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Abstract

Scoring docking solutions is a difficult task, and many methods have been developed

for this purpose. In docking, only a handful of the hundreds of thousands of models

generated by docking algorithms are acceptable, causing difficulties when developing

scoring functions. Today's best scoring functions can significantly increase the num-

ber of top-ranked models but still fail for most targets. Here, we examine the possibil-

ity of utilizing predicted interface residues to score docking models generated during

the scan stage of a docking algorithm. Many methods have been developed to infer

the regions of a protein surface that interact with another protein, but most have not

been benchmarked using docking algorithms. This study systematically tests different

interface prediction methods for scoring >300.000 low-resolution rigid-body tem-

plate free docking decoys. Overall we find that contact-based interface prediction by

BIPSPI is the best method to score docking solutions, with >12% of first ranked dock-

ing models being acceptable. Additional experiments indicated precision as a high-

importance metric when estimating interface prediction quality, focusing on docking

constraints production. Finally, we discussed several limitations for adopting inter-

face predictions as constraints in a docking protocol.
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1 | INTRODUCTION

Most proteins carry out their biological functions through interactions

with other proteins.1 Subsequently, the ability to modulate protein–

protein interactions (PPI) could lead, among other things, to the cure

of diseases. However, modulating PPIs requires a fundamental under-

standing of PPI details on the atomic level. Experimental methods, like

X-ray crystallography or NMR/EM spectroscopy, can produce highly

reliable structures, but unfortunately, these methods are expensive

and time-consuming.2

A completely different approach to derive such structures

involves using computational methods.3 Unfortunately, this approach

is limited by the dynamic nature of protein behavior in vivo. For

instance, most proteins undergo structural rearrangements or confor-

mational changes when interacting with a partner.4 Also, in some

cases, PPI is obligate, meaning that the protein must fold into a stable

and functional conformation.4,5 Other PPIs are nonobligate, meaning

interaction partners may also exist in a stable but nonassociated form.

Obligated complexes are generally permanent, but most nonobligate

complexes are transient. Their lifetime is influenced by several factors,
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including physiological conditions (pH, salt concentration, etc.), the

concentration of interaction partners, and the state of certain molecu-

lar switches.5 Furthermore, obligate and nonobligate complexes have

different geometrical and physicochemical properties of their inter-

faces.6 Thus, the prediction of three dimensional structures of

protein–protein complexes (protein docking) remains one of the most

demanding challenges in computational biology.

Usually, a structure of uncharacterized PPI is derived from struc-

tures (experimental or modeled) of individual proteins by rigid-body7

or flexible docking procedures.8,9 These protocols generally consist of

two stages: fast generation of large numbers of putative mutual

arrangements of two proteins (docking model or pose) using simplified

energy function (scan stage) and subsequent application of a more

complex scoring function to the obtained configurations to discrimi-

nate the few ones that most likely are close to the native structure

(scoring stage).10 Rigid-body docking is generally faster than flexible

docking. Still flexible docking (that allows intraprotein conformational

degrees of freedom) better reflects the dynamic nature of the pro-

teins.9 Limitations of these methods are implicit in the necessity to

generate large amounts of the docking models (usually on the order of

hundreds of thousands) to have a significant chance of generating at

least one near-native docking model. Many decoys are not a problem

but necessitate an extraordinarily accurate and computationally effi-

cient method to identify the few near-native solutions. Some methods

also use much smaller datasets for testing,11 that is, these methods do

not work for the general docking problem. Another common strategy

is reducing the number of considered docking poses by performing

clustering and only applying a scoring function to the cluster repre-

sentatives.10 With such an approach, acceptable docking models can

be found in the top 10 scored poses for almost 40% of complexes in

the widely adopted Benchmark 5.0 dataset.12,13

Another approach is to use constraints derived from predicting

which residues from the surface of one protein are more likely to

belong to the interaction interface but without specifying individual

contacts (interface prediction).14 Constraint generation can also be

done by predicting specific pairs of residues from different chains that

are closer than a threshold distance (contact prediction).15 In recent

years, many interface- and contact-prediction algorithms have been

published.16–25 However, without testing how they would improve

the success of protein docking algorithms. Most predictors use differ-

ent combinations of sequence and structural features of proteins in

their unbound (interacting interface completely exposed to the sol-

vent) and bound (associated) forms16,20,26 along with the evolutionary

features acquired from the standard multiple sequence alignments

(MSA).15,27 In general, contact prediction is harder compared to inter-

face prediction.28 On the other hand, using single-protein MSA in the

interface prediction is advantageous as combining MSAs from differ-

ent interacting proteins (required for some interface contact predic-

tion algorithms) is a nontrivial task.29 Another main advantage of

predicting interface patches is that, considering proteins singularly

equalize on a similar order of magnitudes, the number of interacting

and noninteracting residues, making the two categories more or less

balanced, according to the protein type. This last property is important

for all the machine learning methods commonly applied to this prob-

lem, particularly support vector machines (SVMs) and artificial neural

networks (ANNs). Indeed, most machine learning algorithms are con-

sistently influenced by unbalanced datasets and tend to learn unde-

sired patterns, such as proportions of classes, from the provided

trainingset.30

Dockrank is one of the most recent attempts to use interface pre-

dictions in protein–protein docking.31 This work has shown some con-

sistent improvement in the docking success when applying interface

predictions to the scoring of the docking poses. However, the dataset

used in that study was limited to complexes with sufficient confidence

of predicted interface residues, which reduces the generalization of

the conclusions. Furthermore, other studies were conducted on small

or bound datasets only, and in some cases, the predicted interface

information was used in combination with other scoring parameters,

which made the exact contribution of interface predictions

unclear.32–34 Thus, it is still unclear how much valuable information

for docking can be extracted from interface prediction. In order to

clarify this point, we filter docking poses produced by the GRAMM

docking software,35 utilizing interface information acquired from

native structures of PPI in the DOCKGROUND dataset and various

interface predictors. This protocol aims to establish a reference frame-

work for easy quantification of the performance of different interface

predictors when applying them in a real-case docking scenario when

the native PPI structure is not known.

2 | MATERIALS AND METHODS

2.1 | Dataset

This study utilized all dimeric protein complexes extracted from the

benchmark set 436 from the Unbound section in the DOCKGROUND

website: http://dockground.bioinformatics.ku.edu/. Additionally, we

excluded all the complexes containing chains shorter than 50 residues,

leading to a set of 220 protein pairs for which both single-chain

(unbound) and associated (bound) experimental structures are avail-

able. Finally, we clustered all sequences against all sequences from

the Benchmark 5 dataset12 at 20% sequence identity using the CD-hit

software37 (version: 4.7). This allowed us to exclude dimers when

both chains had a higher than 20% identity to any Benchmark 5 entry,

retaining in total 175 dimers. Depending on root-mean-square devia-

tion (RMSD) between interface Ca atoms in unbound and bound

structures (i-RMSD) and fraction of non-native contacts (fnon-nat) in

unbound structures,12 this dataset can be divided into 98 easy (i-

RMSD <1.5 Å and fnon-nat <0.4), 51 medium-difficulty (1.5 < i-

RMSD < 2.2 and fnon-nat >0.4), and 26 hard (i-RMSD >2.2) cases.

The numbering of residues in the unbound structures has been

mapped to the numbering in the bound structures using pairwise

global sequence alignment utility from the biopython package (ver-

sion: 1.76) with the BLOSUM62 scoring matrix.38 In order to facilitate

the following comparisons, all residues from bound structures with no

correspondence in the unbound structures have been trimmed.
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Furthermore, unbound chains have been structurally aligned to the

bound counterpart to determine a level of difficulty for the docking of

each complex. Here we adopted three difficulty classes; hard,

medium, and easy, as described previously.39 Finally, for each com-

plex, the longer (shorter) chain has been re-labeled “A” (“B”) and

henceforth is referred to as receptor (ligand).

The same re-numbering and chain re-labeling scheme has been

applied to dimeric targets selected from the CAPRI Score_set40 to

obtain an additional testing set. From this sub-set, we excluded T36

which is identical to T35, T39, which is identical to T38 and T47,

whose unbound chains are identical to the bound chains of T41.

Also, we excluded T29 due to the impossibility to obtain predic-

tions from the Predus2 web server for that specific target. This

resulted in eight heterodimeric complexes for which bound and

unbound configurations are available. PDB codes for this set are

summarized in Table S1.

2.2 | Rigid-body docking protocol

Unbound structures of the proteins in the dataset were docked utiliz-

ing Fast Fourier transform (FFT) rigid-body docking algorithm as

implemented in the scan stage of the GRAMM software.35 Unlike

other FFT-based programs (e.g., ZDOCK7 and ClusPro41), GRAMM

does not include any other energy components (electrostatics, deso-

lvation, etc.) besides simplified Lennard–Jones potential when gener-

ating an initial set of docking poses. Therefore, using all these models

allows investigating the “pure” effect of various factors on a minimally

biased set of docking models generated with only the surface geome-

try of the receptor and ligand taken into account. Further, the unique

low-resolution nature of the GRAMM docking algorithm permits small

amounts of atomic clashes on the interfaces of the docking models,

which to a certain degree accounts for the conformational flexibility

upon protein binding.35

Default grid sizes (32 � 32 � 32 or 64 � 64 � 64) and calcula-

tion parameters (grid step 3.5 Å, rotation angle 10�) have been used

for all complexes except 4YOC, where it was necessary to increase

grid size to 128 � 128 � 128. To ensure that at least one near-native

docking model is presented for all the complexes considered, 340 000

docking poses were generated for each docking pair. GRAMM output

(translation vector and three Euler angles per docking pose) were

transformed into Cartesian coordinates of the ligand using a script

written with the Tensorflow python library (version: 1.13.2). Different

dockings may be elaborated in parallel in both steps, consistently

reducing the computation time. The initial docking poses were further

re-scored by using the following function:

S¼
XN1

i¼1

XN2

j¼1

�ln 1� pi �pj
� �� �

, ifdij <12Å

0 otherwise

(
ð1Þ

where the summation is performed over all N1 and N2 residues of the

receptor and ligand, respectively, pi and pj are, correspondingly, the

probabilities (given by an interface predictor) of residues i of the

receptor and j of the ligand to occur on the native interface, where dij

is the distance between Cβ atoms of residue i in the receptor and resi-

due j in the ligand. The 12 Å distance threshold has been considered

according to what is established by Sinha et al.42 and adopted, after

proper testing of different options (8, 10, and 12 Å), as the optimal

interface threshold for scoring docking solutions. In order to avoid sin-

gularities in Equation (1), an upper limit of 0.99 for pi and pj was used.

Ten highly-scoring docking poses were retained for further evaluation.

We also used docking poses re-scored by the atom-atom contact

energy AACE1843 for comparison.

2.3 | Alternative docking protocol

In order to test scoring of the docking poses with interface predictions

with a different docking approach, we utilized the LzerD server,44

which was ranked second in the server part of the CASP14-CAPRI

experiment, is available both as a web-server and as a standalone ver-

sion, and accepts user-specified restraints. In this study, we ran the

eight complexes from the CAPRI Score_Set on the web-server with

restraints consisting of 10 interface predictions with the highest prob-

ability for each protein chain (20 restraints for each dimer). In case of

categorical predictors, where no probabilities are available, 10 random

residues predicted to occur in the interface have been selected

instead. Such restraints have been formatted in a JSON file, specifying

that for each indicated residue a relaxed distance between 2 and 8 Å

from the residue to the partner chain must be matched. We required

that in the docking models at least 5 out of 10 restraints should be

satisfied.

2.4 | Interface predictions

We selected several predictors (Table 1) for calculating propensities

of the residues to occur inside the native interaction patch. We are

aware that there are many more interface predictors described in the

literature, but our choice was restricted by the availability and porta-

bility of the code to run locally. BIPSPI19 produces estimates of inter-

face patches from predicted interprotein contacts for a pair of either

sequences or structures. In this study, pairs of structures were pro-

vided as input, and the two interfaces returned from the predictor

were used for scoring. ISPRED426 first uses a SVM to generate initial

interface residue propensities. In ISPRED4, these predictions are fur-

ther processed by conditional random fields (CRFs). However, no

improvement was seen in our study using the second set and, there-

fore, the CRF predictions were ignored.

Further, SVM-based binary interface predictions have also been

obtained using the PredUS predictor.46 The dynJET2 algorithm47 has

been applied to our dataset with the automatic mode selection option

(�a 0), using 10 iterations as suggested by the authors. Each residue

has been conducted to belong to an interface supported by two or

more clustering iterations, setting the probability to zero otherwise.

The SPPIDERII algorithm from the SPPIDER Web server [33] was
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used to generate predictions in the regression form, obtaining contin-

uous probabilities from 0 to 1 (all other options have been left at their

default values).

Deepinteract is a recent interprotein contact prediction

method that utilizes a neural network with a geometric trans-

former.48 RaptorX Complex-Contact24 is a sequence-based contact

prediction method that has been adopted through a web-server.

Finally, we also applied trRosetta,25 a method to predict intrachain

residue-residue distances, which has also been successfully applied

to interchain predictions in our previous work.49 In order to obtain

a common comparison ground with interface predictions, in the

case of Deepinteract and RaptorX-ComplexContact, we selected

the highest contact probability for each residue as a surrogate of an

interface prediction. For the trRosetta, binned distance probabili-

ties have been converted first to contact probabilities by computing

the ratio of the first 20 bins sum (which match the 12 Å threshold)

over the sum of all bins. Then, the maximum contact probability has

been selected for each residue to represent the related interface

prediction.

2.5 | Native interfaces

Native interface residues were extracted from the bound structures

using the condition that solvent accessible surface area (SASA) of a

residue in a protein in isolation should be larger than when the protein

is bound to the interacting partner. SASA was calculated employing

the DSSP v.3.0.0 module50 implemented in the biopython library. If a

residue from the unbound structure had no correspondence to the

bound one, the same criteria were evaluated on unbound structures

superimposed on the corresponding bound.

2.6 | Assessment of interface predictors

Interface prediction quality has been evaluated using two classic met-

rics: True Positive Rate or Recall, TPR:

TPR¼ TP
TPþFN

ð2Þ

and Precision, PPV:

PPV¼ TP
TPþFP

ð3Þ

where TP, FP, and FN are the numbers of true positives (correctly

predicted interface residues), false positives (noninterface residues

incorrectly predicted as interface) and false negatives (interface res-

idues incorrectly predicted as noninterface) for a specific protein

chain. For the interface predictors that output continuous probabil-

ities rather than binary classification (interface/noninterface), all

those quantities are dependent on the probability threshold, above

which a residue is considered to be on the interface. Thus, to evalu-

ate the overall performance of such predictors, we used the area

under the precision-recall curve (AUC) computed for decreasing

thresholds using the scikit-learn python package (v. 0.24.1). In our

pipeline, an interface predictor produces two predictions for each

protein complex considered (one for receptor and another for a

ligand) with generally different AUC. We use both sets per complex

or a set with the smaller AUC (henceforth referred to as worst chain

predictions) for further analysis. For evaluating the overall perfor-

mance of an interface predictor, we averaged TPR and PPV values

for all protein chains in the dataset and analyzed the distribution of

AUC values.

2.7 | Assessment of docking predictions

To assess the quality of a docking model, we adopted the DockQ

score,51 which combines all evaluation criteria used in the CAPRI com-

petition52 into a single score, into a range from 0 to 1, with 1 rep-

resenting a perfect match between a docking model and the native

complex structure. Here, DockQ values of 0.23, 0.49, and 0.8

TABLE 1 Interface residue predictors

Predictor Description References

SPPIDER Neural network consensus

method based on protein

structure geometric features

and predictions of relative

solvent accessibility.

[45]

PredUs2 Support vector machine method

based on solvent accessibility

and position conservation

derived from protein structural

alignment.

[46]

dynJET2 A model combines evolutionary,

geometric, physicochemical, and

interface propensity features.

[47]

ISPRED4 A method based on support

vector machine and conditional

random fields combines residue

structural context,

physicochemical, and multiple

sequence alignment features.

[26]

BIPSPI Tree classifier trained with

XGBoost algorithm, based on

structural and multiple

sequence alignment features

obtained for pairs of proteins.

[19]

DeepInteract Geometric transformer deep-

learning model based on

structural and evolutionary

(nonpaired) features.

[48]

RaptorX

ComplexContact

Deep residual neural-network

method relying on phylogeny-

based MSA-pairing.

[24]

trRosetta Deep residual neural-network,

relying on paired MSA

information.

[25]
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F IGURE 1 Performance of the docking with constraints derived from the native interfaces; (left) distribution of DockQ scores; (right) success
rate, SC(N), as a function of the number, N, of considered top docking models. Data in the left panel pertains to the entire dataset of 220 binary
complexes from DOCKGROUND benchmark set 4, while the right panel displays results for the entire dataset and the three sub-groups
separately

F IGURE 2 Example of the docking impaired by maximization of the number of contacts. The left panel displays a reference “native” complex
built by the superimposition of the unbound structures taken from PDB 4LSA, chain A (receptor) and 4LSC, chain A (ligand) onto, correspondingly,
the chains A and C of the PDB 4LSX. The right panel depicts the best docking model among the top 10 models re-scored by equation
(Equation 1) with the 99% probabilities for the native interface residues. In both panels, receptors are represented by the atomic surfaces and
colored red (blue) for the native interface (noninterface) residues, while ligands are displayed as the cartoons
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represent threshold values51 for docking models of acceptable,

medium, and high quality in terms of the CAPRI criteria. DockQ scores

were obtained by comparing a docking model with the bound version

of the complex structure if not specified differently. To measure the

overall performance of a docking protocol over the entire dataset, we

evaluated the fraction of acceptable models (defined by DockQ

>0.23), SR(N), in the top N ranked models. Here, we analyzed SR(N) for

all N ≤10.

F IGURE 3 Interface center of mass deviation correlated to DockQ score from dockings with real interface constraints. For each complex in
the DOCKGROUND benchmark-4 dataset, the center of mass coordinates computed for the native complex interface residues and the identical
residues in the best docking solution (in top rank and top 10 ranks) were obtained using real interface constraints. The distance between the two
centers of mass has been plotted against the relative docking model DockQ score. Kernel density estimator (seaborn library, default settings) has
been adopted to improve density visualization

F IGURE 4 The overall behavior of different interface predictors on 220 binary complexes from DOCKGROUND benchmark set 4. In the left
panel, the distribution of predictions for each surface amino acid in the dataset has been reported for each predictor in the left panel. The mid
panel displays precision-recall curves with TPR and PPV averaged over all protein chains in the dataset. The dashed line represents the average
ratio of interface and surface residues (I/S ratio), which serves as the expected performance of a random predictor. For PREDUS and dynJET2, no
AUC curve can be drawn; thus, single markers represent its performance. In the right panel, AUC distributions for individual protein chains are
shown as Box and Whiskers plots, each corresponding to a different interface predictor. For PREDUS and dynJET2, PPV values are reported
instead due to their equivalence to the AUC. As a random predictor reference, the distribution of the I/S ratios for individual protein chains is
shown
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2.8 | Simulated interface predictions

To observe the behavior of interface prediction-driven docking in a

controlled scenario, simulated interface predictions have been gener-

ated by introducing predefined levels of noise in the native interfaces.

First, randomly selected interface residues from each protein chain

were marked as noninterface to reach a certain TPR. After that, ran-

domly selected surface residues not belonging to the interface were

marked as interface until reaching a certain value of PPV. In this study,

we considered nine different datasets with various (TPR/PPV) values:

(0.25/1), (0.5/1), (0.75/1), (1/0.25), (1/0.5), and (1/0.75).

2.9 | Availability

All code is available from git https://github.com/ElofssonLab/

BindingSite_docking. All data for all methods are available from

https://figshare.com/s/1803e314859b537d1e72.

3 | RESULTS AND DISCUSSIONS

3.1 | Baselines for the docking performance

The lower baseline for our docking pipeline was determined by ana-

lyzing “raw” GRAMM output (ranked by shape complementarity only).

Then, the docking protocol yielded at least one acceptable docking

model among the top 10 models for 12 complexes (SR[10] �5%) with

an average DockQ score of 0.04. The upper baseline was estimated

using all native interface residues by setting pi and pj in Equation (1) to

a probability of 0.99. In this case, SR(10) jumps to 81%, with an aver-

age DockQ score of 0.45. Top ranking models are of acceptable or

better quality for almost half of the targets, SR(1) �49% with average

DockQ �0.27. While using the native interface residues as con-

straints, we tested different distance thresholds (8, 10, and 12 Å) to

fit into Equation (1). This test allowed us to select 12 Å as the optimal

value, given the higher SR(1) compared to 8 Å (SR(1) �43%) and 10 Å

(SR(1) �42%) thresholds. Easy cases from the dataset yielded SR(1) �
62%, but even medium and hard cases displayed significant SR(1),

with 35% and 16%, respectively (Figure 1, right panel).

Among the 42 targets with no acceptable docking models in the

top 10 models, there are 7 easy, 18 medium-difficulty, and 17 hard

examples (6%, 25%, and 53% of corresponding cases in the entire

dataset). The lower performance on the hard targets indicates the sig-

nificance of accounting for the flexibility in the docking protocol. Nev-

ertheless, near-native docking models are present further down the

list for all complexes in the dataset.

However, the difference between bound and unbound conforma-

tions of the proteins in the dataset led in several cases to the imper-

fect shape complementarity in the unbound “native” PPI structure

(unbound structures superimposed on the bound ones in their native

arrangement) while scoring equation (Equation 1) favorises docking

conformations with more contacts. In addition, docking constraints

utilized in this study are considered on the residue level rather than

F IGURE 5 Performance of docking with constraints obtained by different interface predictors on 220 binary complexes from
DOCKGROUND benchmark set 4. Horizontal bars represent the box-and-whiskers distributions of the DockQ scores, and each point represents
a successful docking model (DockQ >0.23). Nonstriped bars and upward-pointing triangles display results obtained for the top-ranked docking
models, while striped bars and downward-pointing triangles pertain to the model with the best DockQ score among the top 10 docking models.
Pairs of success counts represent the number of targets for which successful docking models were generated in the corresponding docking run
within top 1 (upper number) and top 10 (lower number) docking models
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on the residue contact level. Hence, the current re-scoring scheme

may bring to the top of the prediction list docking models that have

interface patches of the receptor and ligand surfaces correctly facing

each other, but with the ligand rotated so that this mutual ligand and

receptor position maximizes the number of contacts for the unbound

structures (an example is shown in Figure 2). Indeed, there is a signifi-

cant number of top 1 docking models with a slight deviation of their

interface center of mass (CM) from the CM of the native interface

(Figure 3A). Notably, for the best out of the top 10 docking models,

this number is significantly smaller, and the DockQ score exhibits the

expected correlation with the CM deviation (Figure 3B), indicating

that given correct interface constraints, it is desirable to analyze top

10 models in order to infer docking models with correct mutual orien-

tation of the receptor and ligand.

3.2 | Performance of interface predictors

The best overall identification of interface residues is observed for the

BIPSPI predictor, with an AUC of 0.46 (Figure 4, left panel), clearly

superior to the other methods (AUC: 0.20–0.32). Further, predictions

from PredUS2 and DynJET2 have been evaluated using a single

F IGURE 6 Performance of docking with constraints obtained from different simulated interfaces on 220 binary complexes from

DOCKGROUND benchmark set 4. In the top panel, horizontal bars represent the box-and-whiskers distributions of the DockQ scores, and each
point represents a successful docking model (DockQ >0.23). Orange bars and upward-pointing triangles display results obtained for the top-
ranked docking models, while blue bars and downward-pointing triangles pertain to the model with the best DockQ score among the top
10 docking models. Pairs of success counts represent the number of targets for which successful docking models were generated in the
corresponding docking run within top 1 (upper number) and top 10 (lower number) docking models. The bottom panel displays success rates for
top 1 (orange) and top 10 (blue) docking models obtained for a series of simulated interfaces with varying PPV (diamonds) or TRP (circles) while
another parameter (TPR or PPV, respectively) is kept 1. Lines are guides for the eye
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combination of TPR and PPV due to the binary output. These predic-

tors reached a performance comparable to SPPIDER (AUC = 0.29),

with TPR = 0.37, 0.53 and PPV = 0.32, 0.29 for PredUS2 and

DynJET2, respectively. A large performance gap can be observed with

different contact prediction methods. Deepinteract, RaptorX, and

trRosetta yield the lowest performance with ISPRED4 (AUC = 0.20–

0.22). Examining the overall distribution of individual chains, all pre-

dictors, except BIPSPI, have similar median values ranging between

0.20 and 0.31. However, the number of chains being predicted better

than random varies widely, from 25% of Deepinteract to 77% of

BIPSPI. When the performance of interface predictors are assessed

using worst chain predictions (see Section 2), the precision-recall cur-

ves obtained a behavior very similar to what was expected from a ran-

dom predictor (AUC = 0.2), data not shown. Again, the only exception

is BIPSPI, which yielded an average AUC of 0.32.

Notably, BIPSPI is the only predictor that considers pairs of struc-

tures simultaneously to infer their interface. All the other interface

predictors use only a single structure. Therefore, they might predict

alternative interfaces, interacting with different interaction partners,

possibly explaining the superior performances of BIPSPI. RaptorX and

trRosetta consider pairs of sequence-derived features as input but

make no use of structural information, which appears to be a consis-

tent limitation in protein docking. The most similar method to BIPSPI

is Deepinteract, which differs only in the final output. Further, all pre-

dictors, except BIPSPI,19 consistently perform worse than reported in

the original publications. The decreased performance could be related

to overtraining of the methods.

One indirect confirmation for this hypothesis is given by studying

the structural similarity of complexes with 0.25 Interface-Surface ratio

(Figure S1, right panel) to the complexes from the original BIPSPI

training set (Benchmark 512), which are responsible for a consistent

peak in interface prediction AUC. The average TM-score for this set is

0.89. In comparison, the complexes responsible for the drop in AUC

at I/S ratio 0.29 (Figure S1, right panel) have an average TM-score of

only 0.59. To further verify this, each complex TM-score has been

compared with the worst interface predictions derived from BIPSPI

(Figure S2, left panel). This comparison displayed a spearman correla-

tion coefficient of 0.48 between training set similarity and interface

prediction performance. Therefore, the excellent performance of

BIPSPI is at least partially a result of structural similarity between

parts of its training set and our test set. However, considering low

similarity complexes with TM-score <0.6, BIPSPI still yields the best

performance between all the considered predictors (Figure S2, right

panel), that is, overfitting is not the only factor causing this predictor

superiority.

3.3 | Docking with the constraints from the
binding site predictions

Next, we examined the ability to use the interface predictions to score

docking models. Docking models from the GRAMM scan stage

(GRAMM baseline) were re-scored using the interface probabilities

(Equation 1) from the interface predictors listed in Table 1. We have

F IGURE 7 LzerD docking of CAPRI Score Set. Three interface predictors (BIPSPI, PREDUS, and SPPIDER) was used to generate restraints for
the LzerD web server. (left) For each predictor, receptors precision values are compared to the respective ligand values. (right) DockQ scores
represent for each complex the best among the top10 docking results selected from the LzerD web server using the mentioned restraints and no
restraints at all
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also considered docking models re-scored by the AACE18 potential43

for comparison. A summary of the results is shown in Figure 5 and

Table S2. The most near-native docking models are top-ranked using

the BIPSPI predictions, reaching SR(10) �25% and SR(1) �13%.

Rescoring with this interface predictor is better than using the

AACE18 potential (SR(10) �18% and SR(1) �7%).

Re-scoring the docking models with predictions from the other

predictors does not significantly improve overall docking performance

compared to the docking with scoring by shape complementarity only

(GRAMM baseline in Figure 5), and they are far from the performance

level of the AACE18. SPPIDER and PREDUS predictions yield a slight

improvement over the baseline docking, while all the other tested

methods do not provide any significant improvement. Comparative

analysis of predictor-driven docking reveals that PREDUS and

SPPIDER move up near-native docking models for a few different

complexes respective to BIPSPI. Comparing interface predictors-

based scorings (Figure S3), only in one case (PDB 1nbf) 6 out of 8 pre-

dictor-driven dockings brought an acceptable model to the top of the

prediction list. Further, top-1 acceptable docking models were

obtained by four predictors only for three other complexes (PDBs

1b27, 1vrs, and 1yu6). Thus, although the general impact of most pre-

dictors is low, there is a certain degree of complementarity between

some of them (BIPSPI, PREDUS and SPPIDER), and their joint utiliza-

tion could enhance cumulative docking success significantly.

There are 12 complexes for which BIPSPI constraints failed to

produce a top-1 near-native docking model while other interface pre-

dictors succeeded. Two of the complexes exhibit DockQ score <0.03

for the top-ranked BIPSPI dockings (PDBs 2zae, 3pro). These

“extreme” failures, together with one additional case (PDB 3bx1), are

caused by a failed interface prediction of BIPSPI (Table S3). For all

other cases, the BIPSPI overall interface prediction quality is compara-

ble to the best other method or better. Thus, failures here seem to be

caused by BIPSPI tendency to be very precise (high PPV) at the

expense of prediction completeness (data not shown). This leads to

the number of generated (although correct) interface constraints

being too weak to avoid significant rotational freedom between the

two interacting patches. Note that considering acceptable models

from top-10 docking models did not increase consistently the number

of complexes for which constraints from the most predictors lead to

the successful docking.

Finally, it should be noted that BIPSPI and AACE18 scoring com-

plement each other. Only three near-native top-1 complexes are

shared, while BIPSPI and AACE18 separately succeeded for another

19 and 9 complexes, respectively (Figure S3F). When considering

near-native docking models from the top 10 docking solutions, that

overlap is slightly more considerable (14 common cases compared

with 18 unique for AACE18 and 30 for BIPSPI).

3.4 | Simulated predictions

Various algorithms tested in this study produce interface predictions

with TPR and PPV varying from protein to protein. Thus, in order to

test the performance of the docking protocol in a controlled scenario

(i.e., at predefined TPR and PPV values, which are the same for all

complexes in the dataset), we introduce certain levels of “noise” into

the native interface (see Section 2). We have added noise by reducing

PPV, that is, adding false interface residue, and reducing TPR, that is,

removing correct interface residues. Results are reported in Figure 6

(top panel) and Table S3.

In general, docking success is reduced by both under- (false nega-

tives) or over- (false positives) interface predictions. In the scoring

scheme used in the paper (Equation 1), the contribution of a large

patch of true interface residues (covering the entire interface,

TPR = 1) overweights the contribution from a small amount of

wrongly predicted noninterface residues (PPV = 0.75). On the other

hand, even relatively small under-prediction of the interface

(TRP = 0.75) gives rise to the undesired energetical “freedom” in the

ligand placement even in the absence of wrongly predicted non-

interface residues (PPV = 1). The trend is reversed when the level of

“noise” at the predicted interfaces increases, and this behavior is the

same for both top 1 and top 10 docking models.

3.5 | Score set docking

The LzerD web-server has been adopted in combination with

restraints generated from methods tested in this study. Interface

predictions have been generated with BIPSPI, PREDUS, and

F IGURE 8 Correlation between area under precision-recall curve
(AUC) and the DockQ score of the best among top 10 docking models
for various interface predictors. Data are shown only for those
177 binary complexes from DOCKGROUND benchmark set 4 with
near-native docking models in the upper baseline docking (constraints
derived from the native interfaces). For each complex, averaged

receptor and ligand's AUC are plotted. Running averages have been
obtained from a sliding window of 20 data points
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SPPIDER for protein complexes from the CAPRI Score set.

Restraints have been generated considering only the top 10 predic-

tions for each interface prediction method, and protein chain

restraints have been generated. We found that this number is suffi-

cient in order to observe an effect on the docking result while at

the same time allowing us to minimize the number of false posi-

tives. The precision of the obtained restraints varies widely, as

shown in Figure 7. The most balanced high-precision restraints

were generated by SPPIDER for T41 (PDB code: 2wpt) with 6 and

7 correct restraints. Other predictions reach even higher numbers

of correct restraints, but just for one of the two chains while having

way lower PPV for the other one. All three methods obtain low-

quality restraints (PPV of both chains ≤0.4) for two targets (T35

and T46, PDB codes 2w5f and 3q87, respectively).

Remarkably, no docking models produced with the LzerD server

possessed an “acceptable” DockQ score (Figure 7, right panel). Never-

theless, in two cases (T30 and T54, PDB codes 2rex and 4jw3 respec-

tively), restraints improved the quality of the docking models. In the

case of T30, improvements were achieved by all the tested interface

predictors, while for T54, the DockQ score was only boosted by

PREDUS. In other three cases (T35, T41, and T53, PDB codes 2w5f,

2wpt, and 4jw2, respectively), adding restraints did not produce any

significant DockQ change, while PREDUS and SPPIDER restraints

even reduced the quality of the docking models for T41 and T53,

respectively. Finally, in the remaining three cases (T32, T38, and T46,

PDB codes 3bx1, 3fm8, and 3q87, respectively) the docking without

restraints yielded better models than the models generated using

restraints.

Nevertheless, these results are limited by the small number of

complexes. Interestingly, the number of cases where interface

restraints are useful is surpassed by a comparable number of cases

that may worsen the situation. Furthermore, the similarity between

restraints precision clashes and the very different related docking out-

comes (BIPSPI predictions for T30 and T32 and PREDUS predictions

for T41 and T54 are very similar while the docking results are quite

different). This observation supports the idea that more complex fac-

tors, like for instance restraints geometry relative to the real interface,

are important to drive the correct choice of interface restraints.

3.6 | Complex-wise analysis

The DockQ score for the docking models exhibits a strong correlation

to the AUC of the interface predictors for the corresponding protein

chains. (Figure 8). Few exceptions are found in complexes with high

shape complementarity (Figure 9A), which is sufficient in some cases

to achieve acceptable dockings even with low-quality constraints.

Another possibility to obtain good dockings from noisy constraints is

the combination of wide scattering of false positives predictions over

the entire surface and tightly packed true positives. Such scattering,

observed, for instance, in dynJET2 predictions, allows in some cases

successful docking regardless of somewhat inaccurate predictions

(data for PDB 3bx1 in Table S3).

Constraint quality in our protocol also seems to be an essential

but not sufficient condition for successful docking. A significant num-

ber of complexes exhibit low DockQ scores (�0.1) for the best out of

F IGURE 9 Three examples of constrained docking results; receptor is represented by atomic surfaces; all receptor atoms are colored
according to the score given from the interface predictor, with blue to red transition indicating low to high scores; two ligands depicted in cartoon
style are present in each structure, one in the native position colored in cyan and one resulting from the docking procedure (best in top 10 ranks),
colored in orange; (left) acceptable docking compared to the bound structure with PDB ID 1uug yielding a DockQ score of 0.67, resulted from
application of ISPRED4 scorings as constraints; (middle) example of incorrect docking due to rotational ambiguity in the relative orientation of the
correct interfaces; docking produced using ISPRED4 scores (which yields a DockQ score of 0.09) is rotated of 180� around a vertical axis passing
through the center of the receptor, respective to the native bound structure with PDB ID 3vlb; (right) example of incorrect docking due to high
scoring of residues close but not belonging to the actual interface; the docking (with DockQ score of 0.02) is obtained adopting BIPSPI
predictions and compared to the bound structure with PDB ID 1xt9; nevertheless the average 0.8 AUC value for this complex interface
predictions, False Positive residues (indicated with red arrows) with high scoring are enough to drive the docking toward a completely wrong
configuration. Those residues are part of the receptor catalytic site
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the top 10 docking models, even with large AUC values (Figure 8). In

those docking models, the ligand is placed into or close to the correct

binding site of the receptor with the correct patches of ligand and

receptor residues facing each other but with a wrong mutual orienta-

tion (Figure 9B). Subsequently, rotational freedom is quite a common

pitfall of using interface constraints predicted independently for the

receptor and ligand and can be seen as an intrinsic limitation of this

method.

A fascinating case is given by the complex between the Den1

protease and Nedd8, a Ubiquitin-like protein (Figure 9C). The biologi-

cal role of this complex is to activate Nedd8 by removing a portion of

its disordered C-terminal.53 Predicting the interface of this complex

with BIPSPI identifies a strong signal in the protease catalytic triad

residues, shown by arrows in Figure 8C. These residues are located at

the very edge of the interface and have better scores than the other

predictions in the interface of Den1. The highest scores for the Nedd8

predictions are obtained for the amino acids in the middle of the

Nedd8 interface. Since the peripheral of the Den 1 interface is located

far away from the central part of its interface, docking poses with

those high-scored predictions facing each other and thus favored by

the scoring scheme (Equation 1) are incorrect with the location of the

ligand far away from its native position (Figure 8C).

4 | CONCLUSIONS

In this work, we analyzed the use of predicted interface residues for

scoring template free docking solutions. First, we show that interface

information is sufficient to correctly identify an acceptable model for

the vast majority of all targets that could be generated. Using predic-

tions derived from interface and contact predictors, we found that

one predictor, BIPSPI, was superior to all the other tested ones. Using

the interfaces predicted from BIPSPI, almost twice (13% vs. 7%) as

many first ranked models are acceptable (DockQ >0.23). However,

when applied to a more complex docking scenario, BIPSPI did not

show any increased performance respective to other tested predic-

tors, leaving open questions on how a method to generate docking

constraints should be properly evaluated. Further, the methodology

used in this paper can be applied to evaluate other interface or con-

tact prediction methods, thanks to its simplicity and flexibility.
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