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Breast cancer ranks first in terms ofmortality and incidence rates worldwide among

women. The HER2+ molecular subtype is one of the most aggressive subtypes; its

treatment includes neoadjuvant chemotherapy and the use of a HER2 antibody.

Some patients develop resistance despite positive results obtained using this

therapeutic strategy. Objective. To identify prognostic markers for treatment and

survival in HER2+ patients. Methods. Patients treated with neoadjuvant

chemotherapy were assigned to sensitive and resistant groups based on their

treatment response. Differentially expressed genes (DEGs) were identified using

RNA-seq analysis. KEGG pathway, gene ontology, and interactome analyses were

performed for all DEGs. An enrichment analysis Gene set enrichment analysis was

performed. All DEGs were analyzed for overall (OS) and disease-free survival (DFS).

Results. A total of 94 DEGs were related to treatment resistance. Survival analysis

showed that 12 genes (ATF6B, DHRS13, DIRAS1, ERAL1, GRIN2B, L1CAM, IRX3,

PRTFDC1, PBX2, S100B, SLC9A3R2, and TNXB) were good predictors of disease-

free survival, and eight genes (GNG4, IL22RA2, MICA, S100B, SERPINF2, HLA-A,

DIRAS1, and TNXB) were good predictors of overall survival (OS). Conclusion: We

highlighted a molecular expression signature that can differentiate the treatment

response, overall survival, and DFS of patients with HER2+ breast cancer.
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Introduction

Breast cancer is a heterogeneous disease characterized by

abnormal and uncontrolled growth of malignant breast cells.

Among all types of cancer, this disease ranks first in mortality and

incidence rates in women over 25 years of age worldwide (Sung

et al., 2021). In 2000, Perou et al. reported different molecular

expression patterns in patients with breast cancer, and these

patterns were subsequently used to classify breast cancer into

distinct molecular subtypes (Perou et al., 2000; Sorlie et al., 2003).

According to this classification, cancer cells that express human

epidermal growth factor 2 (ERBB, formerly HER2) and not

estrogen receptors (ER) are identified as the HER2+ molecular

subtype, which represents 15%–30% of breast cancer patients, is

an aggressive phenotype, and a predictor of poor outcome (Ban

et al., 2020).

The treatment of HER2+ breast cancer includes the

administration of chemotherapy and trastuzumab, a

monoclonal antibody against the HER2 receptor (Abal et al.,

2003; Harbeck and Gnant, 2017; Waks and Winer, 2019).

Conventional neoadjuvant chemotherapy involves

anthracyclines followed by taxane application. Anthracyclines

work by joining DNA and suppressing the binding of DNA

polymerase, thereby preventing DNA replication (McGowan

et al., 2017). Taxanes affect mitotic spindle formation by

binding to tubulin dimers, thereby preventing the division of

tumor cells (Yardley, 2013; Harbeck and Gnant, 2017).

Furthermore, adding trastuzumab in conventional

chemotherapy helps block HER2 receptor-induced cell growth

signaling (Maximiano et al., 2016). Despite the positive results

obtained with this therapeutic strategy, some patients develop

resistance. The molecular mechanisms underlying resistance are

not fully understood; therefore, there is a lack of predictive

biomarkers that are helpful in the prognosis and prediction of

chemotherapy response (Iwamoto et al., 2020).

This study aimed to evaluate the transcriptome of HER2+

breast cancer patients and, according to their response to

chemotherapy (sensitivity or resistance), to identify

differentially expressed genes (DEGs) that could be useful in

predicting patient outcomes after neoadjuvant chemotherapy

treatment.

Materials and methods

Sample selection, chemotherapy
treatment, and study design

Patients aged 18 years and older with a diagnosis of breast

cancer, HER2+/PR-/ER-, tumor size >2 cm, and positive nodes,

candidates to receive neoadjuvant chemotherapy, and without

previous therapy against cancer were recruited for this study.

Patients with metastatic cancer, those with insufficient breast

cancer biopsy tissue for pathological analysis, or those with RNA

extraction were excluded. All participants provided written

informed consent prior to enrolment. The data were deposited

in the Gene Expression Omnibus (GEO) repository under the

number GSE162187. Samples were separated by pathologic

response into two groups: pathological complete response

(pCR) was considered the sensitive group, and those in the

non-pCR group were considered the resistant group.

Additionally, we used and analyzed data from the

GSE163882 study, and HER2+/PR-/ER-samples were selected.

The results obtained from both databases were compared.

Finally, from the TCGA breast ductal carcinoma database,

HER+/PR-/ER-breast cancer samples were selected for analysis

of overall survival.

Ethics and informed consent statements

The study was conducted in accordance with the guidelines

of the Declaration of Helsinki and the ethical standards of the

institutional and/or national research committee. This study was

approved by the Ethical and Research Committee of the Instituto

Mexicano del Seguro Social (IMSS) (number R-2013-785-061).

Informed consent was obtained from all subjects involved in the

study.

Quality control, alignment, and differential
expression

The FASTQ files were analyzed with the Flexbar software tool

version 3.5.0 (https://github.com/seqan/flexbar/releases/tag/v3.5.

0) (Dodt et al., 2012; Roehr et al., 2017) to remove Illumina

adapters and to filter reads by a Phred score >30. To quantify the
RNA-seq data, a pseudo-alignment was performed using Kallisto

software version 0.46.1 (https://pachterlab.github.io/kallisto/

download.html) (Bray et al., 2016) with the default parameters

and the GRCh38 human genome reference (GRCh38. p12). The

DESeq2 package version 1.28.1 (https://bioconductor.riken.jp/

packages/3.0/bioc/html/DESeq2.html) (Love et al., 2014) was

used for the analysis of abundance tables and the

identification of differentially expressed genes (DEGs) for

comparing resistant and sensitive samples (set as the reference

group). The Ensembl database was used for the annotation of

genes. To decrease the false discovery rate, the

Benjamini–Hochberg correction test was applied to obtain

adjusted p-values.

Enrichment and interaction analysis

We selected all DEGs (p < 0.05) obtained from

GSE162187 for analysis with the KEGG Mapper (https://www.
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genome.jp/kegg/tool/map_pathway1.html) (Kanehisa and Sato,

2020) and the DAVID v6.8 web tools (https://david.ncifcrf.gov/

home.jsp) to identify pathways implicated in treatment response.

The Panther database v.16.0 (Mi et al., 2021) web tool was

used for Gene Ontology enrichment analysis using Fisher’s exact

test and false discovery rate (FDR), with a threshold of p < 0.05,

which was considered to be significant for each of the three

categories, that is, molecular function, cellular component, and

biological process.

Gene set enrichment analysis (GSEA) was performed using

the pre-ranked DEGs list. GSEA software v4.2.2 was used for

analysis (Subramanian et al., 2005). A molecular signature

database (MsigDB v7.4) was used, taking the nine collections

(C1:C9, and H) for enrichment analysis (Subramanian et al.,

2005; Liberzon et al., 2011; Liberzon et al., 2015).

To perform an interactome analysis, the DEGs were filtered

by adjusted p-value <0.05 and analyzed using STRING-DB

v11.0 software (https://string-db.org/) (Szklarczyk et al., 2019),

the confidence score was set up at 0.7 to represent

protein–protein associations.

Principal component analysis and
heatmap representation

The geometric mean of the counts for each gene was used as a

normalization factor. Once normalized, the principal component

analysis (PCA) and heatmap representation were performed with

the prcomp package and heatmap functions, respectively, with

the default parameters in R v.4.0.2 (“Taking off Again”) using as

variables the normalized counts of the DEGs with an adjusted

p-value of <0.05.

Survival analysis

Furthermore, a database of 109 patients obtained from the

TCGA breast ductal carcinoma study with HER+/ER-/PR-was

analyzed (TCGA Research Network: https://www.cancer.gov/

tcga) at 60 and 120 months to analyze overall survival (OS)

and disease-free survival (DFS). Gene expression levels were

determined according to normalized Log2-read counts for

each gene. Median and quartiles were used for determining

high- and low-expression groups. DEGs with an adjusted

p-value < 0.05 were analyzed. Statistical significance was set at

p < 0.05.

Results

A previous study was conducted to determine biomarkers of

response to neoadjuvant chemotherapy in patients with breast

cancer (GSE162187) (Barron-Gallardo et al., 2022). In this study,

HER2+ samples were taken and included in the RNA-seq

analysis; five samples were from patients categorized as

resistant to treatment, and three samples were from patients

sensitive to treatment. This small subset was used as training

data. The results were validated using the GSE163882 dataset,

which included information from 222 patients with breast

cancer. Patients were over 33 years old; the mean ages for the

resistant and sensitive groups were 52.2 (±12.15) and 62 (±6.24)

years, respectively, with no statistical differences. The diagnostic

status of all the patients was invasive ductal carcinoma breast

cancer. The histological grades for tumor biopsies based on SBR

(Scarff–Bloom–Richardson) parameters were five SBRII, two

SBRIII, and one with non-available information

(Supplementary Table S1).

The transcriptomic pattern was studied to determine the

variables that specifically discriminated HER2+ patients

according to their neoadjuvant treatment response. Despite

having two groups defined by their pathological response,

principal component analysis (PCA) with all genes detected

by RNA-seq showed that the samples did not form specific

clusters. Moreover, the distribution of the samples followed a

heterogeneous pattern, indicating that HER2+ breast cancer

patients may have high variability in gene expression

(Supplementary Figure S1A).

Determination of DEGs related to
treatment resistance in the training data

HER2+ patients were grouped into sensitive and resistant to

neoadjuvant chemotherapy groups to obtain DEGs related to

treatment response. The transcriptomes of both groups were

compared, and a total of 1383 genes were observed to be

differentially expressed (p < 0.05), of which 719 were sub-

expressed and 664 were overexpressed in the resistant group

as compared with the sensitive group (Figure 1A). To diminish

the inclusion of false-positive DEGs, the Benjamini–Hochberg

post hoc test was applied; among the 1383 DEGs, only

94 maintained statistical significance with an adjusted p-value

(p-adj) <0.05 (45 subexpressed and 49 overexpressed genes)

(Figure 1B).

Thereafter, we investigated whether this set of 94 DEGs could

adequately classify the samples as sensitive and resistant to

treatment. Therefore, principal component analysis (PCA)

with only 94 genes was performed again. The results showed

two clusters defined by principal component 1 (PC1) with

55.35% and principal component 2 (PC2) with 15.79% of the

data variance (Supplementary Figure S1B). Therefore, the

selection of the 94 DEGs included genes capable of clustering

HER2+ patients into resistant and sensitive groups. As shown in

Supplementary Table S2, from the 94 DEGs, the top

10 overexpressed genes were HLA-DQA1, TRIM26, IGHJ6,

AGPAT1, IGHV1-69-2, PBX2, HLA-DRB1, PRRC2A,
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LRRC37A3, and TNXB, and the top 10 underexpressed genes

were HLA-A, CDRT15L2, GSTM1, CCDC187, GRIN2B,

SCGB2A1, GNG4, SBSN, CRISP3, and ZG16B.

To visualize the expression pattern (color density) and

distribution (clustering) of the 94 DEGs, heatmap analysis was

performed (Figure 2). The column dendrogram results showed

two clusters belonging to the sensitive and resistant groups. The

row dendrogram shows four clusters of genes with similar

expression patterns.

Pathways and enrichment analysis of
DEGs related to chemotherapy resistance

The 94 DEGs were analyzed using the KEGGMapper search

pathway tool and DAVID v6.8. Among the 318 KEGG pathways,

seven were statistically modulated (FDR <0.05) (Figure 3A),

including graft-versus-host disease, allograft rejection, type I

diabetes mellitus, autoimmune thyroid disease, viral

myocarditis, antigen processing and presentation, and cell

adhesion molecules. In addition, GO analysis results showed

that the biological processes enriched by DEGs were related to

the interferon-gamma-mediated signaling pathway. The cellular

components in which the DEGs were included were associated

with the MHC class II protein complex, luminal side of the

endoplasmic reticulummembrane, endoplasmic reticulum (ER)-

to-Golgi transport vesicle membrane, and extracellular space.

Finally, the modulated molecular functions were MHC class II

receptor activity and peptide-antigen binding (Figure 3B).

Enrichment analysis showed a total of 40 gene sets enriched

with a p-value < 0.05 (35 positively and five negatively), which

belongs to C1 (1 enriched set), C2 (6 enriched sets), C3

(2 enriched sets), C5 (19 enriched sets), C7 (7 enriched sets),

and C8 collections (5 enriched sets). The C4, C6, and H

collections did not contain enriched sets. From the enriched

sets, we found two related to therapy resistance (Massarweh

tamoxifen resistance and Creighton endocrine therapy resistance

gene sets) and three related to the immune system, such as GOBP

immune response, Goldrath antigen response, and CHR6P21,

which is a location for genes related to the immune system (HLA-

DQA1, HLA-DRB1, HLA-B, and MICA) (Supplementary

Table S2).

Determination of interactions clusters
between DEGs

An analysis of 94 DEGs was performed to determine the

molecular interactions between them. The STRING-DB tool was

used to set an interaction score with high confidence (0.7). The

results showed 18 edges (genes) distributed among seven clusters:

one with five genes, one with three genes, and five with two genes.

Among the seven clusters, the cluster with five edges was related

to the interferon-gamma-mediated signaling pathway, MHC

class I/II-like antigen recognition protein, and cell adhesion

molecules, including the HLA-A, HLA-DQA1, TRIM26, HLA-

B, and HLA-DRB1 genes (Figure 3C).

Evaluation of DEGs for survival prediction

To evaluate whether the expression of the 94 DEGs was

related to survival prediction, measured as DFS or OS, we

analyzed the 94 DEGs individually using a database with

FIGURE 1
Differentially expressed genes (DEGs) related to neoadjuvant chemotherapy outcomes in HER2+ patients with breast cancer. Each point
represents every DEG in the resistant group compared with the sensitive. Overexpressed genes are colored red, subexpressed genes are represented
by blue points. The x-axis shows the value of the log2 (fold change), and the y-axis represents (A) the p-value and (B) the adjusted p-value.
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FIGURE 2
Expression patterns of DEGs in resistance and sensitivity. The row Z-score of the normalized read counts of DEGs with p-adj < 0.05 are plotted
in the heatmap. The red color indicates a row Z-score >0, and the blue indicates a row Z-score <0. Columns represent each patient, and each row
represents a gene. The dendrogram at the top of the heatmap clusters the patients according to their gene expression pattern, while the dendrogram
at the left side of the heatmap groups the genes with similar expression patterns. Columns 1 to 3 represent sensitive patients, and columns 4 to
8 represent resistant patients.
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expression information of 109 patients with HER+/ER-/PR-, and

data were obtained from TCGA breast ductal carcinoma study. A

total of 12 DEGs predicted the DFS. The high expression of

ATF6B, DHRS13, DIRAS1, ERAL1, GRING2B, IRX3,

PRTFDC1, and PBX2 was found to be an excellent prognostic

of DFS at 5 years; on the other hand, a high expression of L1CAM

was associated with lower DFS at 5 years (Figure 4). We found

that low expression of TNXB and SLC9A3R2 and high

expression of S100B were associated with better DFS in the

long term (10 years) (Figure 5).

According to the OS analysis, groups with high expression of

GNG4, IL22RA2, S100B, and SERPINF2 were associated with

better OS at 5 years; the same was true for HLA-A and DIRAS1 at

10 years. In contrast, high expression of MICA and TNXB was

related to lower OS times at 5 and 10 years, respectively

(Figure 6).

FIGURE 3
KEGG, GO, DEGs interaction related to chemotherapy resistance. The 94 DEGs with a p-adj < 0.05 were analyzed to know their contribution to
KEGG pathways, gene ontology, and the interaction clusters (A) KEGG enrichment analysis (B) GO enrichment analysis. Each bar represents the fold
enrichment value for KEGG and GO. The x-axis plots the fold enrichment values, and the y-axis shows the pathway’s name or GO terms. In GO
enrichment analysis, the plot is divided into three categories: biological process (red bars), cellular component (green bars), and molecular
function (blue bars). (C) Interactome analysis. Only DEGs that interact with each other were plotted in the graph. Network nodes represent proteins
encoded by DEGs; colors represent the category to which encoded proteins belong; edges represent protein-protein interactions. Line colors
indicate the type of interaction reported.
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FIGURE 4
DEGs related to the prediction of DFS at 5 years. The 94 DEGs (p-adj<0.05) were analyzed in the TCGA ductal breast cancer database (https://
www.cancer.gov/tcga). The red line indicates the high expression group, and the blue line represents the low expression group. Y-axis shows theDFS
percentage; X-axis shows the time in years. (A) ATF6B, (B) DHRS13, (C) DIRAS1, (D) ERAL1, (E) GRIN2B, (F) L1CAM, (G) IRX3, (H) PRTFDC1, (I) PBX2.

FIGURE 5
DEGs related to the prediction of DFS at 10 years. DEGs that meet the criteria of p-adj<0.05 were analyzed using the TCGA ductal breast cancer
database (https://www.cancer.gov/tcga) to determine their association with DFS at 10 years. The red line indicates the high expression group, the
blue line represents the low expression group. Y-axis shows the disease-free survival percentage; X-axis shows the time in years. (A) S100B, (B)
SLC9A3R2, (C) TNXB.
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Odds ratio analysis was performed to determine if there is

any difference at the end point of five of 10 years in OS or

DFS. The results of the odds ratio analysis showed a similar

prognostic pattern for each gene compared with the results

obtained from the log-rank analysis, except for

GRIN2B, PRTFDC1, SLC9A3R2 in DFS and HLA-A,

IL22RA2 in OS whose p values were greater than 0.05

(Supplementary Table S3).

Furthermore, univariate and multivariate Cox analyses

were performed. The results show some genes in which the

expression can be considered a predictor variable associated

with survival time. In univariate cox analysis for DFS, the

coefficients were negative for DHRS13, GRIN2B and positive

for L1CAM with p < 0.05. When applying the univariate cox

analysis for OS, DIRAS had a negative coefficient, and MICA

had a positive coefficient p < 0.05 (Table 1). We performed

multivariate cox analysis using age, pathologic stage,

radiation therapy, and the expression level as variables.

The results show that as higher the pathologic stage, the

hazard to disease recurrence increases for ATF6B, DHRS13,

DIRAS1, ERAL1, GRIN2B, L1CAM, PBX2, PRTFDC1,

SLC9A3R2, and TNXB, furthermore, increase the risk of

death when analyzed DIRAS1, IL22RA, MICA, and S100B.

Alongside, neoadjuvant radiation therapy was

correlated with decrease recurrence risk in ATF6B,

DHRS13, DIRAS1, LICAM, and SLC9A3R2, and decreases

dead risk when analyzed S100B, MICA, and DIRAS1

(Table 2).

FIGURE 6
DEGs related to overall survival. DEGs with p-adj<0.05 were contrasted with overall survival data at 5 and 10 years in the TCGA ductal breast
cancer database (https://www.cancer.gov/tcga). The red line indicates the high expression group, and the blue line represents the low expression
group. Y-axis shows the overall survival percentage; X-axis shows the time in years. Panels for (A) GNG4, (B) IL22RA2, (C) MICA, (D) S100B, and (E)
SERPINF2 represent OS at 5 years, while panels for (F) HLA-A, (G) DIRAS1, and (H) TNXB showed OS data for 10 years.
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Analysis of the 94 DEGs in other studies
highlight similar DEGs as possible
biomarkers

Finally, to evaluate whether the data from GSE162187

(94 DEGs between resistant and sensitive patients) has a

consistent expression with other studies, we analyzed the data

of the study GSE163882, which aimed to predict pCR to

neoadjuvant therapy in breast cancer patients. Data from

GSE162187 were used as training data, and data from the

GSE163882 dataset were used as corroboration data. This

analysis discard 84 DEGs and identified 10 DEGs in common

(ATF6B, ERAL1, CRYM, MUC16, SOX10, MICA, PDE2A,

TMEM97, SDF2, and BICDL2) that could discriminate patient

TABLE 1 Univariate cox regression analysis for expression variable.

Gene Variable Coef exp (coef) se (coef) z Pr (>|z|) Survival

DHRS13 Expression -2.1257 0.1193 1.0494 -2.026 0.0428 DFS

GRIN2B Expression -1.3827 0.2509 0.6886 -2.008 0.0446 DFS

L1CAM Expression 1.6424 5.1677 0.7829 2.098 0.0359 DFS

DIRAS1 Expression -1.5443 0.2135 0.7695 -2.007 0.0448 OS

MICA Expression 1.6142 5.0238 0.7847 2.057 0.0397 OS

Coef = coefficient; exp = Exponential; se = standard error.

TABLE 2 Multivariate Cox Regression Analysis including clinical variables

Survival type Gene Variable Coef exp (coef) se (coef) p-value

DFS ATF6B Pathologic_stage 0.56021 1.75105 0.19235 0.0036

Radiation_therapy -1.52251 0.21816 0.76688 0.0471

DHRS13 Pathologic_stage 0.76044 2.13923 0.22323 0.0007

Radiation_therapy -1.56215 0.20968 0.71944 0.0299

DIRAS1 Pathologic_stage 0.73385 2.08308 0.21171 0.0005

Radiation_therapy -1.64476 0.19306 0.72105 0.0225

ERAL1 Pathologic_stage 0.67782 1.96958 0.19343 0.0005

GRIN2B Pathologic_stage 0.71306 2.04023 0.21839 0.0011

L1CAM Pathologic_stage 0.56388 1.75748 0.17428 0.0012

Radiation_therapy -1.95488 0.14158 0.74922 0.0091

PBX2 Pathologic_stage 0.57663 1.78003 0.19418 0.003

PRTFDC1 Expression -2.26336 0.104 1.10961 0.0414

Pathologic_stage 0.64406 1.90419 0.1972 0.0011

S100B Expr_quant 3.647 38.37 1.088 0.0008

SLC9A3R2 Expression 3.08808 21.9349 1.21697 0.0112

Pathologic_stage 0.51109 1.66711 0.18757 0.0064

Radiation_therapy -2.09806 0.12269 0.80884 0.0095

Expr_quant -1.21336 0.2972 0.58311 0.0375

TNXB Pathologic_stage 0.56011 1.75086 0.2683 0.0368

OS DIRAS1 Pathologic_stage 1.12604 3.08344 0.29716 0.0002

Radiation_therapy -3.9416 0.01942 1.08224 0.0003

IL22RA2 Pathologic_stage 0.9143 2.49502 0.42703 0.0323

MICA Expression 4.936,011 139.214 1.840,017 0.0073

Pathologic_stage 1.125,939 3.08311 0.275,097 4E-05

Radiation_therapy -3.643,406 0.02616 1.172,328 0.0019

Expr_quant -1.656,961 0.19072 0.803,941 0.0393

S100B Pathologic_stage 0.873,639 2.39561 0.23499 0.0002

Radiation_therapy -3.068291 0.0465 0.944,318 0.0012
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outcomes. Therefore, these 10 DEGs were considered possible

biomarkers of pCR and neoadjuvant chemotherapy response.

Moreover, three DEGs (ATF6B, ERAL1, and MICA) have a

strong correlation with DFS and OS.

Discussion

One fundamental aspect of treating breast cancer patients is

the knowledge of their molecular subtypes. This information has

per se a prognostic value for predicting patient treatment

response (von Minckwitz et al., 2012), which can be evaluated

according to the criteria for the diagnosis of pCR. Achieving pCR

has been associated with better overall survival (Broglio et al.,

2016; Spring et al., 2020); however, the intrinsic factors involved

in pCR have not been clarified. There is still controversy on

whether standard adjuvant therapy increases pCR (Mauri et al.,

2005). The percentage of patients who achieve pCR ranges

between 27%–47% (Muller et al., 2021; Xin et al., 2021). In

this study, 37.5% of patients achieved pCR. Therefore, HER2+

breast cancer patients were categorized as sensitive (pCR

achieved) or resistant (pCR did not achieve) to neoadjuvant

chemotherapy and were used as an RNA-seq strategy to identify

predictors of pCR. It should be considered that the diagnosis of

HER2+ breast cancer was because more than 10% of the tumor

cells present detectable HER2 expression; therefore, there is a

large percentage of cells that do not express HER2. This

highlights the heterogeneity of this breast cancer subtype (Ng

et al., 2015; Chen et al., 2020). When the transcriptional profiles

of all patients were compared to determine clusters, this

heterogeneity was emphasized (Supplementary Figure S1A).

The implications of molecular differences in HER2+ breast

cancer patients are not fully understood and may be relevant

to prognosis and treatment response.

The DEGs found in HER2+ breast cancer patients sensitive

and resistant to neoadjuvant chemotherapy were mainly related

to plasma membranes, vesicles, and extracellular space and were

involved in different biological processes, such as cellular

response to chemical stimulus, cell adhesion, and signal

regulation. Variations in the protein components of the

extracellular matrix have been reported in breast tumors of

different origins (Borghesi et al., 2021). In addition,

extracellular components such as the extracellular matrix,

vesicles, and plasma membranes can be modified by cancer-

associated fibroblasts, leading to a tumor microenvironment

involved in cancer development and drug resistance

(Mashouri et al., 2019; Helal-Neto et al., 2020; Lugo-Cintron

et al., 2020).

One of the most enriched pathways is related to cell adhesion

molecules involved in tight junctions of epithelial and endothelial

cells, such as claudins, which participate in epithelial-

mesenchymal transition (EMT) and chemoresistance (Hewitt

et al., 2006; Agarwal et al., 2009; Gowrikumar et al., 2019).

According to KEGG enrichment analysis, the AMPK signaling

pathway is involved in the resistance process; this pathway is

considered a double-edged sword that protects and promotes

cancer progression (Jeon and Hay, 2015). Sensitization of breast

cancer cells to chemotherapy by activating AMPK signaling by

CTAB has been observed (Pan et al., 2019). Similarly, histological

evaluations have reported altered AMPK signaling in breast

cancer samples (Hadad et al., 2009), and this pathway is

considered a therapeutic target for breast cancer treatment

(Hadad et al., 2008). However, it has been hypothesized that

once cancer has developed, AMPK promotes the survival of

cancer cells by protecting them against DNA damage, nutritional

stress, and hypoxia (Russell and Hardie, 2020). Further studies

are needed to delineate the role of the AMPK pathway in breast

cancer and the development of chemotherapy resistance.

Another enriched pathway was cyclic guanosine 3,5-

monophosphate (cGMP) and protein kinase G (PKG). The

cGMP-PKG pathway has been associated with the modulation

of apoptosis and growth inhibition in MCF-7 and MDA-MB-

468 breast cancer cell lines (Fallahian et al., 2011). An essential

component of this pathway is the protein kinase cGMP-

dependent 2 (PRKG2), which was found to be downregulated

in the resistant group in this study. Our results correlate with

those of Karami-Tehrani et al. (Karami-Tehrani et al., 2012), who

observed lower expression of PRKG2 protein in breast tumor

samples. In addition, it has been reported that PRKG2 inhibits

EGF-induced MAPK/c-Jun N-terminal kinase (JNK) signal

transduction in human breast cancer cells (Lan et al., 2012)

and also inhibits the activation of EGFR and HER2 in gastric

cancer cells (Zhu et al., 2016; Lan et al., 2019). PRKG2 inhibits the

migration, invasion, and proliferation of cancer cells and

activates CREB, which modulates anti-apoptotic genes, such

as BCL2 (Shankar et al., 2010), which are overexpressed in the

resistant group, thereby contributing to the survival of cancer

cells in the resistant group.

In this study, many DEGs related to resistance were

identified. With the dimensional reduction, samples clustered

better, highlighting the possibility of using these genes to predict

the response to treatment. An interesting finding in our results

was a group of DEGs that interacted with each other, including

HLA-A, HLA-DQA1, HLA-DRB1, HLA-B, and TRIM26, which

are components of the MHC protein complex, except TRIM26.

These DEGs were found to be overexpressed in the resistant

group. The upregulation of classical and non-classical HLA-I

molecules has been reported to acquire a “protective” phenotype

in melanoma cells (Balsamo et al., 2012). HLA molecules play a

role in self-recognition by immune cells, which is essential for

hematopoietic and healthy cells to avoid their destruction, and

the loss, alteration, or absence of HLA molecules can cause

susceptibility to NK cell attack (Ljunggren and Karre, 1990;

Moretta et al., 2004). HLA molecules interact with inhibitory

receptors such as killer cell immunoglobulin-like receptors

(KIRs), leukocyte immunoglobulin-like receptors (LIRs), and
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natural killer group 2A (NKG2A) on the NK surface, avoiding its

activation (Khan et al., 2020). Overexpression of HLA by cancer

cells has been reported as a mechanism for evading the immune

response of NK cells and is termed immune checkpoint

inhibition (Bi and Tian, 2019). From this group of genes, a

variant of HLA-A (ENSEMBL ID ENSG00000235657) was

observed subexpressed in the resistance group. In addition,

low expression of this gene was associated with a worse

prognosis for OS. This gene has already been reported to

predict treatment response and OS (Sinn et al., 2021; Barron-

Gallardo et al., 2022).

ATF6B has two ensemble IDs (ENSG00000228628 and

ENSG00000213676). ENSG00000228628 ID was

overexpressed. Nevertheless, ENSG00000213676, which

corresponds to the primary assembly of this gene, was found

to be sub-expressed, and low expression was related to lower OS

and worse DFS. Variants of this gene have been associated with

an increased risk of breast cancer development (Dierssen-Sotos

et al., 2018).

DIRAS1 was found to be sub-expressed in the resistance

group. Subexpression of this gene was correlated with lower OS.

This gene has tumor-suppressive activity by binding to SmgGDS,

which blocks the interactions of small GTPases, such as Rho and

K-Ras4B. The expression of DIRAS1 is downregulated in most

types of breast cancer (Bergom et al., 2016).

Other sub-expressed genes in resistant treatment and lower

DFS were GRIN2B, GNG4, and IRX3. GRIN2B is involved in

breast cancer progression and acts as a promoter of CpG islands

(Park et al., 2011; Park et al., 2012). GNG4 is hypermethylated in

breast cancer; however, when comparing all molecular subtypes,

the HER2 subtype shows the highest expression levels for this

gene (Fernandez-Nogueira et al., 2016; Mao et al., 2021).

IRX3 plays an important role in obesity and type 2 diabetes;

however, it plays an important role in the adaptability of tumor

cells to metabolic challenges, a process that has a parallelism with

the development of chemotherapeutic resistance (Singh et al.,

2016).

A set of genes that showed high expression in the resistant

group, which were related to lower OS and worse DFS, were

L1CAM, MICA, and TNXB. The expression of L1CAM is

increased in luminal B breast cancer, and its expression is

related to disease recurrence and higher levels of Ki-67

expression (Moisini et al., 2021). A soluble form of L1CAM

has been found in HER2-enriched primary breast cancer patients

(Wu et al., 2018). There are reports that inhibition of L1CAM

reverses cisplatin resistance in triple-negative breast cancer cells

(Zhang et al., 2022). MICA is overexpressed in breast cancer

when compared to normal tissue and is considered an indicator

of poor prognosis (Madjd et al., 2007). It is an activation ligand of

NK cells, which induces the lysis of cells that express it. However,

there is a soluble form of MICA (sMICA) that decreases the

expression and presentation of NKG2D, a natural cytotoxic

receptor in natural killer cells, thus sMICA helps cancer cells

to evade immune cell attack (Pan et al., 2017) and contributing to

a worse prognosis in cancer (Roshani et al., 2016). In this study,

high expression of MICA was observed in the resistant and lower

OS groups; however, further studies are needed to determine the

role of MICA or sMICA in chemotherapy resistance. In the case

of TNXB, the expression of this gene has been analyzed in breast

cancer, and a correlation between high TNXB expression and

good survival prognosis has been found (Liot et al., 2020). Its

expression decreases at late stages, major tumor grade, and node

status of the disease (Liot et al., 2020), however, its expression in

the HER2 molecular subtype and in relation to chemotherapy

resistance has not been evaluated.

In contrast, genes with high expression but related to

better OS and DFS were IL22RA2, PRTFDC1, PBX2, S100B,

SERPINF2, DHRS13, ERAL1, and SLC9A3R2.

IL22RA2 expression decreases in luminal A, B, and triple-

negative breast cancers (Fu et al., 2015); however, but HER2+

breast cancer has not been reported. PRTFDC1 has been

associated with the triple-negative basal-like immune-

suppressed breast cancer subtype (TNBC-BLIS), which is

considered one of the worst prognoses (Yin et al., 2020).

The most highly expressed gene is PBX2. This gene was found

to be upregulated in breast lesions and has been proposed

along with other genes as a candidate biomarker for

distinguishing breast cancer lesions (Hou et al., 2020). It

has been showed that the overexpression of PBX2 increases

the tumorigenic properties of SkBr3 breast cancer cell line

when transfected with HoxB7 (Fernandez et al., 2008). S100B

expression has been negatively correlated with lymph node

metastasis (Wang et al., 2021), inhibition of cell migration,

better overall survival in luminal B breast cancer patients, and

being a good distant metastases-free survival biomarker (Yen

et al., 2018). SERPINF2 is differentially expressed in breast

cancer tissues compared with normal tissues (Malvia et al.,

2019). The protein product of SERPINF2 has been found in

the serum of breast cancer patients when evaluating

treatment response; however, this protein appeared in both

resistant and sensitive groups (Chantada-Vazquez et al.,

2022).

Finally, DHRS13, ERAL1, and SLC9A3R2 could predict

treatment response and survival; however, there are no reports

related to breast cancer and its possible function in this disease.

Conclusion

This study underlines a molecular expression pattern

related to the response of patients with HER2-positive

breast cancer to neoadjuvant chemotherapy. Differentially

expressed genes highlight the involvement of pathways, such

as extracellular components, adhesion molecules, and

immune responses, in the process of resistance to

chemotherapy. Some differentially expressed genes can be
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used as biomarkers of overall survival and disease-free

survival in breast cancers.
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