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Chemokines are a family of small, secreted cytokines which regulate a variety of cell
functions. The C-X-C motif chemokine ligand 12 (CXCL12) binds to C-X-C chemokine
receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7). The interaction
of CXCL12 and its receptors subsequently induces downstream signaling pathways with
broad effects on chemotaxis, cell proliferation, migration, and gene expression.
Accumulating evidence suggests that the CXCL12/CXCR4/CXCR7 axis plays a pivotal
role in tumor development, survival, angiogenesis, metastasis, and tumormicroenvironment.
In addition, this chemokine axis promotes chemoresistance in cancer therapy via
complex crosstalk with other pathways. Multiple small molecules targeting CXCR4/
CXCR7 have been developed and used for preclinical and clinical cancer treatment.
In this review, we describe the roles of the CXCL12/CXCR4/CXCR7 axis in cancer
progression and summarize strategies to develop novel targeted cancer therapies.
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INTRODUCTION

Chemokines are small secreted peptides with molecular weights in the range of 8–12 kD (Rollins,
1997). They are best known for their roles in the mediation of immune cell recruitment (Rot and Von
Andrian, 2004). Subsequently, they were reported to play essential roles in various pathological
conditions, including inflammation, atherosclerosis, hematopoiesis, and cancer (Romagnani et al.,
2004; Ma et al., 2013; Griffith et al., 2014; Wang et al., 2018). Based on the arrangement of the two
cysteine residues near the amino terminus, chemokines can be classified into four subfamilies (CC,
CXC, CX3C, and C) (Nomiyama et al., 2013). Chemokines exert their function by binding to seven-
transmembrane- spanning G protein-coupled cell-surface receptors. Named by their endogenous
ligand (chemokines), chemokine receptors are grouped into two subfamilies: conventional
chemokine receptors (CCKRs) and atypical chemokine receptors (ACKRs) (Bachelerie et al.,
2014). Chemokines binding to CCKRs would induce a conformational change in the receptor,
leading to intracellular signal transduction (Kufareva et al., 2015). However, ACKRs do not couple to
many signal transduction pathways, which are considered as scavengers for chemokines (Bachelerie
et al., 2014).

Stromal cell-derived factor-1 (SDF-1), which is also referred to as CXCL12, is a homeostatic CXC
chemokine that possesses seven different isoforms. It is secreted in a wide range of different tissues by
stromal cells, fibroblasts, and epithelial cells, regulating hematopoietic cell trafficking and secondary
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lymphoid tissue architecture (Luther et al., 2002). Growing
evidence has shown regulatory roles of the tumor stromal cell
interactions in tumor initiation and progression (Barbieri et al.,
2010). CXCL12 and its receptors, CXCR4 and CXCR7, have
been identified as the key factors in tumor development and
metastasis Ovarian epithelial tumor cells express high levels of
CXCL12. CXCL12 induces signaling via the AKT and ERK
pathways, stimulating ovarian cancer cell growth in vitro
(Scotton et al., 2002). Similarly, the expression of CXCL12 is
associated with pathological features and clinical outcomes in
human breast cancer (Kang et al., 2005). Moreover, CXCL12 is
expressed at high levels in bladder cancer (Yang et al., 2015a),
gastric cancer (Ishigami et al., 2007), hepatocellular carcinoma
(Ghanem et al., 2014), prostate cancer (Zhang et al., 2008), lung
cancer (Imai et al., 2010), and many other human tumors (Sakai
et al., 2012; Qiao et al., 2016; Teng et al., 2016). However, the exact
functions of CXCL12 in most cancers are yet to be fully
elucidated.

CXCR4, also known as fusin, is a highly conserved seven
transmembrane-spanning G-protein coupled receptor. It consists
of 352 amino acid residues, including an amino (N)-terminus,
three extracellular and intracellular loops, 7 TM helices, and a
carboxyl (C)-terminus (Wu et al., 2010). CXCL12 is the only
confirmed chemokine that binds to CXCR4, although studies
implicate other factors activate this receptor, such as macrophage
migration inhibitory factor (MIF) and extracellular ubiquitins
(Bernhagen et al., 2007; Saini et al., 2011). CXCR4 was initially
found to function as a co-receptor required for entry of T-tropic
(X4) HIV viruses that target CD4-positive T cells (Feng et al.,
1996). Later, CXCR4 has been discovered strongly expressed in
multiple types of cancers, including breast cancer (Müller et al.,
2001), kidney cancer (Pan et al., 2006), ovarian cancer (Jiang
et al., 2006), thyroid cancer (De Falco et al., 2007), prostate cancer
(Hirata et al., 2007), lung cancer (Gangadhar et al., 2010), colon
cancer (Lv et al., 2014), and thymoma (Wang et al., 2016). Along
with its ligand CXCL12, CXCR4 controls the transduction of
different downstream signaling pathways that are profoundly
involved in tumor cell survival, proliferation, and migration
(Kijima et al., 2002; Marchesi et al., 2004; Yang et al., 2019).
In addition, increasing evidence showed that CXCR4 not only
plays a marked role in cancer metastasis but also in cancer stem
cells (Bagri et al., 2002; Kucia et al., 2005).

CXCR7, also named atypical chemokine receptor 3 (ACKR3),
is a seven-transmembrane G-protein coupled receptor. It was
originally cloned from a dog thyroid cDNA library and named
receptor dog cDNA 1 (RDC-1) (Libert et al., 1989). CXCR7 was
initially presumed to be a receptor for vasoactive intestinal
peptide (VIP) (Sreedharan et al., 1991) and calcitonin gene-
related peptide 1 (CGRP1) (McLatchie et al., 1998), but
subsequent studies did not confirm this. CXCR4 has been
thought to be the only receptor for CXCL12. However,
CXCR7 was identified to be a higher-affinity receptor for
CXCL12 than is CXCR4 in 2005 (Balabanian et al., 2005).
CXCR7 has been regarded as a scavenger receptor for
CXCL12 in some studies (Naumann et al., 2010), while other
evidence suggested that CXCR7 could induce intracellular
signaling associated with CXCR4 (Levoye et al., 2009). Current

studies have found CXCR7 is present in diverse tumor cell lines,
including breast cancer (Burns et al., 2006), cervical carcinoma
(Burns et al., 2006), glioma (Hattermann et al., 2010), and
pancreatic cancer (Liu et al., 2014). Additionally, the
expression of CXCR7 is extensively high in the endothelial
cells of tumor tissues (Miao et al., 2007). Another research
group addressed a correlation between the expression of
CXCR7 and enhanced adhesive/invasive activities in prostate
cancer (Wang et al., 2008a). These specific features suggest
that CXCR7 is closely related to tumor progression.

This review summarizes the downstream cell signaling
transduction of CXCL12/CXCR4/CXCR7 axis (abbreviation:
CXCL12 axis) and the role of CXCL12 axis in tumor
progression, growth, survival, angiogenesis, metastasis, and
chemoresistance. We also emphasize the therapeutic targeting
of the CXCL12 axis for cancer treatment.

C-X-C MOTIF CHEMOKINE LIGAND 12
AXIS SIGNAL TRANSDUCTION

CXCL12/CXCR4/CXCR7 can stimulate diversified downstream
signaling pathways that regulate chemotaxis, gene transcription,
cell survival, and proliferation. Figure 1 presents the principal
signaling pathways thought to be involved in CXCL12 signal
transduction. The precise transduction may differ between cell
types as some features might be tissue-dependent.

CXCL12 binding to CXCR4 promotes a three-dimensional
conformation change and initiates the exchange from GTP to
GDP, leading to the dissociation of Gα subunit from Gβ/Gγ dimer
(Bajetto et al., 2001). The dissociated Gβ/Gγ dimer is capable of
activating phospholipase C (PLC)-β, which catalyzes the
hydrolysis of phosphatidylinositol (4,5)-bisphosphate (PIP2)
into two secondary messengers, inositol (1,4,5)- trisphosphate
(IP3) and diacylglycerol (DAG). Upon binding with IP3, IP3
receptor (IP3R) triggers the release of calcium from intracellular
stores into the cytoplasm (Mellado et al., 2001). DAG promotes
the activation of protein kinase C (PKC) and mitogen-activated
protein kinase (MAPK), which contributes to chemotaxis (Sun
et al., 2002). The Gβ/Gγ dimer is additionally involved in Ras
activation of the MAPK/ERK cascade, inducing profound
consequences for gene expression and cell cycle progression
(Würth et al., 2014). Based on the coupled Gα subunits,
diverse GPCR signaling pathways can be classified into four
families: Gαs, Gαi, Gαq, and Gα12 (Goldsmith and
Dhanasekaran, 2007). At first, CXCR4 was classified as a
Gαi-protein-coupled receptor (Gupta et al., 1998). The
activation of Gαi subunits inhibits adenyl cyclase, which
catalyzes 5′adenosine triphosphate into cyclic adenosine
monophosphate (cAMP), thereby regulating other downstream
effectors (Gerits et al., 2008). Either the Gβ/Gγ dimer or the Gαi
subunit can activate phosphoinositide-3 kinase (PI3K), leading to
phosphorylation of multiple focal adhesion proteins and
contributing to cell migration (Wang et al., 2000). By
generating phosphatidylinositol (3,4,5)- triphosphate, PI3K can
trigger the activation of the serine-threonine kinase AKT, thus
stimulating the downstream transcription factor nuclear factor-
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κB (NF-κB) and mTOR pathways, which play key roles in tumor
cell survival and proliferation (Barbero et al., 2003; Ward, 2006).
In addition, Gαi is in some contexts necessary for Rac activation
(Li et al., 2013). Despite the well-characterized coupling to Gαi,
CXCR4 can also transduce signal through other Gα proteins, such
as Gαq and Gα12/13. CXCR4 coupled to Gαq can couple to
downstream events via PLC-β, which leads to increased IP3
synthesis and PKC signaling (Princen et al., 2003). CXCR4
stimulation of Gα12/13 can also stimulate Bruton’s tyrosine
kinase, which inhibits Fas-mediated apoptosis (Jiang et al.,
1998). Furthermore, Gα12/13 is required as a direct activator of
Rho through the modulation of Rho-guanine nucleotide
exchange factors (Rubin, 2009). CXCR4 signaling is modulated
by receptor internalization and lysosomal degradation. Following
CXCL12 binding, the intracellular C-terminus of CXCR4 is
rapidly phosphorylated at serine sites by G-protein coupled
receptor kinases (GRKs), resulting in recruitment of β-arrestin
and clathrin-mediated endocytosis (Busillo and Benovic, 2007).
β-arrestin prevents the CXCR4 from coupling with G proteins
and targets them for lysosomal degradation (Luttrell and Gesty-
Palmer, 2010).

Initially, CXCR7 was characterized as a scavenger or decoy
receptor for CXCL12 due to the absence of typical intracellular
responses (such as intracellular calcium mobilization or
modulation of adenylyl cyclase activity) after CXCL12 binding
(Zabel et al., 2009). Moreover, unlike CXCR4 internalization,
CXCR7 internalization occurs even in the absence of ligand
binding and does not result in receptor degradation (Klein

et al., 2014). Like CXCR4, CXCR7 can activate numerous
intracellular signaling pathways, especially the AKT and
MAPK pathways, via G-proteins (Odemis et al., 2012) or by
β-arrestin (Gravel et al., 2010). CXCR4 and CXCR7 can each form
homo- and heterodimers (Luker et al., 2009). The formation of
heterodimers enhances CXCL12-dependent intracellular calcium
mobilization and ERK1/2 phosphorylation (Sierro et al., 2007),
yet blocks CXCR4 coupling to G protein complexes (Levoye et al.,
2009). Therefore, CXCR7 signal transduction is still under
intense study, particularly with respect to mechanisms of
signaling specificity.

C-X-C MOTIF CHEMOKINE LIGAND 12
AXIS IN TUMOR PROGRESSION

Chemokines and their receptors have long been associated with
cancer progression (Vicari and Caux, 2002; Tanaka et al., 2005;
Janssens et al., 2018). More recently, the chemokine CXCL12 and
its cognate receptors (CXCR4 and CXCR7) have been shown to
play central roles in cancer proliferation, angiogenesis, invasion,
tumor microenvironment, as well as drug resistance induced by
chemotherapy. There appear to be two mechanisms by which
CXCL12 affects tumor cell biology: 1) direct stimulation of
signaling pathways that promote cancer cell growth,
metastasis, and angiogenesis; 2) indirect effects, including the
recruitment of CXCR4/CXCR7-positive cancer cells to CXCL12-
expressing organs (Duda et al., 2011).

FIGURE 1 | Proposed CXCL12/CXCR4/CXCR7 signaling pathways. After binding with CXCL12, CXCR4 activates downstream signaling through G proteins and
GRKs. Dissociation of the G protein complexes subsequently triggers MAPK, ERK1/2, and AKT signaling pathways, thereby promoting cell survival and proliferation.
GRKs mainly induce the recruitment of β-arrestin leading to CXCR4 internalization. CXCR7 could induce β-arrestin independently or through CXCR4/CXCR7
heterodimer, resulting in MAPK activation and CXCL12 scavenging. The question mark indicates that whether CXCR7 is coupled to G protein has been in debate.

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 5746673

Shi et al. CXCL12/CXCR4/CXCR7 Axis in Cancer

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


C-X-C Motif Chemokine Ligand 12 Axis in
Tumor Cell Growth and Survival

One of themajor biological effects modulated by the CXCL12 axis
is to promote tumor cell survival and proliferation. In 1998,
Sehgal et al. first found CXCR4 was overexpressed in
glioblastoma cell lines, and the expression of antisense CXCR4
inhibited glioma cell proliferation (Sehgal et al., 1998).
Furthermore, exogenous CXCL12 induces proliferation in a
dose-dependent manner in human glioblastoma cell lines
(Barbero et al., 2003). The CXCL12 axis has been identified to
induce proliferation of cell lines derived from many types of
cancers, including prostate cancer (Fernandis et al., 2002), breast
cancer (Ueda et al., 2006), lung cancer (Miao et al., 2007),
multiple myeloma (Beider et al., 2011), and pancreatic cancer
(Gao et al., 2010). The CXCL12/CXCR4 interaction
phosphorylates CXCR4, subsequently promotes calcium flux,
and directly activates MAPK, PI3K, Wnt, and Sonic Hedgehog
signaling pathways, thus inducing proliferation of various types
of tumor cells (Getts et al., 2014). The activated MAPK alters
translation of mRNA and phosphorylates several other cellular
proteins (c-Myc and RSK kinases) that are critical to cell
proliferation, cell cycle progression, cell division, and
differentiation. CXCR4 expression can be upregulated by the
transcription factor c-Myc, which in turn activates MAPK.
Therefore, CXCR4 expression and MAPK signaling form a
positive feedback loop to further sustain proliferative signaling
(Figure 2) (Thomas et al., 2008).

Activation of CXCR4 also increases expression of EGF/EGFR
signaling proteins, leading to increased cell proliferation (Weekes
et al., 2012). Wnt signaling plays a pivotal role in CXCL12-
induced tumor cell proliferation, as silencing CXCL12/CXCR4
signaling influences pancreatic cancer cell phenotypes and

inhibits tumor cell proliferation in vitro via inactivation of the
canonical Wnt pathway (Wang et al., 2008b). Additionally, the
activation of AKT and ERK signaling pathways by the CXCL12
axis promotes nuclear accumulation of NFκB and increases NFκB
signaling by inducing the phosphorylation and destabilization of
IκB-α, followed by SHH up-regulation (Singh et al., 2012).
Moreover, SHH signaling exerts its paracrine effect mainly by
activating protein patched homolog (Ptch) on the surrounding
stromal cells and subsequently induces additional CXCL12
expression and extracellular release to complete a positive pro-
proliferative feedback loop (Figure 2) (Sleightholm et al., 2017).
CXCR7 activates the AKT signaling pathway and stimulates
EGFR signaling, thereby increasing tumor cell proliferation
and survival (Wang et al., 2008a; Singh and Lokeshwar, 2011).
Moreover, CXCR7 overexpression and gene silencing in tumor
cells collectively support the role of CXCR7 contribution to
tumor growth (Miao et al., 2007; Meijer et al., 2008).
However, study in neuroblastoma (NB) indicated that CXCR7
activation strongly reduced the NB cell growth through ERK1/2
cascade both in vitro and in vivo (Liberman et al., 2012). Likewise,
CXCR7 has been found associated with suppressing tumor
growth and migration in colon cancer (Heckmann et al.,
2014). These findings reflect a controversial role of CXCR7 in
tumor cell proliferation, which also indicates that the function of
CXCR7 might be cell type-specific. Extensive studies of its role in
different malignancies would be beneficial for achieving precision
medicine.

The CXCL12 axis also indirectly exerts anti-apoptotic effects
in tumor cells. As mentioned previously, the CXCL12/CXCR4
axis activates AKT and ERK, subsequently leading to NFκB
accumulation, which can suppress apoptotic signaling (Ganju
et al., 1998). The induction of MAPK-ERK and PI3K pathways by
CXCL12 inactivates the pro-apoptotic BAD (Bcl2-associated

FIGURE 2 | Proposed positive feedback loops of CXCL12/CXCR4 signaling to enhance tumor cell proliferation. ERK1/2 MAPK activated by CXCL12/CXCR4
interaction induces c-Myc signaling, leading to CXCR4 upregulation with increased cancer cell proliferation. In addition, CXCL12 binding to CXCR4 triggers NFκB
signaling, which induces SHH synthesis and release from the tumor cells. Secreted SHH promotes CXCL12 upregulation and release from the stromal cells after its
binding to protein patched homolog (Ptch), which in turn activates CXCL12/CXCR4 axis in tumor cells.
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agonist of cell death) protein (Suzuki et al., 2001). This may arise
through ERK phosphorylation of Bad on serine 112, which results
in the dissociation of Bad from Bcl-2 and enables Bcl-2 to exert its
anti-apoptotic effects (Scheid et al., 1999). Similarly, the CXCL12/
CXCR4 axis may stimulate ERK phosphorylation of Bim,
resulting in Bim dissociation from the anti-apoptotic proteins
Bcl-2 and Mcl-1 and enabling the free Bcl-2 and Mcl-1 to exert
their anti-apoptotic effects by binding to Bax (McCubrey et al.,
2007). CXCR7 signaling also suppresses apoptosis. CXCR7
overexpression reduces the apoptotic fraction in prostate
cancer cells and protects these cells from apoptosis (Wang
et al., 2008a). Likewise, knockdown of CXCR7 in the MCF7
breast cancer cell line increased the expression of the pro-
apoptotic caspase three and eight proteins (Gao et al., 2015).

Another function of the CXCL12 axis in tumor cell growth and
survival is evading growth suppression, which is most commonly
regulated through the Rb or p53 pathways. Wildtype p53 binds to
the GFI-1 binding site in the proximal enhancer region of the
CXCR4 gene, which suppresses CXCR4 expression (Katoh and
Katoh, 2010). Treatment with p53 rescue drugs (PRIMA-1, CP-
31398) in p53 mutant cells can restore the suppression of CXCR4
transcription in cells with mutant p53. Loss of functional p53 is
commonly observed in many cancer cell lines, which is one of the
mechanisms resulting in CXCR4 upregulation. As mentioned
before, the CXCL12/CXCR4 axis increases the expression of pro-
survival proteins MDM-2 and NFκB through AKT activation.
Specifically, MDM-2 phosphorylation of p53 directly leads to its
degradation through ubiquitin-dependent proteolysis, thereby
promoting tumor cell survival and proliferation (Sleightholm
et al., 2017).

C-X-C Motif Chemokine Ligand 12 Axis in
Angiogenesis
Both in vitro and in vivo studies suggest that the expression level
of CXCL12/CXCR4 in cancer cells is positively correlated with
microvessel density. Initially, the angiogenic activity of CXCR4
was inferred in mice lacking CXCL12 or CXCR4 (Tachibana
et al., 1998). For example, mice lacking CXCR4 or CXCL12 are
defective in the formation of the large vessels supplying the
gastrointestinal tract and exhibit defects in vascular
development, hematopoiesis, and cardiogenesis. Moreover,
CXCR4 is highly expressed in the endothelial cells of large
vessels in tumor stroma, indicating that the CXCL12/CXCR4
signaling plays a vital role in tumor angiogenesis (Hayashi and
Kume, 2008). There are four possible mechanisms by which
CXCL12/CXCR4 regulates tumor angiogenesis: 1) upregulates
vascular endothelial growth factor (VEGF) expression in tumor
tissue through the PI3K/Akt signaling pathway; 2) reduces the
expression of glycolytic enzyme phosphoglycerate kinase 1
(PGK1) which suppresses the secretion of VEGF; 3)
upregulates several angiogenesis-associated genes in cancer
cells; and 4) directs the recruitment of endothelial progenitor
cells to the vicinity of neovascularization.

Among various factors involved in tumor angiogenesis, VEGF
and its receptor VEGFR play a major role (Carmeliet, 2005).
VEGF can regulate angiogenesis indirectly by inducing

endothelial cells to express MMP-2 and MMP-9, thereby
enabling chemotaxis of endothelial cells and the formation of
capillary channels, and thus indirectly regulate angiogenesis
(Lafleur et al., 2003). Moreover, CXCR4/CXCL12 induces AKT
phosphorylation, which can upregulate VEGF transcription and
protein expression (Liang et al., 2007). Under hypoxic conditions,
hypoxia-inducible factor 1 (HIF-1) and VEGF increase the
expression of CXCR4 in human brain microvascular
endothelial cells, which promotes glioblastoma angiogenesis
(Zagzag et al., 2006). CXCL12 can induce MMP-2 and MMP-
9 upregulation in pancreatic cancer cells (Pan et al., 2013).
Phosphoglycerate kinase 1 (PGK1) is an ATP-generating
glycolytic enzyme that catalyzes the reversible transfer of a
phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to
ADP, producing 3-phosphoglycerate (3-PG) and ATP. PGK1
is secreted extracellularly by different types of tumors, acting as a
disulfide reductase that serves to cleave plasminogen, thereby
generating the tumor blood vessel inhibitor angiostatin (Chen
et al., 2003; Daly et al., 2004; Hwang et al., 2006). High levels of
CXCL12 signaling through CXCR4 reduces PGK1 expression and
promote angiogenesis (Wang et al., 2007). Another mechanism
by which CXCL12 contributes to tumor angiogenesis is through
the upregulation of angiogenesis-associated genes, among which
IL-6 is the earliest and highest upregulated gene. For example,
CXCL12 induces time- and dose-dependent upregulation of IL-6
transcription and protein secretion. This transcriptional
regulation of IL-6 by CXCL12 is mediated by phosphorylation
of ERK and activation of the NFκB complex (Chu et al., 2009). IL-
6 induces other angiogenic factors, such as VEGF, basic fibroblast
growth factor (bFGF), and COX-2 (Jee et al., 2004). Endothelial
progenitor cells (EPCs) are pluripotent stem cells with the
potential to differentiate into mature endothelial cells. Thus,
EPCs play a pivotal role in tumor angiogenesis. In a
coimplantation xenograft model, carcinoma-associated
fibroblasts (CAFs) extracted from human breast carcinomas
promoted the growth of admixed breast carcinoma cells by
recruiting EPSs into the tumors (Orimo et al., 2005).
Furthermore, CAFs secrete CXCL12 and the recruitment of
EPCs is regulated in part by CXCL12. Moreover, CXCR4 is
expressed on EPCs, thereby mediating CXCL12 signaling (Qin
et al., 2016). Finally, the CXCL12/CXCR4 axis increases
progesterone-induced EPC viability through the PI3K/AKT
pathway (Yu et al., 2016). Plasmacytoid dendritic cells (DCs),
which induce neoangiogenesis through production of IL-8 and
TNF-α, could be attracted to the tumor environment by CXCL12
(Curiel et al., 2004). Extensive CXCR7has been observed in
diverse tumor-associated blood vessels (Sánchez-Martín et al.,
2011) and could be upregulated in endothelial cells by hypoxia
(Bosco et al., 2006). The immunohistochemical staining results
demonstrated that CXCR7 was widely expressed in human breast
and lung cancers, where it was highly expressed on a majority of
tumor-associated blood vessels and malignant cells but not
expressed on normal vasculature (Miao et al., 2007).
Downregulation of CXCR7 expression by siRNA resulted in
the formation of smaller tumors by these cells. These results
are consistent in clinical biopsy samples of ovarian cancer,
bladder cancer, kidney cancer, and malignant gliomas
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(Madden et al., 2004). CXCR7 overexpression in murine breast
cancer cells promotes tumor development by enhancing
angiogenesis (Hernandez et al., 2011). In addition, it was
observed in human PCa cells that CXCR7 regulates the
expression of the proangiogenic factors interleukin-8 or VEGF,
which participates in the regulation of tumor angiogenesis (Wang
et al., 2008a).

C-X-C Motif Chemokine Ligand 12 Axis in
Invasion and Metastasis
Metastasis is an important biological characteristic of malignant
tumors, which is the key cause of death among cancer patients.
Tumor metastasis was once recognized as a passive consequence
of a single tumor cell escaping from a primary tumor. However,
recent data indicated that tumor metastasis is an active process
employing multiple molecular and cellular mechanisms
(Chambers et al., 2002). The CXCL12 axis is also involved in
metastasis of many human cancers, such as pancreatic cancer
(Wang et al., 2008b), melanoma (Bartolomé et al., 2009), and
colon cancer (Zeelenberg et al., 2003).

In 2001, Muller et al. provided the first evidence that the
CXCL12/CXCR4 axis mediates human breast cancer metastasis
(Müller et al., 2001). For example, a CXCR4 neutralizing antibody
and shRNA knockdown of the CXCR4 receptor significantly
reduced tumor cell invasion (Krohn et al., 2009). Moreover,
CXCL12 is highly expressed in liver and specifically attracts
melanoma and CXCR4 (+) cells, thereby increasing cancer
liver metastasis (Kim et al., 2006). Upon further study, the
CXCL12/CXCR4 axis was shown to regulate metastasis via
different mechanisms. Epithelial-to-mesenchymal transition
(EMT) has been recognized as an important process that is
associated with cancer metastasis. CXCL12/CXCR4 signaling
stimulated the SHH signaling pathway, which is associated
with EMT and loss of cell adhesion (Li et al., 2012). Moreover,
CXCL12/CXCR4 signaling upregulates survivin via the MED/
ERK and PI3K/AKT pathways, giving rise to cell cycle
progression and EMT in human sacral chondrosarcoma (Yang
et al., 2015b). Analogous findings were observed in glioblastoma
(Liao et al., 2016) and hepatocellular carcinoma (Li et al., 2014).
Moreover, CXCL12/CXCR4 signaling stimulates invasion and
EMT of colorectal cancer cells through the Wnt/β-catenin
signaling pathway (Hu et al., 2014). Metalloprotease (MMPs)
are a family of enzymes involved in the degradation of
extracellular matrix in the surrounding normal tissue with the
ability to mediate cancer invasion and metastasis (Egeblad and
Werb, 2002). CXCL12 promotes invasion of bone by myeloma
cells by stimulating MMP-9 and MT1-MMP expression (Parmo-
Cabañas et al., 2006). Similarly, CXCR4 promotes the migration
and invasion by tongue squamous cell carcinoma cells by
stimulating MMP- nine and MMP-13 expression through
signaling by the ERK pathway (Yu et al., 2011). CXCL12/
CXCR4 axis can stimulate the MMP-2 secretion of other types
of cells; for example, CXCL12/CXCR4 signaling stimulates the
migration of neuroblasts along the corpus callosum (Mao et al.,
2016). Tumors are often hypoxic, resulting in upregulation of
CXCL12 expression in endothelial cells by HIF-1. Therefore,

CXCR4-positive cancer stem cells are likely to be attracted to
the peripheral vessels, thereby serving as a pool for metastasis
(Ratajczak et al., 2006). CXCL12 also modulates the expression
and function of cell surface integrins, thereby promoting tumor
cell adhesion. For example, CXCL12 increases the adhesion of
PC- three cells to the human umbilical vein endothelial cell
monolayer in a model of tumor extravasation or intravasation
(Kukreja et al., 2005). Moreover, CXCL12 stimulates the
expression of α5 and β3 integrins by prostate tumor cells (Engl
et al., 2006), thereby inducing the adhesion of the tumor cells to
human endothelium or extracellular matrix. Similarly, CXCL12
induces integrin β1 expression by ovarian tumor cells, leading to
increased adhesion of these cells to laminin (Shen et al., 2009).

It has been postulated that CXCR7 expression is associated
with increased tumor cell adhesion, which provides these tumor
cells with a growth and survival advantage (Burns et al., 2006).
Indeed, overexpression of CXCR7 enhances breast cancer cell
adhesion to human umbilical vein endothelial cells (HUVECs).
Likewise, increased CXCR7 expression is associated with
increased prostate cancer cell aggressiveness; this effect
appears to be mediated by cell adhesion proteins CD44 and
cadherin-11 (Wang et al., 2008a). Collectively, these data suggest
that CXCR7 functions as an oncogene, althoughmuch remains to
be elucidated, particularly with respect to mechanisms of CXCR7
oncogenic signaling. CXCR7 deficient mice exhibit greater local
recurrence of breast cancer following resection, suggesting that
CXCR7 may possess breast cancer tumor suppressor activities
related to the metastatic cascade (Stacer et al., 2016). This
apparent conundrum may reflect the fact that CXCR7 can
heterodimerize with CXCR4 and that loss of CXCR7 may
disrupt the balance between oncogenic CXCR4/CXCR7
heterodimers and tumor suppressor homodimers. Clearly, this
apparent dichotomy regarding CXCR7 function is yet to be
definitively resolved.

C-X-C Motif Chemokine Ligand 12 Axis in
Tumor Microenvironment
The importance of the microenvironment to tumor progression is
well established (Horgan et al., 1987; Barcellos-Hoff and Ravani,
2000; Bhowmick et al., 2004). The tumor microenvironment
(TME) consists of resident non-cancerous cells (stromal
fibroblasts, endothelial cells, and immune cells), proteolytic
enzymes, growth factors, inflammatory cytokines, and the
extracellular matrix (ECM) (Spill et al., 2016). CXCL12
regulates tumor-TME interactions, thereby promoting tumor
survival, proliferation, angiogenesis, and metastasis (Burger
and Kipps, 2006).

CXCL12 secreted by carcinoma-associated fibroblasts (CAFs)
stimulates tumor growth directly, acting through CXCR4
expressed by breast cancer cells and promoting invasiveness
(Orimo et al., 2005). CXCL12 also functions as a
chemoattractant during tumor development. For example,
CXCR4-positive cancer cells can be recruited to organs with
high expression of CXCL12, including liver, lungs, and bone
marrow (Wang et al., 2008b; Konopleva and Jordan, 2011).
CXCR4 activation induces leukemia cell trafficking and
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homing to the bone marrow microenvironment because of the
constitutive secretion of CXCL12 by stromal cells in bonemarrow
(Burger and Peled, 2009). At the same time, CXCL12 can attract
CXCR4-positive inflammatory, vascular, and stromal cells into
the tumor mass to support tumor development. This is a major
contribution, as CXCR4 is expressed by many cell types in TME,
including endothelial cells, epithelial cells, and lymphocytes
(Burger and Kipps, 2006). It has been suggested that CAFs
promote angiogenesis by recruiting endothelial progenitor cells
(EPCs) into carcinomas, which is mediated by CXCL12 (Orimo
et al., 2005). In vivo studies demonstrated that activation of
CXCL12/CXCR4 accelerates the recruitment of fibroblasts and
facilitates cancer stromal formation (Katoh et al., 2010). In a
recent study, CXCL12 produced by both the multiple myeloma
(MM) cells and bone marrow stromal cells (BMSCs) was found to
regulate monocyte migration (Beider et al., 2014). And the
blockage with anti-CXCR4 antibodies caused significant
inhibition of monocyte recruitment. Monocytes differentiate
into macrophages that support tumor cell proliferation,
angiogenesis, and shape the immunosuppressive
microenvironment. Besides, CXCL12 can trigger anti-apoptotic
and proliferative signals in colon cancer cells by inducing
mononuclear phagocytes to release HB-EGF, which binds the
Epidermal Growth Factor Receptor (EGFR/HER1) and
stimulates its signaling (Rigo et al., 2010). In addition, the
stroma cells from specialized microenvironments are capable
of modulating CXCR4 expression. For example, CFA secretion
of transforming growth factor-β (TGF-β) potentiates CXCR4
stimulation of AKT signaling in human prostate epithelial
cells, which indicates that synergism between TGF-β, CXCL12,
and CXCR4 in tumor stroma contributes to carcinogenesis (Ao
et al., 2007).

A recent study reported that CXCR7 is highly expressed on a
majority of tumor-associated blood vessels (Miao et al., 2007).
Moreover, CXCR7 expression is upregulated in human
microvascular endothelial cells under hypoxic and acidic pH
conditions, which are well-known characteristics of the TME
(Monnier et al., 2012). Another work indicates that CXCR7 is also
involved in TGF-β induced EMT in lung adenocarcinoma (Wu
et al., 2016). Furthermore, regulation of the macrophage colony-
stimulating factor/macrophage colony-stimulating factor
receptor signaling pathway enables CXCR7 to recruit tumor-
promoting macrophages to the tumor site (Wani et al., 2014).
Finally, bone marrow microenvironment is necessary for CXCR7
activation, thereby promoting osteosarcoma invasion (Han et al.,
2017). Altogether, these results strongly indicate that CXCR7
modulates cancer survival and metastasis via novel pathways
involved in the tumor microenvironment.

Transcriptional Regulation of C-X-C Motif
Chemokine Ligand 12 Axis
In addition to the biological effects mediated by CXCL12 axis,
investigations are also conducted associated with the
transcriptional regulation of CXCL12 axis during cancer
progression. Chen et al. reported that c-Myb could elevate
CXCL12 expression by activating CXCL12 promoter in breast

cancer cells (Chen et al., 2010). In pancreatic stellate cells,
Galectin-1 was observed to induce CXCL12 secretion by
activating NF-κB signaling pathway, thereby increasing
pancreatic cancer metastasis (Qian et al., 2017). Recent work
indicated that c-Myc regulates pancreatic cancer progression via
HIF-1α/CXCL12/CXCR4signaling pathway (Liu et al., 2020).
Knocking down of c-Myc significantly decreased CXCL12
expression and inhibited the invasion of pancreatic cancer
cells. Moreover, the activating transcription factor 3 (ATF3)
and the c-Jun dimerization protein2 (JDP2) inhibit CXCL12
secretion in tumor-associated fibroblasts in a lung carcinoma
murine model (Avraham et al., 2019). NF-κB is one of the major
transcription factors that regulate CXCR4 expression (Zhi et al.,
2015). Further study revealed that elevated levels of NF-κB
O-GlcNAcylation promoted CXCR4 expression in cervical
cancer cells, thereby increasing lung metastasis (Ali et al.,
2017). Furthermore, other transcription factors have also been
suggested to increase mRNA and protein of CXCR4 in cancer
development, including Runt-related transcription factor 2
(RUNX2) (Guo et al., 2016) and POU1F1transcription factor
(Pit-1) (Martinez-Ordoñez et al., 2018). Similarly, overexpression
of RUNX2 can induce CXCR7 transcription in prostate cancer
(Bai et al., 2019). Another study demonstrated that CXCR7
expression had been upregulated by interleukin 6 (IL6) that is
mainly derived from cancer-associated fibroblasts, contributing
to chemoresistance in esophageal squamous cell carcinoma (Qiao
et al., 2018).

C-X-C MOTIF CHEMOKINE LIGAND 12
AXIS PROMOTES CHEMORESISTANCE

The CXCL12 axis can contribute to tumor chemoresistance. For
example, cancer chemotherapy upregulates CXCL12 and CXCR4
expression in multiple cancers (Shaked et al., 2008; Kioi et al.,
2010). Moreover, patients who developed distant recurrence of
rectal cancers exhibited much higher expression of both CXCR4
and CXCL12 than did patients who did not develop distant
recurrence (Saigusa et al., 2010). A more direct evaluation of
the role that the CXCL12 axis plays in chemoresistance indicates
that the upregulation of CXCR4 in non-small cell lung carcinoma
(NSCLC) mediates Gefitinib-resistance associated with EMT (Hu
et al., 2017). Furthermore, the cancer progenitor population can
be maintained by CXCR4 in tamoxifen-resistant breast cancer
MCF7 cells by inducing AhR signaling (Dubrovska et al., 2012).
CXCL12 enhances the resistance of chronic myeloid leukemia to
adriamycin (ADM) by stimulating the expression of CXCR4. The
mechanism features activation of the downstream PI3K/AKT
pathway, translocation of NFκB dimers into the nucleus, and
subsequent decrease of the expression of apoptosis-related
proteins (Wang et al., 2014). Similarly, resistance to ADM can
be partially reversed by CXCR4 silencing, and lapatinib-resistant
cells exhibit greater CXCR4 expression than parental (sensitive)
cells (De Luca et al., 2014). This chemoresistance is thought to be
mediated by Src and CXCR4 signaling, particularly because
CXCR4 antibody treatment reduces the invasive ability of
cancer cells. Synthetic Exosome-Like Nanoparticles (SELNs)
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has been demonstrated to evoke apoptosis of human pancreatic
cancer. However, further investigation indicated that SELNs
induce the activation of NFκB, the expression and secretion of
CXCL12, and stimulation of CXCR4/AKT survival pathway,
resulting in protection of these tumor cells from death
(Beloribi-Djefaflia et al., 2015). As mentioned before, CAF-
secreted IL-6 stimulates the upregulation of CXCR7 through
STAT3/NFκB signaling, promoting resistance of esophageal
squamous cell carcinoma cells against cisplatin and 5-FU
(Qiao et al., 2018). Taken together, these findings illustrate the
contribution of CXCL12 axis to cancer chemoresistance.

THERAPEUTIC TARGETING C-X-C MOTIF
CHEMOKINE LIGAND 12 AXIS

The CXCL12/CXCR4/CXCR7 axis is a potential target for cancer
therapies. Up to now, several molecules have been developed to
target CXCL12, CXCR4, or CXCR7. A deep understanding of
CXCL12 axis in therapeutic applications would be beneficial for
future translation of CXCL12, CXCR4, and CXCR7 inhibitors
into clinical use.

Prognostic Marker
Crowther-Swanepoel et al. first reported that functional coding
mutations in CXCR4 might contribute to familial chronic
lymphocytic leukemia (Crowther-Swanepoel et al., 2009).
Similarly, genotyping 466 acute myeloid leukemia patients and
460 healthy controls indicates that a polymorphism in rs2228014
in the CXCR4 coding sequence is significantly increased in AML
patients relative to healthy controls (Zheng et al., 2016).
Moreover, CXCL12 and CXCR4 polymorphisms appear to
contribute to increased risk of hepatocellular carcinoma
(HCC) and may be potential markers for HCC (Chang et al.,
2009; Qin et al., 2018). CXCR4 expression in triple-negative
breast cancer (TNBC) cells correlates positively with
histopathological grade but negatively with lymph node
metastasis (Guembarovski et al., 2018). Moreover, heterozygosity
for either CXCL12 and CXCR4 variants increases the risk for
TNBC by analyzing genetic polymorphisms in 59 TNBC patients
and 150 healthy control women. Similarly, it appears that a CXCR4
rs2228014 polymorphism is significantly associated with poor
progression-free survival (PFS) in metastatic colorectal cancer
patients (Matsusaka et al., 2017). Although CXCR4 expression is
a prognostic factor in several human tumor types, none of the
CXCL12/CXCR4/CXCR7 has yet been definitively validated as a
tumor driver. Nonetheless, studies to date indicate that theCXCL12
axis is a tumor promoter rather than a tumor initiator.

Preclinical Studies of Inhibitors
CTCE-9908 is a small peptide CXCL12 analog with CXCR4
antagonist activity. Treatment of osteosarcoma cells in vitro
with CTCE-9908 causes decreased adhesion, migration,
invasion, and growth rate (Kim et al., 2008). These in vitro
effects are also observed in vivo, as mice treated with CTCE-
19908 exhibit a 50% reduction in lung metastasis caused by tail
vein injection of osteosarcoma cells. Similar effects are observed

in other types of cancer cells, as CTCE-9908 inhibits ovarian
cancer cell migration and induces multinucleation, G2-M arrest,
and abnormal mitosis (Kwong et al., 2009). The anti-tumor and
anti-metastatic effects of CTCE-9908 are dramatically enhanced
by docetaxel in a breast cancer mouse model system (Hassan
et al., 2011). Another approach for targeting the CXCL12 axis is
the CXCL12 PEGylated mirror-image l-oligonucleotide
(olaptesed-pegol). In vivo, olaptesed-pegol neutralize CXCL12,
leading to a bone marrowmicroenvironment that is less receptive
for multiple myeloma cells and reduces multiple myeloma cell
homing and growth (Roccaro et al., 2014). AMD3465 is also a
selective small-molecule CXCR4 antagonist that antagonizes
CXCL12 stimulation of chemotaxis and prosurvival signaling
pathways in leukemia cells (Zeng et al., 2009). In vivo,
subcutaneous injections of BKT140 (a new-generation peptide
CXCR4 inhibitor) significantly reduced the growth of human
acute myeloid leukemia in a dose-dependent manner (Beider
et al., 2011). Another CXCR4 antagonist, POL5551, exhibits
inhibitory effect on glioblastoma growth and dissemination
induced by anti-VEGF therapy (Gagner et al., 2017).

CCX733 is a selective CXCR7 antagonist that reduces the
antiapoptotic effects of CXCL12 in glioma cells (Hattermann
et al., 2010) and CXCR7-induced EMT in bladder cancer (Hao
et al., 2012). The CXCR7 antagonists anti-CXCR7-12G8 and
CCX771 both inhibit mTOR activation in renal cell carcinoma
cells, resulting in reduced metastasis (Ierano et al., 2014).
Similarly, the CXCR7 antagonists CCX754 and CCX771
inhibit lung metastasis of colorectal cancer cells in vivo
(Guillemot et al., 2012).

Clinical Application
Plerixafor (AMD3100) is a CXCR4 antagonist that was formally
approved by the US FDA in 2008 to use in combination with
autologous transplantation in patients with Non-Hodgkin’s
Lymphoma or multiple myeloma (De Clercq, 2019). By
blocking the interaction between CXCL12 and CXCR4,
plerixafor triggers the mobilization of stem and progenitor
cells (CD34+ cells) (DiPersio et al., 2009). These stem cells are
then collected and used in autologous stem cell transplantation to
rescue the hematopoietic toxicity and to reconstitute
hematopoiesis following high-dose chemotherapy.
Furthermore, plerixafor injection is used in combination with
a granulocyte-colony stimulating factor (G-CSF) medication to
prepare the blood for an autologous stem cell transplant. A
clinical study involved patients with non-Hodgkin’s lymphoma
or multiple myeloma showed the combination of plerixafor and
G-CSF was superior to G-CSF alone in mobilizing hematopoietic
progenitor cells (Flomenberg et al., 2005). Recent clinical trials
indicate that plerixafor could be used in other strategies for
treating cancer. A phase 1/2 study indicated that the addition
of plerixafor to cytotoxic chemotherapy could increase the rates
of remission in acute myeloid leukemia (Uy et al., 2012).
Similarly, the combination of radiochemotherapy (RTCT) and
plerixafor yielded a greater delay in tumor growth and lymph
node metastasis in patients with cervical cancer than did RTCT
alone (Chaudary et al., 2017). Moreover, the combination of
plerixafor and bortezomib yielded a strong response rate in
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relapsed/refractory multiple myeloma (Ghobrial et al., 2019).
According to the clinical studies, combination with other
current cancer therapies would be the primary application of
plerixafor or other CXCR4 antagonists. Therefore,
pharmacokinetic studies and rational design of dosage are
definitely required to avoid potential side effects.

Cancer Immunotherapy
According to the major role of CXCL12 axis in TME, lots of
antagonists targeting CXCL12axis were proposed as
monotherapy to promote antitumor immunity or in
combination with other immunotherapies for cancer
treatment. In a mouse model of ovarian cancer, AMD3100
treatment showed significant increases in T-cell–mediated
antitumor immune responses, resulting in CXCR4 positive
tumor apoptosis and necrosis (Righi et al., 2011). Similar
results were obtained in multiple cancer models, that
AMD3100 administration leads to rapid T cell accumulation
and acted synergistically with immunological checkpoint
antagonists (anti-PD-L1) (Feig et al., 2013; Chen et al., 2015).
AMD3100 also increases the efficiency of the mesothelin-targeted
immune-activating fusion protein (VIC-008) in mesothelioma,
which is regulated by PD-1suppression in CD8+T cells and
conversion of regulatory T into helper-like cells (Li et al.,
2018). Another study focused on chemoresistant ovarian
cancer reported a novel oncolytic vaccinia virus expressing a
CXCR4 antagonist that can reduce the immunosuppressive
network and increase tumor apoptosis and phagocytosis alone
or in combination with doxorubicin (Komorowski et al., 2016).
Genget al. developed a new FAPα-targeted vaccine for the
treatment of breast cancer (Geng et al., 2019). This DNA
vaccine enhanced antigen secretion and effectively decreased
the number of CAFs in the TME, leading to decreases in
CCL2 and CXCL12 expression, thereby reducing the myeloid-
derived suppressor cells in the TME. In glioblastoma, CXCR7-
targeted antibody (X7Ab) enhanced tumor cell phagocytosis by
increasing macrophages activity (Salazar et al., 2018). And
combining X7Abwith Temozolomide (TMZ) significantly
slowed mouse glioma progression with prolonged survival.

Cancer immunotherapy targeting CXCL12 axis are giving
encouraging results. Further clinical studies based on these
findings should be performed to increase the effectiveness of
cancer therapy.

CONCLUSION

Compelling evidence has demonstrated that CXCL12/CXCR4/
CXCR7 axis is implicated in tumor growth, survival, angiogenesis,
metastasis, tumor microenvironment, and chemoresistance. Thus,
the CXCL12 axis is a promising target for therapeutic intervention.
However, only a few drugs that target the CXCL12 axis have been
approved for clinical use. CXCL12 and its receptors play important
roles in homeostasis and non-pathologic inflammation, which
might predict that agents that target the CXCL12 axis would
possess significant on-target toxicities. Furthermore, crosstalk
between CXCR4 and CXCR7 makes specific CXCR4 targeting
more challenging. Relatively little is known about the function of
CXCR7 and its signal transduction in cancer genesis and/or
progression. Elucidating these functions and their mechanisms
will undoubtedly contribute to the development of better
anticancer agents that target the CXCL12 axis. In clinical
applications, the development of targeted drug delivery systems
for CXCR4 antagonists should be considered to increase the
efficacy of these therapies and to reduce their side effects.
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