
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(12):7006-7020 | https://dx.doi.org/10.21037/jtd-21-806

Introduction

Lung cancer is one of the leading causes of cancer-related 
deaths worldwide (1). Non-small cell lung cancer (NSCLC) 
is the most frequent type of lung cancer, among which 
adenocarcinoma (ADC) and squamous cell carcinoma 
(SCC) account for nearly 85% (2). With the widespread use 
and technical progress in low-dose computed tomography 

in screening high-risk populations susceptible to lung 
cancer, the mortality rate of lung cancer has decreased by 
20% (3,4). Notably, although the histopathologic analysis 
by experienced pathologists is still the gold standard for 
diagnosing NSCLC and identifying histologic subtypes, 
it is sometimes difficult to precisely distinguish poorly-
differentiated ADC and SCC due to similar morphologic 
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characteristics (5). Subjective or erroneous evaluation of 
histopathologic images may lead to inappropriate treatment 
planning, and a corresponding decreased survival in 
NSCLC patients (6). Moreover, it is time-consuming and 
challenging for a pathologist to interpret highly complex 
pathologic images via morphologic evaluation of tissue 
sections, thus causing histopathologic diagnostics and 
stratification bias (7,8). Thus, highly sensitive and automatic 
artificial intelligence (AI) might be implemented to help 
oncologists make more precise diagnoses of NSCLC and 
provide more robust evidence for decision-making, which 
requires limited human intervention.

AI technology is a series of autonomous learning and 
complex algorithms for recognition, analysis, and predictive 
results. In the histopathologic diagnosis of digital imaging 
slides, AI technology provides a new method with which to 
process medical data that is able to discover high-dimension 
information, reflecting the underlying pathophysiology that 
may not be visible to the unaided eye (9). The quantitative 
features extracted from medical data (10) by AI can improve 
the objective accurate discrimination of lung cancer 
subtypes, contributing to the determination of optimal 
therapeutic strategies in personalized drug treatment and 
surgical procedures (11). Thus far, several studies have 
investigated the various AI models based on training sets, 
and have validated the classification performance of those 
models, some of which exhibited a performance level 
similar to experienced pathologists (12). In addition, AI has 
been shown to be capable of learning the highly complex 
associations between tumor-related risks and individual 
prognosis, which will give rise to individualized survival 
prediction (13). 

Therefore, we conducted this systematic review in an 
attempt to summarize the application, advantages, and 
limitations of AI in NSCLC diagnosis and decision-making. 
The aforementioned studies were identified by searching 
databases, including PubMed, EMBASE, Web of Science, 
and Cochrane Library, up to February 2021 without 
language restrictions.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/jtd-21-806).

The current convolutional neural network  
(CNN) of AI

AI in healthcare, including machine learning or more 
advanced deep learning (DL), may be a reality in future 
clinical practice. Specifically, machine learning approaches 
have been shown to improve the accuracy and automation 
of histopathologic image analysis (14), whereas CNNs are 
currently the state-of-the-art AI architecture for pathologic 
classification of NSCLC on digital slides (15). The CNN 
scheme used for image classification consists of several 
convolutional layers, each followed by a pooling layer and a 
series of fully connected layers (16,17), as shown in Figure 1.  
Through inputting images of the entire histopathologic 
digital slide, the convolutional layers convolve those images 
and convert them into feature maps (18). Subsequently, 
the pooling layers are used to down-sample the underlying 
computation and to reduce the dimensions of the image  
data (19). Finally, the fully connected layers analyze the 
output data of convolutional and pooling layers and 
obtain the classified consequence of the images (18). DL 

Figure 1 Architecture of the deep CNN used for discriminating NSCLC subtypes on the pathologic image slides. CNN, convolutional 
neural network; NSCLC, non-small cell lung cancer. 
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proposes an end-to-end CNN model to automatically learn 
high-level features from the training set instead of the 
handcrafting descriptors in machine learning scheme (19), 
indicating that the DL scheme might be more precise than 
a conventional machine learning model (20,21). 

Diagnosing histologic subtypes of NSCLCs based 
on digital histopathologic slides and gene profiles

Morphologic evaluation of tissue sections remains the 
basis of histopathologic diagnostics and directs the 
application of additional analyses (22). Although tumor 
cell morphology between ADCs and SCCs may be very 
different, some cannot be easily identified by visual 
inspection, and most misclassifications are found between 
the two main histologic types, thus requiring confirmatory 
immunohistochemistry (IHC) staining (11,23). In contrast, 
AI based on quantitative image features is a useful tool for 
reducing misclassification (22,24). 

Several studies have determined the ability of AIs to 
objectively identify NSCLC subtypes, as shown in Table 1 
(11,15,25-27). Yu and his colleagues from Harvard Medical 
School collected 1,600 whole-slide images of ADCs, SCCs, 
or adjacent normal tissues from The Cancer Genome 
Atlas (TCGA) and the International Cancer Genome 
Consortium (ICGC) cohorts to develop and validate the 
CNN models (15). After the training process, VGGNet and 
GoogLeNet for distinguishing ADCs from SCCs yielded 
receiver-operating characteristic (ROC) curves (AUCs) 
of approximately 0.877–0.927 in both training and test 
datasets, exhibiting slightly better performance than ResNet 
and AlexNet (15). The robustness of the aforementioned 
CNN models was also validated in the ICGC set with 100 
image tiles regarded as the largest deviation between the 
ground truth and the model output (15). The researchers 
also trained a set of machine learning algorithms for 
predicting subtypes of NSCLCs, demonstrating that all 
machine learning models were 13–25% inferior to the 
CNN classifications in the TCGA test set (15). Additionally, 
the ability of various architectures of CNN algorithms 
on histopathologic images across various configurations 
was evaluated by the Elemento O team using the 4009 
IHC or hematoxylin and eosin (H&E)-stained images of 
ADCs and SCCs (26). After fine-tuning with hundreds of 
entire-slide histopathologic images as the training data, 
the performance of differentiating ADCs from SCCs 
showed that Inception-Fine tune architectures (V1 and 
V3) provided accuracy, precision, and sensitivity >90% in 

the Stanford Tissue Microarray Dataset (TMAD), which 
was significantly superior to other configurations of CNN 
algorithms (26). The recall, precision and AUC of the 
Inception-Fine tune architectures (V1 and V3) maintained 
the superiorities in the TCGA dataset (26). Furthermore, 
Coudray et al. (11) constructed the robust Inception V3 for 
distinguishing ADCs, SCCs, and normal tissues with similar 
results using 2075 whole-slide images from two datasets. 
The CNN algorithm not only achieved a slightly higher 
AUC, sensitivity, and specificity comparable to pathologists, 
but also obtained an AUC of 0.886 for the biopsies (11). 
Therefore, the AI algorithm offers a powerful translational 
strategy to differentiate subtypes of NSCLC based on 
cytology specimens or small biopsies of unresectable 
tumors. A study conducted by Teramoto et al. (25) included 
298 image slides from 76 bronchoscopy or small biopsy 
samples to train and validate a CNN algorithm. This 
CNN model for discriminating ADCs and SCCs achieved 
pathologist-level performance with a classification accuracy 
of 71.1%. Machine learning algorithms for subtyping 
NSCLCs were developed in another study (27) from 
400 small biopsy specimens using a 3-marker IHC panel 
(TTF-1, Napsin A, and p40). Of the biopsies, 82.8% were 
successfully classified as ADCs or SCCs. Notably, although 
the performance of the machine learning algorithm was 
superior over the 298-image-based CNN model, more 
human interactions and a larger sample size were thought 
to be two major factors for the improved accuracy, which 
spawned more workload for pathologists.

According to the gene mutation data provided by the 
Catalogue of Somatic Mutations in Cancer (COSMIC), 
ADCs and SCCs express significantly different frequencies 
of recurrent mutant genes, such as epidermal growth factor 
receptor (EGFR), TP53, KRAS, LRP1B, NFE2L2, and 
CDKN2A (28-30). A previous study demonstrated that 
machine learning algorithms for analyzing ambiguous 
histologic findings in small biopsies using p63 and/or 
CK5/6, in addition to the 3-marker IHC panel, are more 
effective for subtyping NSCLCs compared to the 3-marker 
IHC (27). Predicting NSCLC subtypes by identifying 
specific genotypes is a potentially powerful method that can 
be recommended as a special marker for IHC-stained slides. 
Therefore, several references determined the sensitivity and 
specificity of genetic markers to discriminate the subtypes 
of NSCLCs, as shown in Table 2 (31-37). A retrospective 
study selected the genetic features from 77 ADCs and  
73 SCCs to construct the support vector machine (SVM) 
and random forest (RF) classifier (32). Compared with the 
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Table 2 The characteristics of the included studies for diagnosing NSCLC through the gene profiles analyzed by AI models

Authors
Publication 

year
Number of 
datasets

Number 
of cases

Number of 
genes (total)

Subtypes (cases)
Training set 

(cases)
Validation 
set (cases)

Test set 
(cases)

Independent test 
datasets (cases)

Classifier
Results

Conclusion
ACC SN SP AUC Precision

Xiao et al. 
(31)

2017 1 162 1,385 TCGA: ADC (n=162) NR NR NR 0 DL-based multi-
model (KNN, 
SVM, DT, RF, 
GBDT)

KNN: 88.00%; SVM: 
97.20%; DT: 96.80%; 
RF: 93.20%; GBDT: 
96.80%; majority 
voting: 97.20%; 
DL-based method: 
99.20%

DT: 97.37% NR NR DT: 98.46% The DL-based multi-model algorithm 
could obtain more information to 
achieve the accuracy of 99.20% for 
distinguishing ADCs from normal

Yuan et al. 
(32)

2020 1 150 1,100, 260, 
43 (n=20,502)

GEO: ADC (n=77), SCC 
(n=73)

NR NR NR 0 SVM, RF, 
RIPPER

SVM: 0.867; RF: 0.880; 
RIPPER: 0.867

SVM: 0.987; RF: 
0.974; RIPPER: 
0.867

SVM: 0.740; RF: 
0.781; RIPPER: 
0.872

NR SVM: 0.800; RF: 
0.772; RIPPER: 
0.877

Analyzing the gene expression dataset 
of NSCLC subtypes, the RIPPER 
algorithm yielded the almost equal 
performance of subtyping NSCLCs 
compared with the SVM/RF classifier

Podolsky 
et al. (33)

2016 3 480 NR DFCI: ADC (n=139), SCC 
(n=21), other (n=26), 
normal (n=17); UMD: 
ADC (n=86), normal 
(n=10); BWHD: ADC 
(n=150), other (n=31)

235 96 149 0 KNN, NB, SVM, 
DT

NR NR NR KNN, k=1: 0.87; KNN, 
k=5: 0.96; KNN, k=10: 
0.97; NB_normal: 
0.85; NB_histogram: 
0.84; SVM: 0.91; C4.5 
DT: 0.92

NR Compared with other machine 
learning algorithms, SVM was the 
optimal tool in NSCLC morphology 
classification based on gene 
expression level evaluation

Cai et al. 
(34)

2015 2 1,099 16 (n=45) TCGC: ADC (n=126), 
SCC (n=134); GEO: 
SCLC (n=28); TCGA: 
ADC (n=452), SCC 
(n=359)

288 0 811 0 RF and multi-
SVMs

Training datasets: 
86.54%; Independent 
datasets: 84.60%

Training datasets: 
84.37%; 
Independent 
datasets: 85.52%

NR NR Training datasets: 
66.79%; 
Independent 
datasets: 85.94%

The accuracies of multi-SVM 
model with such 16 top features for 
diagnosing NSCLC subtypes were 
86.54% and 84.6% in the training and 
test set, respectively

Li et al. 
(35)

2018 2 853 20 (n=107) TCGA: ADC (n=286), 
normal (n=59); GEO: ADC 
(n=387), normal (n=121) 

2/3 of each 
dataset

0 1/3 of each 
dataset

0 RF, SVM, and 
ANN

TCGA: 98.68%; 
GSE68465: 99.51%; 
GSE10072: 97.91%.

TCGA: 99.28%; 
GSE68465: 
99.95%; 
GSE10072: 98.05%

TCGA: 95.68%; 
GSE68465: 
92.83%; 
GSE10072: 97.75%

NR NR Machine learning models with twenty 
ADC signature genes were robust for 
early ADC diagnosis

Dong  
et al. (36)

2019 1 369 699 TCGA: ADC (n=369) NR NR NR 0 SVM, KNN, LR, 
RF, gcForest and 
the ensemble 
MLW-gcForest

Methylation: 0.751; 
RNA: 0.689; CNV: 
0.645; multi-modal: 
0.908

Methylation: 0.763; 
RNA: 0.679; CNV: 
0.677; Multi-modal: 
0.882

NR Multi-model: 0.96 Methylation: 
0.771; RNA: 
0.659; CNV: 
0.675; Multi-
modal: 0.896

MLW-gcForest algorithm had an AUC 
of 0.96 and an accuracy of 0.908 
for ADC staging, better than those 
achieved by traditional machine 
learning algorithms

Yang et al. 
(37)

2020 2 600 42, 26, 16 
(n=528)

TCGA: ADC (n=470); 
GSE62182: ADC (n=94); 
GSE83527: ADC (n=36)

376 94 0 130 SVM NR NR NR TCGA: 0.62; 
GSE62182: 0.66; 
GSE83527: 0.63

NR The 16‑miRNA signature analyzed by 
LIBSVM algorithm showed a similar 
ability to classify ADC pathological 
stages to that of the combinations of 
42 or 26 miRNAs

NR, not reported; AI, artificial intelligence; DL, deep learning; SVM, Support Vector Machine; KNN, K-nearest neighbors; GBDT, gradient boosting decision trees; LR, logistic regression; RF, Random Forest; DT, Decision Tree; ANN, artificial neural networks; NB, Naive Bayes; RIPPER, Repeated Incremental 
Pruning to Produce Error Reduction algorithm; ADC, adenocarcinoma; SCC, squamous-cell carcinoma; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; DFCI, Dana-Farber Cancer Institute; UMD, University of Michigan 
Dataset; BWHD, Brigham and Women’s Hospital Dataset; CNV, copy number variation; AUC, Receiver-operating characteristic (ROC) curve; ACC, accuracy; SN, sensitivity; SP, specificity.
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RF classifier, which consisted of 260 features, the SVM 
algorithm had 1,100 features for classifying lung ADC 
and SCC samples at the transcriptomic level and achieved 
higher accuracy than the corresponding measurements 
yielded by the optimal RF classifier. Combining the SVM 
and RF classifiers with the most important 43 features, the 
Repeated Incremental Pruning to Produce Error Reduction 
(RIPPER) algorithm was used to construct the classification 
rules for discriminating ADCs and SCCs, with near-equal 
accuracy compared to the optimal SVM/RF classifier. In 
addition, Podolsky et al. (33) involved 480 NSCLCs from 
three institutions to evaluate the effectiveness of machine 
learning algorithms in the task of NSCLC classification at 
the gene expression level. SVM showed the best results in 
all datasets, which was regarded as the most appropriate 
auxiliary tool in predicting NSCLC subsets. Moreover, 
the current DL-based multi-model method was estimated 
by Xiao et al. (31) using 162 ADCs from TCGA. This 
model yielded satisfactory results, achieving an accuracy of 
99.20% for distinguishing ADCs from normal, which was 
significantly superior to single classical classifiers in ADC 
prediction. Similarly, based on RNA-sequencing data from 
180 normal and 673 early-stage ADC tissues, Li et al. (35) 
identified a gene module that represents the distinguishing 
characteristics of adenocarcinoma in situ (AIS) as AIS-
specific genes in the machine learning pipeline. Machine 
learning models with 20 selected early ADC signature genes 
were robust for early ADC diagnosis from normal with 
approximately 98% accuracy.

Generally, a number of studies selected large datasets of 
whole-slide images and gene profiles of NSCLC to train 
DL models or machine learning models to build robust 
AI schemes, which were subsequently validated in another 
independent dataset (15,11,26). Compared with the machine 
learning algorithms, the CNN algorithms with ever-
increasing power might be more suitable to discriminate 
the heterogeneity of NSCLCs, especially for digital whole-
slides. Quantitative images and genetic features by processing 
technology for diagnosis of NSCLCs had value in improving 
efficiency, accuracy, and consistency in histopathologic 
evaluations. Thus, the present findings demonstrate that AI 
technology serves as a promising diagnostic tool for pathologic 
subtypes of ADCs in both histologic images and gene profiles.

Predicting pathologic stages of NSCLCs based 
on gene profiles

Gene expression variants have been reported to have critical 

roles in tumor progression and metastasis, thus suggesting 
the feasibility of genetic biomarkers for the detection and 
classification of NSCLC subsets (37). Although the gene 
profiles have been identified as predictors of clinical diagnosis 
or NSCLC outcomes, whether gene profiles can be used 
as pathologic staging marker has not been established. 
There have been two studies exploring the sensibility and 
specificity of genetic markers to discriminate the stages of 
NSCLCs, as shown in Table 2. Yang and his colleagues (37) 
selected 16 miRNAs from 600 ADCs to evaluate machine 
learning algorithms. The resulting classification model 
demonstrated the ability of machine learning algorithms 
to accurately differentiate ADC pathologic stages. The 
SVM with 16 miRNAs had a similar ability to classify ADC 
pathologic stages to combinations of 26 or 42 miRNAs (37). 
Furthermore, with the RNA-seq, methylation data, and copy 
number variation (CNV) of 369 ADCs from TCGA, Dong 
et al. (36) developed the MLW-gcForest model, a machine 
learning-based ensemble algorithm, which achieved better 
classification performance in ADC staging (accuracy, 0.908; 
precision, 0.896; recall, 0.882; F1, 0.889) incorporating 
multi-modal data compared with single-modal data. Dong 
et al. (36) indicated that MLW-gcForest integrating multi-
modal genetic data effectively improved the accuracy of ADC 
staging, which was significantly superior to the traditional 
machine learning algorithms. Generally, gene mutations play 
a critical role in tumor progression and tumor phenotypes. 
Although the expression profiles of early lung cancer 
signature genes identified in the above-mentioned studies 
have the ability to predict accurate and robust NSCLC 
stages, AI technologies should be verified by additional 
studies compared with conventional clinical variables. 

Accuracy in assessing histologic growth 
patterns of ADCs

The main histologic growth patterns of non-mucinous 
ADCs were defined as follows (23): lepidic; acinar; papillary; 
micropapillary; and solid patterns. An increasing body of 
evidence indicates that ADCs comprise a heterogeneous 
group of growth patterns, and tumor growth patterns in the 
excised tumor specimen impact clinical prognosis (38,39). 
For example, compared with acinar and papillary patterns, 
micropapillary and solid patterns are associated with worse 
prognoses (40). Furthermore, it is sometimes difficult to 
identify the predominant and minor histologic subtypes (38). 
Thus far, there have been two studies in which AI algorithms 
were applied to accurate and objective classification of ADC 
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growth patterns (7,12,38,40-43) (Table 3).
To evaluate the CNN algorithms for assessing growth 

patterns, Gertych et al. (38) used 206 H&E-stained slides 
diagnosed as primary ADCs from three institutions. 
One training session with FT-AlexNet, four with DN-
AlexNet, and three with GoogLeNet and ResNet-50 were 
constructed to convert growth patterns from the image 
slides into the qualitative features, which were all used to 
recognize five tumor component classifications (acinar, 
micropapillary, solid, cribriform, and non-tumor areas) in 
the validation and test datasets. One of the DN-AlexNets 
(accuracy =89.9%) performed better than the best models of 
GoogLeNet and Resnet-50 CNNs, which yielded accuracies 
of 85.84% and 87.64%, respectively (38). Additionally, 
the accuracies of DN-AlexNet and FT-AlexNet in 5-class 
classification tasks were 89.9% and 75.3% (38), respectively, 
thus achieving a pathologist-level performance. Moreover, 
Wei et al. (12) compared CNN models and pathologists, by 
randomly partitioning 245 entire-slide images for training, 
34 images for developing, and another 143 images for 
testing from one cohort. ResNet with the deep residual 
network was used to classify five growth patterns (lepidic, 
acinar, papillary, micropapillary, and solid) and normal 
tissues. Interestingly, compared with the best corresponding 
measurements of 3 pathologists (average kappa score, 0.515; 
average agreement, 64.8%; robust agreement, 75.4%) with 
various levels of experience, the CNN model achieved a 
modestly better performance (average kappa score, 0.525; 
average agreement, 66.6%; robust agreement, 76.7%) 
in assessing growth patterns in the 143 testing images. 
Thus, the ResNet model performed at the pathologist-
level classification of histologic patterns on resected ADC 
slides that was superior to inexperienced pathologists (12). 
Although semi-quantitative evaluation of histopathologic 
patterns and the best-characterized histopathologic features 
in the CNN schemes exhibited the capability to assist in 
precise decisions regarding oncologic therapy (6), additional 
proof is needed to prove the robustness and feasibility of AI 
models due to insufficient evidence.

Discriminating types of stromal cells in the 
tumor microenvironment (TME)

The cell spatial organization in tumor tissues provides 
important insight into tumor progression and metastasis, 
and reveals important information on the TME, including 
cell growth patterns and the spatial interactions among 
different types of cells (7). For example, expression of the 

relevant genes for extracellular matrix organization, which 
are mainly derived from fibroblasts, is associated with 
stromal cell density in the tumor tissues (7). Therefore, AI 
models were applied to automatically convert the entire 
digital pathologic image to a TME map across the entire 
slide, in which the features of tumor region and lymphocyte 
infiltration areas were quantified and extracted to identify 
TME cells and to predict the pathologic diagnosis (7).

The characteristics and results of the included studies 
for evaluating AI algorithms for identifying TME cells 
are shown in Table 3. To determine the ability of the 
CNN scheme for recognizing pathologic images, Wang 
et al. (40) manually labeled 11,988 tumors, stroma, and 
lymphocyte image patches centered at cell nuclei centroids 
from the region of interest (ROI) boundaries of 29 H&E-
stained slides of ADCs in TCGA. Subsequently, the cell 
nuclei were detected by ConvPath software incorporating 
the image segmentation, DL, and feature extraction 
algorithms (40), which were classified into three categories 
(tumor cell, stromal cell, and lymphocyte) in the National 
Lung Screening Trial project (NLST) dataset. The overall 
classification accuracies of the CNN model in two datasets 
were 99.3% for lymphocytes, 87.9% for stromal cells, 
and 91.6% for tumor cells. This model was subsequently 
tested in the University of Texas Special Program of 
Research Excellence (SPORE) dataset, and yielded similar 
accuracies (40). Additionally, the data revealed that higher 
lymphocyte abundance mixed with different types of cells 
detected by the CNN algorithm was associated with a worse 
prognosis (40). Similarly, the Mask Regional Convolutional 
Neural Network (Mask R-CNN) architecture was developed 
based on >12,000 cell nuclei from 39 ROIs of ADCs in the 
NLST and TCGA dataset in another study using similar 
methods (7). The output layer for the Mask R-CNN 
model classified cell nuclei of the inputting images into six 
categories (tumor cell, stromal cell, lymphocyte, macrophage, 
red blood cell, and karyorrhexis), showing that the accuracies 
for tumor nuclei classification were 88% and 90% in the 
1,227 nuclei validation set and the 1086 nuclei testing 
set, respectively (7). Furthermore, AbdulJabbar et al. (41) 
developed a sensitive convolutional neural network (SCNN) 
to spatially profile immune infiltration and discover tumor 
topologic determinants of immunosuppression in the 
digital pathology of NSCLCs. This pipeline facilitated 
spatial mapping of cancer cells, lymphocytes, stromal 
cells, and other cell types in 375 H&E-stained images 
to discriminate T cell subsets in 100 CD4/CD8/FOXP3 
IHC images for pathologic tumor-infiltrating lymphocyte 
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Table 3 The characteristics of the included studies regarding DL models for identifying tumor patterns or variety of cells on digital slides

Authors
Publication 

year
Number of 
datasets

Number 
of cases

Number 
of images

Subtypes (images)
Training set 

(images/cells)
Validation set 
(images/cells)

Test set 
(images/cells)

Independent test 
datasets  

(images/cells)
Classifier

Results
Conclusion

ACC SN SP AUC Precision

Gertych et al. 
(38)

2019 3 110 206 CSMC: ADC (n=91); 
MIMW: ADC (n=88); 
TCGA: ADC (n=27)

78 19 109 0 GoogLeNet, 
ResNet-50 and 
AlexNet

 FT-AlexNet:75.3%; 
DN-AlexNet-1: 89.90%; 
GoogLeNet-2: 85.84%; 
Resnet-50-3: 87.64%

NR NR NR NR One of the DN-AlexNets obtained the 
best performance than other CNNs, 
with the accuracies of 89.90% for 
classification involving the five tissue 
classes in test set

Wei et al. (12) 2019 1 NR 422 DHMC: ADC (n=422) 245 34 143 0 ResNet NR NR NR Lepidic: 0.988; acinar: 
0.970; papillary: 0.993; 
micropapillary: 0.981; 
solid: 0.997; benign: 
0.988

NR CNN could improve classification 
accuracy of ADC patterns by 
automatically pre-screening, superior to 
pathologists

Wang et al. (7) 2020 2 507 639 TCGA: ADC (n=208); 
NLST: ADC (n=431)

12,000 cell 
nuclei

1,227 cell 
nuclei

1,086 cell 
nuclei

0 Mask R-CNN, Cox 
proportional hazard 
prognostic model

88% in the validation 
set; 90% in the testing 
set.

NR NR NR NR Mask R-CNN extracted and identified  
48 cell spatial features, which could 
predict high-risk group, significantly 
worse survival than the low-risk group

AbdulJabbar 
et al. (41)

2020 2 1,070 4,599 TRACERx: NSCLC 
(n=275); LATTICe-A: 
ADC (n=4,324)

16790 H&E 
cells and 9333 

IHC cells

4219 H&E cells 5951 H&E cells 
and 5028 IHC 

cells

5082 H&E cells SCCNN Lymphocyte: 0.942; 
tumor: 0.933; other: 
0.917; stromal: 0.936

Lymphocyte: 
0.902; tumor: 
0.936; other: 
0.853; stromal: 
0.898

Lymphocyte: 
0.982; tumor: 
0.930; other: 
0.981; stromal: 
0.973

NR NR SCCNN for NSCLCs exhibited high 
accuracy of single-cell classification in 
H&E digital slides and T-cell identification 
in the IHC image slides, respectively

Wang et al. 
(40)

2019 3 NR 159 TCGA and NLST: 
ADC (n=29); SPORE: 
ADC (n=130)

29 130 0 0 DL-based ConvPath 
software

Lymphocytes: 99.3%; 
stromal cells: 87.9%; 
tumor cells: 91.6%; 
overall: 92.9%

NR NR NR NR The overall classification accuracies of 
the CNN in both datasets were 99.3% 
for lymphocytes, 87.9% for stromal cells, 
and 91.6% for tumor cells, respectively

Teramoto  
et al. (42)

2020 1 60 793 Normal (n=25); 
malignant (n=35)

NR 173 NR 0 PGGAN, DCGAN, 
ImageNet

ImageNet: 0.810; 
DCGAN: 0.795; 
PGGAN: 0.853

ImageNet: 0.850; 
DCGAN: 0.793; 
PGGAN: 0.854

ImageNet: 
0.768; DCGAN: 
0.797; PGGAN: 
0.853

NR NR PGGAN for cytological specimens 
improved the classification specificity 
by 8.5% and the total classification 
accuracy by approximately 4.3% 
compared to a CNN model

Saha et al. 
(43)

2021 1 712 712 TCGA: ADC (n=356); 
SCC (n=356)

356 160 160 0 TilGAN 0.98 0.96 NR NR 0.98 TilGAN generated the high quality 
of synthetic pathology images could 
efficiently classify real TIL and non-TIL 
patches with improved accuracy

NR, not reported; CNN, convolutional neural networks; DL, deep learning; SCCNN, sensitive convolutional neural networks; ADC, adenocarcinoma; NSCLC, non-small cell lung cancer; TCGA, The Cancer Genome Atlas; CSMC, Cedars-Sinai Medical Center; MIMW, the Military Institute of Medicine in 
Warsaw; DHMC, the Dartmouth-Hitchcock Medical Center; NLST, the National Lung Screening Trial project; SPORE, the University of Texas Special Program of Research Excellence; H&E, hematoxylin and eosin; IHC, immunohistochemistry; ACC, accuracy; SN, sensitivity; SP, specificity; GAN, generative 
adversarial network; PGGAN, progressive growing of GAN; DCGAN, deep convolutional generative adversarial network; TIL, tumor-infiltrating lymphocyte.
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(TIL) estimates. The data indicated that ADCs with a high 
number of immune cold regions were at a significantly 
increased risk of relapse than ADCs with a low number, 
independent of the number of total regions sampled and 
the immune phenotypes of other regions. Recently, the 
classification capability of a new DL architecture for 
detecting the cytologic pathology images was evaluated by 
Teramoto et al. (42) and Saha et al. (43), which generated 
high-quality synthetic images for improving classification 
performance. The progressive growth of GAN (PGGAN) 
was proposed by Teramoto et al. (42) and assessed in a 
60-patient dataset with 620 cytopathologic images. The 
overall classification accuracy of the CNN pretrained 
using PGGAN-generated images for identifying lung 
tumor cells was 85.3%, which was better than the CNNs 
pretrained using ImageNet or with a deep convolutional 
generative adversarial network (DCGAN). The proposed 
PGGAN for converting cytologic specimens has improved 
the classification specificity by 8.5% and the accuracy 
by nearly 4.3%. In a similar study, TilGAN, an efficient 
generative adversarial network to generate high-quality 
synthetic pathologic images followed by classification 
of TIL and non-TIL regions, was structured by Saha  
et al. (43) to analyze data from 356 ADCs and 356 SCCs. 
TilGAN for discriminating TIL and non-TIL regions 
on the entire-slide pathology images achieved an average 
classification accuracy of 97.83%, a precision of 98.34%, 
and a recall of 96.49%, showing the usefulness and 
effectiveness of the proposed GAN.

Therefore, the AI algorithm for nuclei segmentation 
and cell classification is an effective tool to study the tumor 
morphologic microenvironment and tumor growth patterns. 
Quantifying interactions between tumor and stromal cells 
or lymphocytes could potentially pave a way for predicting 
immune phenotypes and the immunotherapy response (40). 
Meanwhile, the capability of AI algorithms for recognizing 
distinct cells must be further verified, especially for 
identifying subtypes of T cells in the digital slides. 

Prognostic prediction models of AI based on 
image slides

After surgical treatment for early-stage ADC, patients 
with stage IB or more advanced disease usually receive 
adjuvant chemotherapy, increasing the survival rate 5%-
10% (44). However, nearly one-half of ADCs had relapses 
and subsequent disease progression (44,45). Based on 
a computational approach of AI, the ability to quantify 

relevant prognostic markers may identify the candidates for 
adjuvant therapy after pulmonary resection (6). Additionally, 
several morphometric features from H&E-stained images 
were significantly associated with pathologic diagnoses and 
prognoses and not easily identified by human evaluators, 
but could be detected using AI methods (46). 

In a previous study, the ConvPath model automatically 
learned to identify different nuclei based on the topologic 
feature maps of TME, including the nucleus centroid, nuclear 
boundary, or non-nuclei (46). Based on those features, an 
image feature-based prognostic model was used to divide the 
patients into high- and low-risk subgroups. After adjusting 
for clinical variables, including age, gender, smoking 
status, and stage, the high-risk subgroup was associated 
with worse survival in both independent cohorts (40).  
As shown in Table 4 (6,8,9,46-48), a series of studies 
constructed a prognosis prediction model based on the AI 
algorithms or the features extracted by the AI pipeline. Yu 
et al. (6) obtained 2480 H&E-stained slides of 1,311 ADCs 
and SCCs from two datasets. Seven machine learning 
models were constructed to distinguish malignancy from 
normal adjacent tissue based on 15 relevant quantitative 
image features. Those features were selected to train Net-
Cox proportional hazards models for predicting high-risk 
patients, which were superior to pathologists. Additionally, 
Luo et al. (9) developed an RF prediction model with 1,034 
NSCLCs from the TCGA cohort. This model not only 
selected the 18 most important features from 943 extracted 
morphologic features, but also predicted high- and low-risk 
groups based on the 18 selected features. Moreover, Wang 
et al. (8) trained a CNN model to automatically extract 
histopathologic features, reducing the manually labeled 
and segmented ROIs of digital slides in the testing process. 
Subsequently, 22 features were used to discriminate ADCs 
from benign adjacent tissues and to construct a univariate 
Cox proportional hazard model, which was considered as 
an objective prognostic model of ADCs superior to other 
clinical variables. The AI scheme not only successfully 
visualized the tumor-related features in pathology images, 
but also could be applied to developing a model for 
predicting recurrence. Wang et al. (46) used a retrospective 
cohort, including 70 H&E-stained slides of early-stage 
NSCLCs to train three machine learning schemes [quadratic 
discriminant analysis (QDA), linear discriminant analysis 
(LDA), and SVM], involving the most predictive features 
associated with disease recurrence (46). The top seven 
discriminative features were ultimately determined by 
QDA from 2,242 total corresponding features. Moreover, 
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Table 4 The characteristics of the included studies for prognosis-predicting models of AI based on the features of the image slides or genes profiles

Authors
Publication 

year
Number of 
datasets

Number 
of cases

Number 
of images

Features/
genes (total)

Subtypes (cases)
Training set 

(cases)
Validation 
set (cases)

Test set 
(cases)

Independent test 
datasets (cases)

Classifier
Results

Conclusion
High vs. low risk ACC AUC SN

Wang  
et al. (8)

2018 2 539 824 22 F (n=22) NLST: ADC (n=150); 
TCGA: ADC (n=389)

150 0 0 389 Inception (V3), 
univariate Cox 
proportional 
hazard model

2.25 (1.34–3.77) Tumor: 88.1%; 
non-malignant: 
93.5%; overall: 
89.8%

NR NR Prognostic prediction model with 22 shape 
features extracted by CNN were considered 
as an objective prognostic model of ADCs 
superior to clinical variables

Yu et al. 
(6)

2016 2 1,311 2,480 240, 15 F 
(n=9,879)

TCGA: ADC (n=515), SCC 
(n=502); TMAD: ADC 
(n=227), SCC (n=67)

70% of 
TCGA

0 30% of 
TCGA

294 NB, SVM, BT, 
RF; net-Cox 
proportional 
hazards models

NR NR Bagging: 0.74; Naive bayes: 
0.63; RF: 0.75; RF with CITs: 
0.73; SVMs with gaussian 
kernel: 0.75; SVMs with linear 
kernel: 0.70; SVMs with 
polynomial kernel: 0.74

NR Histopathological classifiers could 
successfully predict survival outcomes of 
NSCLCs, superior to pathologists

Luo et al. 
(9)

2017 1 1,034 3,186 18 F (n=943) TCGA: ADC (n=523), SCC 
(n=511)

2/3 of 
TCGA

0 1/3 of 
TCGA

0 RF prediction 
model

ADC: 2.34 
(1.12–4.91); SCC: 
2.22 (1.15–4.27)

NR NR NR The RF model with morphological features 
of digital slides showed the ability to predict 
prognosis in NSCLCs

Wang  
et al. (46)

2017 3 305 NR 7 F (n=242) Cohort 1: ADC (n=17), 
SCC (n=44), Other (n=9); 
Cohort 2: ADC (n=51), 
SCC (n=21), Other (n=47); 
Cohort 3: ADC (n=54), 
SCC (n=20), Other (n=41)

70 119 0 116 QDA, LDA, SVM NR Cohort 1: 81%; 
Cohort 2: 82%; 
Batch 1: 75%; 
Batch 2: 75%

Cohort 2: 0.84; Batch 1: 0.74; 
Batch 2: 0.77

NR QDA with nuclear feature of digitized slides of 
NSCLC biopsies yielded an accuracy of 81%, 
82% and 75% for recurrence prediction in 
cohort 1, 2 and 3 respectively

Li et al. 
(47)

2019 2 1,463 – 16 G 
(n=2,472)

TCGA: ADC (n=492); GEO: 
ADC (n=971)

492 232 347 386 LASSO; Cox 
regression

3.32 (2.11–5.21) NR 1-year: 0.822; 2-year: 0.714; 
3-year: 0.753.

NR The 16-gene-based LASSO model for ADC 
prognosis prediction was served as a practical 
and reliable prognosis predictive tool for ADCs

Yu et al. 
(48)

2019 1 371 – 28, 85 G TCGA: ADC (n=371) 297 0 74 0 SVM NR EBT_0.10: 73.6%; 
EBT_0.15: 76.0%; 
EBT_0.20: 80.0%

EBT_0.10: 0.710; EBT_0.15: 
0.810; EBT_0.20: 0.896

EBT_0.10: 93.8%; 
EBT_0.15: 90.7%; 
EBT_0.20: 98.5%

SVM model with the genetic features could 
well predict the ADC prognosis, much better 
than the conventional TNM staging system

NR, not reported; AI, artificial intelligence; LASSO, least absolute shrinkage and selection operator; NB, Naive Bayes; RF, random forest; BT, bagging for classification trees; QDA, Quadratic discriminant analysis; LDA, linear discriminant analysis; SVM, support vector machine; ADC, adenocarcinoma; SCC, 
squamous-cell carcinoma; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; TCGA, The Cancer Genome Atlas; NLST, the National Lung Screening Trial project; TMAD, the Stanford Tissue Microarray dataset; GEO, Gene Expression Omnibus; TNM, tumor, nodes, and metastasis; ACC, 
accuracy; SN, sensitivity; SP, specificity.
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QDA was also developed as a classifier regarded as the best 
of three classification models according to the best AUCs 
for predicting the postoperative recurrence in all cohorts. 
In addition, QDA yielded accuracies of 81%, 82%, and 
75% for prediction of recurrence in cohorts 1, 2, and 3, 
respectively (46). However, any single features could not 
be used to successfully predict recurrence or death (49) and 
these three models were just machine learning algorithms, 
not the state-of-the-art DL algorithms. Therefore, a more 
reliable AI scheme with the ability to quantify risks by 
combining significant clinical characteristics and entire-slide 
histopathologic image data, is in need to predict clinical 
outcomes and to provide optimal therapeutic decisions for 
patients with NSCLC. 

The treatment recommendation of the Watson 
for Oncology (WFO) system

With the rapid development of medicine in oncology, 
physicians might be unable to provide the latest therapeutic 
strategies for patients according to the new research 
findings and guidelines (50). Therefore, after accurate 
diagnosis based on AI technologies as mentioned above, 
the WFO system of AI, a cognitive computing system, 
was developed for assisting clinicians in providing precise 
treatment regimens based on the latest evidence and 
guidelines (51). The WFO system of AI can quickly identify 
key information in individual medical records, and in 
surface relevant evidence as well, which might affect patient 
management from the date of diagnosis to follow-up (51).

Through manual ly  inputt ing of  tumor-related 
information, WFO can conduct statistical analyses to 
predict the survival probability and output a personalized 
treatment recommendation for specific patients (52). A 
total of 149 patients with primary lung cancer were selected 
in a retrospective study, and Liu et al. (53) evaluated the 
consistency between the recommendations of WFO and 
the actual treatment provided by the multidisciplinary 
team (MDT). The general consistency was 65.8%, which 
was significantly affected by two major reasons, including 
pathologic subtypes and stages. The concordance rates of 
stage and subtypes are listed (51-54) (Table 5). Compared 
to patients with stage I–III NSCLCs, patients with stage 
IV NSCLCs obtained a higher concordance rate of 
89% with respect to regimens. Another similar study by 
You et al. (52) evaluated the concordance rate between 
the treatment recommendations of 310 NSCLCs by 
WFO and actual regimens, in which the overall rate for T
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both “recommended (34.52%)” and “for consideration 
(50.64%)” reached 85.16%. The concordance rates were 
87.56% and 79.12% for ADCs and SCCs, respectively, 
indicating that WFO might still have moderate space 
to be improved. Furthermore, Yao et al. (54) collected 
165 NSCLCs to evaluate the WFO system, achieving an 
overall consistency rate of 73.30%. The WFO system, 
studied by Kim et al. (51) using 405 cases with lung cancer, 
reached a higher overall concordance rate of 92.40%. 
Additionally, the agreement rates of ADCs and SCCs 
between MDT and WFO regimens were 94.90% and 
90.20%, respectively (54), which were also similar to the 
Yao study with consistency rates of 90.5% and 90.7% for 
ADCs and SCCs, respectively. Although WFO yielded 
excellent performance in these studies, the patient’s physical 
findings, complications, and finances should be taken into 
account and WFO must be improved to adapt to the real 
clinical practice in different countries (55). For example, 
some targeted drugs recommended by the WFO using 
the National Comprehensive Cancer Network (NCCN) 
Clinical Practice guideline were not accessible for 15.27% 
of the patients in China during the study period of the You 
study (52). Thus, the WFO is considered to be a counseling 
adviser for patients with lung cancer and a reference tool for 
oncologists, the power of which should be further verified 
in larger cohorts (55).

Comments

The AI algorithms with expert-level performance have been 
applied in several clinical fields, including classifying NSCLC 
subtypes on entire-slide images, analyzing the gene profiles 
of lung tumors, identifying cancer cells in the TME, and 
making clinical decisions. More importantly, after training 
with a large dataset, AI technology provides oncologists 
with an end-to-end analysis tool to use without requiring 
complex computational knowledge (26). Compared with a 
machine learning model, the more advanced DL pipeline 
with minimal human interaction is effective for automatic 
segmentation instead of manual segmentation. For extracting 
the medical features, the CNN model also reduces the 
necessities of hand-craft feature engineering with the help of 
end-to-end unsupervised DL (11). 

Likewise, AI has been extended to find out the cell-
free DNA, circulating tumor cells, and platelet RNA for 
diagnosing NSCLC via detecting the liquid biopsy samples 
(56-58). Nevertheless, the incorporation of both intensity 
and proportion of stained tumor cells in the liquid biopsies 

of NSCLC limited the improving diagnostic accuracy of 
AI technologies (27). Heretofore, only few studies have 
investigated the feasibility of applying AI technology to 
liquid biopsy samples. More robust evidences are warranted 
to confirm its promising prospect in diagnosing NSCLC.

Of note, AI still struggles with many challenges due to 
complex clinical situations and technical variables, such as 
pathologic image parameters, varieties of CNN architecture, 
patient comorbidities, and tumor heterogeneity. In the CNN 
scheme, image tiles from thick tissue cuts, regions with uneven 
slide thicknesses, and out-of-focus image tiles were considered 
as the major factors resulting in misclassification (15).  
The reproducibility of the AI models must be taken into 
considerations and must be further confirmed before applied 
into clinical daily activities. Although the risk of overfitting 
of AI models could be reduced by a large amount of data for 
training (25), most of the aforementioned studies involved 
inadequate samples, resulting in the presence of overfitting 
and instability of the AI models. For the WFO system, 
localization factors and individual elements were considered 
as the main bias risk for discordance between the actual 
therapies and treatment recommendations of the WFO (55). 
For example, regional differences in guidelines and available 
drugs led to distinct therapeutic experiences, which led to 
remarkable differences between the eastern and western 
countries (55). Notably, the performance of AI in the medical 
domains has been improved persistently to produce accurate 
and reliable results with more sophisticated designs.

Conclusions

In summary, AI tools have made substantial strides in 
recent years to interpret massive amounts of data in clinical 
domains, which are applied to diagnosis, treatment, and 
prognosis prediction of NSCLCs. Notably, more large-scale 
randomized controlled studies are warranted to confirm the 
accuracy, sensitivity and specificity of the AI algorithms, 
and to compare AI with experienced pathologists due to the 
complex clinical practices. Undeniably, the application of 
AI technologies in the field of lung cancer has a promising 
future.

Acknowledgments

Funding: The study was supported by National Natural 
Science Foundation of China (82172076); Jiangsu Key 
Research and Development Plan (Social Development) 
Project (BE2020653); Suzhou Key Discipline for Medicine 



7018 Li et al. Review of AI for pathologic diagnosis of NSCLC

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(12):7006-7020 | https://dx.doi.org/10.21037/jtd-21-806

(SZXK201803); Suzhou Key Laboratory of Thoracic 
Oncology (SZS201907); Municipal Program of People’s 
Livelihood Science and Technology in Suzhou (SS2019061); 
Discipline construction project of the Second Affiliated 
Hospital of Soochow University (XKTJ-XK202004); 
Scientific Program of Suzhou Municipal Health and Health 
Committee (LCZX202004).

Footnote

Provenance and Peer Review: This article was commissioned 
by the Guest Editors (Jianxing He and Hengrui Liang) for 
the series “Artificial Intelligence in Thoracic Disease: from 
Bench to Bed” published in Journal of Thoracic Disease. The 
article has undergone external peer review. 

Reporting Checklist: The authors have completed the 
Narrative Review reporting checklist. Available at https://
dx.doi.org/10.21037/jtd-21-806

Conflicts of Interest: The authors have completed the ICMJE 
uniform disclosure form (available at https://dx.doi.
org/10.21037/jtd-21-806). The series “Artificial Intelligence 
in Thoracic Disease: from Bench to Bed” was commissioned 
by the editorial office without any funding or sponsorship. 
The authors have no other conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 
2020: GLOBOCAN Estimates of Incidence and Mortality 
Worldwide for 36 Cancers in 185 Countries. CA Cancer J 
Clin 2021;71:209-49.

2.	 Shi JF, Wang L, Wu N, et al. Clinical characteristics 
and medical service utilization of lung cancer in China, 
2005-2014: Overall design and results from a multicenter 
retrospective epidemiologic survey. Lung Cancer 
2019;128:91-100.

3.	 National Lung Screening Trial Research Team; Aberle 
DR, Adams AM, et al. Reduced lung-cancer mortality with 
low-dose computed tomographic screening. N Engl J Med 
2011;365:395-409.

4.	 de Koning HJ, van der Aalst CM, de Jong PA, et al. 
Reduced Lung-Cancer Mortality with Volume CT 
Screening in a Randomized Trial. N Engl J Med 
2020;382:503-13.

5.	 Travis WD, Brambilla E, Riely GJ. New pathologic 
classification of lung cancer: relevance for clinical practice 
and clinical trials. J Clin Oncol 2013;31:992-1001.

6.	 Yu KH, Zhang C, Berry GJ, et al. Predicting non-small 
cell lung cancer prognosis by fully automated microscopic 
pathology image features. Nat Commun 2016;7:12474.

7.	 Wang S, Rong R, Yang DM, et al. Computational 
Staining of Pathology Images to Study the Tumor 
Microenvironment in Lung Cancer. Cancer Res 
2020;80:2056-66.

8.	 Wang S, Chen A, Yang L, et al. Comprehensive analysis of 
lung cancer pathology images to discover tumor shape and 
boundary features that predict survival outcome. Sci Rep 
2018;8:10393.

9.	 Luo X, Zang X, Yang L, et al. Comprehensive 
Computational Pathological Image Analysis Predicts Lung 
Cancer Prognosis. J Thorac Oncol 2017;12:501-9.

10.	 Yu KH, Berry GJ, Rubin DL, et al. Association of 
Omics Features with Histopathology Patterns in Lung 
Adenocarcinoma. Cell Syst 2017;5:620-627.e3.

11.	 Coudray N, Ocampo PS, Sakellaropoulos T, et al. 
Classification and mutation prediction from non-small cell 
lung cancer histopathology images using deep learning. 
Nat Med 2018;24:1559-67.

12.	 Wei JW, Tafe LJ, Linnik YA, et al. Pathologist-level 
classification of histologic patterns on resected lung 
adenocarcinoma slides with deep neural networks. Sci Rep 
2019;9:3358.

13.	 She Y, Jin Z, Wu J, et al. Development and Validation of a 
Deep Learning Model for Non-Small Cell Lung Cancer 
Survival. JAMA Netw Open 2020;3:e205842.

14.	 Litjens G, Sánchez CI, Timofeeva N, et al. Deep 
learning as a tool for increased accuracy and efficiency of 
histopathological diagnosis. Sci Rep 2016;6:26286.

15.	 Yu KH, Wang F, Berry GJ, et al. Classifying non-small 

https://dx.doi.org/10.21037/jtd-21-806
https://dx.doi.org/10.21037/jtd-21-806
https://dx.doi.org/10.21037/jtd-21-806
https://dx.doi.org/10.21037/jtd-21-806
https://creativecommons.org/licenses/by-nc-nd/4.0/


7019Journal of Thoracic Disease, Vol 13, No 12 December 2021

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(12):7006-7020 | https://dx.doi.org/10.21037/jtd-21-806

cell lung cancer types and transcriptomic subtypes using 
convolutional neural networks. J Am Med Inform Assoc 
2020;27:757-69.

16.	 Gong J, Liu JY, Sun XW, et al. Computer-aided 
diagnosis of lung cancer: the effect of training data sets 
on classification accuracy of lung nodules. Phys Med Biol 
2018;63:035036.

17.	 Gong J, Liu JY, Jiang YJ, et al. Fusion of quantitative 
imaging features and serum biomarkers to improve 
performance of computer-aided diagnosis scheme for lung 
cancer: A preliminary study. Med Phys 2018;45:5472-81.

18.	 Zhao W, Yang J, Sun Y, et al. 3D Deep Learning 
from CT Scans Predicts Tumor Invasiveness of 
Subcentimeter Pulmonary Adenocarcinomas. Cancer 
Res 2018;78:6881-9.

19.	 Wang J, Chen X, Lu H, et al. Feature-shared adaptive-
boost deep learning for invasiveness classification of 
pulmonary subsolid nodules in CT images. Med Phys 
2020;47:1738-49.

20.	 Baldominos A, Cervantes A, Saez Y, et al. A Comparison 
of Machine Learning and Deep Learning Techniques for 
Activity Recognition using Mobile Devices. Sensors (Basel) 
2019;19:521.

21.	 Qian Y, Qiu Y, Li CC, et al. A novel diagnostic method 
for pituitary adenoma based on magnetic resonance 
imaging using a convolutional neural network. Pituitary 
2020;23:246-52.

22.	 Kriegsmann M, Haag C, Weis CA, et al. Deep Learning 
for the Classification of Small-Cell and Non-Small-Cell 
Lung Cancer. Cancers (Basel) 2020;12:1604.

23.	 Hung YP, Chirieac LR. How should molecular findings 
be integrated in the classification for lung cancer? Transl 
Lung Cancer Res 2020;9:2245-54.

24.	 Liu H, Jing B, Han W, et al. A Comparative Texture 
Analysis Based on NECT and CECT Images to 
Differentiate Lung Adenocarcinoma from Squamous Cell 
Carcinoma. J Med Syst 2019;43:59.

25.	 Teramoto A, Tsukamoto T, Kiriyama Y, et al. Automated 
Classification of Lung Cancer Types from Cytological 
Images Using Deep Convolutional Neural Networks. 
Biomed Res Int 2017;2017:4067832.

26.	 Khosravi P, Kazemi E, Imielinski M, et al. Deep 
Convolutional Neural Networks Enable Discrimination of 
Heterogeneous Digital Pathology Images. EBioMedicine 
2018;27:317-28.

27.	 Koh J, Go H, Kim MY, et al. A comprehensive 
immunohistochemistry algorithm for the histological 
subtyping of small biopsies obtained from non-small cell 

lung cancers. Histopathology 2014;65:868-78.
28.	 Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: 

exploring the world's knowledge of somatic mutations in 
human cancer. Nucleic Acids Res 2015;43:D805-11.

29.	 Cancer Genome Atlas Research Network. Comprehensive 
molecular profiling of lung adenocarcinoma. Nature 
2014;511:543-50.

30.	 Zhao W, Yang J, Ni B, et al. Toward automatic prediction 
of EGFR mutation status in pulmonary adenocarcinoma 
with 3D deep learning. Cancer Med 2019;8:3532-43.

31.	 Xiao Y, Wu J, Lin Z, et al. A deep learning-based multi-
model ensemble method for cancer prediction. Comput 
Methods Programs Biomed 2018;153:1-9.

32.	 Yuan F, Lu L, Zou Q. Analysis of gene expression profiles 
of lung cancer subtypes with machine learning algorithms. 
Biochim Biophys Acta Mol Basis Dis 2020;1866:165822.

33.	 Podolsky MD, Barchuk AA, Kuznetcov VI, et al. 
Evaluation of Machine Learning Algorithm Utilization 
for Lung Cancer Classification Based on Gene Expression 
Levels. Asian Pac J Cancer Prev 2016;17:835-8.

34.	 Cai Z, Xu D, Zhang Q, et al. Classification of lung cancer 
using ensemble-based feature selection and machine 
learning methods. Mol Biosyst 2015;11:791-800.

35.	 Li D, Yang W, Zhang Y, et al. Genomic analyses based on 
pulmonary adenocarcinoma in situ reveal early lung cancer 
signature. BMC Med Genomics 2018;11:106.

36.	 Dong Y, Yang W, Wang J, et al. MLW-gcForest: a multi-
weighted gcForest model towards the staging of lung 
adenocarcinoma based on multi-modal genetic data. BMC 
Bioinformatics 2019;20:578.

37.	 Yang Z, Yin H, Shi L, et al. A novel microRNA signature 
for pathological grading in lung adenocarcinoma based on 
TCGA and GEO data. Int J Mol Med 2020;45:1397-408.

38.	 Gertych A, Swiderska-Chadaj Z, Ma Z, et al. 
Convolutional neural networks can accurately distinguish 
four histologic growth patterns of lung adenocarcinoma in 
digital slides. Sci Rep 2019;9:1483.

39.	 Tsao MS, Marguet S, Le Teuff G, et al. Subtype 
Classification of Lung Adenocarcinoma Predicts Benefit 
From Adjuvant Chemotherapy in Patients Undergoing 
Complete Resection. J Clin Oncol 2015;33:3439-46.

40.	 Wang S, Wang T, Yang L, et al. ConvPath: A software 
tool for lung adenocarcinoma digital pathological 
image analysis aided by a convolutional neural network. 
EBioMedicine 2019;50:103-10.

41.	 AbdulJabbar K, Raza SEA, Rosenthal R, et al. Geospatial 
immune variability illuminates differential evolution of 
lung adenocarcinoma. Nat Med 2020;26:1054-62.



7020 Li et al. Review of AI for pathologic diagnosis of NSCLC

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2021;13(12):7006-7020 | https://dx.doi.org/10.21037/jtd-21-806

Cite this article as: Li Y, Chen D, Wu X, Yang W, Chen Y.  
A narrat ive review of  art i f ic ia l  intel l igence-ass isted 
histopathologic diagnosis and decision-making for non-small 
cell lung cancer: achievements and limitations. J Thorac Dis 
2021;13(12):7006-7020. doi: 10.21037/jtd-21-806

42.	 Teramoto A, Tsukamoto T, Yamada A, et al. Deep learning 
approach to classification of lung cytological images: 
Two-step training using actual and synthesized images by 
progressive growing of generative adversarial networks. 
PLoS One 2020;15:e0229951.

43.	 Saha M, Guo X, Sharma A. TilGAN: GAN for Facilitating 
Tumor-Infiltrating Lymphocyte Pathology Image 
Synthesis With Improved Image Classification. IEEE 
Access 2021;9:79829-40.

44.	 Liang Y, Wakelee HA. Adjuvant chemotherapy of 
completely resected early stage non-small cell lung cancer 
(NSCLC). Transl Lung Cancer Res 2013;2:403-10.

45.	 Crinò L, Weder W, van Meerbeeck J, et al. Early stage 
and locally advanced (non-metastatic) non-small-cell lung 
cancer: ESMO Clinical Practice Guidelines for diagnosis, 
treatment and follow-up. Ann Oncol 2010;21 Suppl 
5:v103-15.

46.	 Wang X, Janowczyk A, Zhou Y, et al. Prediction of 
recurrence in early stage non-small cell lung cancer using 
computer extracted nuclear features from digital H&E 
images. Sci Rep 2017;7:13543.

47.	 Li Y, Ge D, Gu J, et al. A large cohort study identifying a 
novel prognosis prediction model for lung adenocarcinoma 
through machine learning strategies. BMC Cancer 
2019;19:886.

48.	 Yu J, Hu Y, Xu Y, et al. LUADpp: an effective prediction 
model on prognosis of lung adenocarcinomas based on 
somatic mutational features. BMC Cancer 2019;19:263.

49.	 Yuan M, Zhang YD, Pu XH, et al. Comparison of a 
radiomic biomarker with volumetric analysis for decoding 
tumour phenotypes of lung adenocarcinoma with different 
disease-specific survival. Eur Radiol 2017;27:4857-65.

50.	 Doyle-Lindrud S. Watson will see you now: a 

supercomputer to help clinicians make informed treatment 
decisions. Clin J Oncol Nurs 2015;19:31-2.

51.	 Kim MS, Park HY, Kho BG, et al. Artificial intelligence 
and lung cancer treatment decision: agreement with 
recommendation of multidisciplinary tumor board. Transl 
Lung Cancer Res 2020;9:507-14.

52.	 You HS, Gao CX, Wang HB, et al. Concordance of 
Treatment Recommendations for Metastatic Non-Small-
Cell Lung Cancer Between Watson for Oncology System 
and Medical Team. Cancer Manag Res 2020;12:1947-58.

53.	 Liu C, Liu X, Wu F, et al. Using Artificial Intelligence 
(Watson for Oncology) for Treatment Recommendations 
Amongst Chinese Patients with Lung Cancer: Feasibility 
Study. J Med Internet Res 2018;20:e11087.

54.	 Yao S, Wang R, Qian K, et al. Real world study for the 
concordance between IBM Watson for Oncology and 
clinical practice in advanced non-small cell lung cancer 
patients at a lung cancer center in China. Thorac Cancer 
2020;11:1265-70.

55.	 Zou FW, Tang YF, Liu CY, et al. Concordance Study 
Between IBM Watson for Oncology and Real Clinical 
Practice for Cervical Cancer Patients in China: A 
Retrospective Analysis. Front Genet 2020;11:200.

56.	 Best MG, Sol N, In 't Veld SGJG, et al. Swarm 
Intelligence-Enhanced Detection of Non-Small-Cell Lung 
Cancer Using Tumor-Educated Platelets. Cancer Cell 
2017;32:238-252.e9.

57.	 Qi J, Hong B, Tao R, et al. Prediction model for malignant 
pulmonary nodules based on cfMeDIP-seq and machine 
learning. Cancer Sci 2021;112:3918-23.

58.	 Shin H, Oh S, Hong S, et al. Early-Stage Lung Cancer 
Diagnosis by Deep Learning-Based Spectroscopic Analysis 
of Circulating Exosomes. ACS Nano 2020;14:5435-44. 


