROS was clearly inhibited by NAC (Figure 4a–d). In addition, these cells’



Nanomaterials 2021, 11, 1180 6 of 10

membrane integrity was good, with less blebbing. As shown in Figure 5a,b, there was less
cytoskeletal disruption in the cells treated by GNPs and NAC (5 mM and 10 mM) after
two-photon laser irradiation, compared to those cells only treated by GNPs but without
NAC (Figure 5c). The more the NAC, the less the cytoskeletal disruption. After three
days, the cellular viability of these NAC-treated cells irradiated by a two-photon laser
was almost the same as the control (without the treatment of GNPs and NAC), as shown
in Figure 6a,b. In contrast, the cell viabilities of those GNP-treated cells without NAC
were the lowest compared to the other cells after two-photon irradiation for 1, 2, and
3 days (Figure 6c). Based on these results, we concluded that the generated ROS from
two-photon excited GNPs was the major cause of cell damage and apoptosis, rather than
the photothermal effect.
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Figure 2. Fluorescence images of LSCM for ROS expression. Images of (a) A431 cells treated with GNPs irradiated by
a two-photon laser with 10, 20, and 30 scans, and (b) the control group (cells not treated with GNPs). (c) Quantitative
comparison of generated ROS of (a,b). Scale bar: 50 µm. The kit for detecting ROS is DCFDA (red fluorescence), and the kit
for staining nuclei is Hoechst 33342 (blue fluorescence).
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Figure 3. Fluorescence images of LSCM for cellular cytoskeleton. Images of (a) A431 cells treated with GNPs irradiated by
two-photon laser with 10, 20, and 30 scans, and (b) the control group (cells not treated with GNPs). Texas Red-X phalloidin
was used to label cytoskeletal F-actin (red), and Hoechst 33342 was used to stain nuclei (blue). Scale bar: 10 µm.
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Figure 5. Fluorescence images of cellular cytoskeleton (LSCM) to show the inhibiting effect of NAC on ROS. Images
of GNP-treated A431 cells treated with NAC of (a) 5 mM and (b) 10 mM irradiated by two-photon laser with 30 scans.
(c) Image of GNP-treated A431 cells without NAC. Texas Red-X phalloidin was used to label cytoskeletal F-actin (red), and
Hoechst 33342 was used to stain nuclei (blue). Scale bar: 10 µm.
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Figure 6. Fluorescence microscopy images of live (green)/dead (red) staining of A431 cells irradiated by two-photon laser
after 3 days. Images of (a) GNP-treated cells with or without 10-mM NAC, and (b) the control group (not treated with
GNPs) with or without 10-mM NAC. (c) The cell viability versus days of post-irradiation (0, 1, 2, 3).

4. Conclusions

In this paper, we studied the enhancement effect of quasi-spherical GNPs, irradiated
by a two-photon laser, on the generation of ROS. The excessive ROS can be used to cause
damage to cellular organelles (e.g., mitochondria and cytoskeleton), and even induce
apoptosis. The mechanism is that hot electrons generated from GNPs, irradiated by the
two-photon laser, react with the molecules in the medium to produce ROS. Through the
organelle fusion, these internalized GNPs are aggregated in vesicles of cytoplasm to make
the SPR redshifted and broadband. We used LSCM combined with a femtosecond laser
to induce ROS and observed the expression of ROS in A431 cells, which were incubated
with GNPs in advance. Subsequently, the cell morphology, viability, and apoptosis were
investigated. In particular, the cytoskeletal disruption of these cells caused by the induced
ROS was investigated. In comparison with the control (cells without GNPs), we found
that the expression of ROS in these GNP-treated cells was enhanced after the two-photon
irradiation. Additionally, the disruption of cytoskeletons and the apoptosis of these GNP-
treated cells was significantly increased, compared to the untreated cells. As to the cellular
morphology, we observed blebbing at the cellular membranes and at the giant plasma
membrane vesicle. Blebbing indicates the disruption of cytoskeletons. As we increased
the number of two-photon scans, the expression of ROS was increased; the damage to
cytoskeletons and apoptosis was also positively correlated to the number of laser shots.
Moreover, we used NAC, an antioxidant, to inhibit the formation of ROS. Our results show
that after the two-photon irradiation, the expression of ROS in cells treated by GNPs and
NAC was significantly inhibited. In addition, cytoskeletal damage and apoptosis after three
days were significantly reduced. When we increased the dose of NAC, the cytoskeletal
damage and the apoptosis rate of these cells were further reduced. Our results clarify that
the cytoskeleton disruption and cellular apoptosis are due to the induced ROS from GNPs,
rather than the photothermal effect of GNPs. Recently, two-photon photodynamic therapy
has become an important cancer treatment modality [18,29]. Due to the SPR of GNPs, the
generated hot electrons can assist the formation of ROS when irradiated by a two-photon
laser of low power. This study shows the feasibility of using GNPs as a photosensitized
therapeutic agent to enhance the efficacy of two-photon photodynamic therapy for tumor
treatment. In future, differently shaped GNPs without surfactant (e.g., protein-coated gold
nanorods), for which the efficiency of hot-electron generation is high, may be suitable for
biomedical application [45].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11051180/s1, Figure S1: Characterizations of GNPs. (a) TEM image (×100 K) of GNPs.
(b) UV-Vis absorption spectrum of GNPs in water. (c) UV-Vis absorption spectrum of GNPs in
medium (DMEM), Figure S2: Amounts of GNPs taken up by A431 cells. (a) A dark-field image
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showing A431 cells after uptake of GNPs for 3 h. The bright spots represent scattering from GNPs.
(b) The dark-field image of control (without GNPs). (c) The total amounts of GNPs which were taken
up by A431 cells after treatment with 35-ppm GNPs for 1 and 3 h. GNP concentrations as measured
by ICP-OES. (d) The cell viability of GNP-treated cells for 1 and 3 h. Data are presented as the mean
± SD (n = 9), and differences at p < 0.05 were considered statistically significant. Scale bar: 10 µm.
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