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Implantable Devices

The significance of longitudinal dissociation in the His bundle and the 
ability to correct left bundle branch block (LBBB) by pacing of the distal His 
bundle were described in the 1970s by Narula, Scherlag et al. and El-
Sherif et al.1–3 These early observations in human hearts and animal 
models formed the basis of CRT with conduction system pacing (CSP) to 
correct LBBB. However, it took 22 years until Deshmukh et al. 
demonstrated that permanent His bundle pacing (HBP) can be performed 
and another 5–10 years for Morina-Vazquez et al. and Lustgarten et al. to 
demonstrate correction of LBBB by permanent HBP.4–6 A timeline of 
developments in CRT and CSP is shown in Figure 1. 

Ventricular conduction disturbance, most commonly LBBB, is present in 
approximately one-third of heart failure (HF) patients, leading to loss of 
synchronous ventricular contraction. CRT using simultaneous biventricular 
pacing (BVP) was first conceptualised and patented by Mower in 1990 for 
the non-pharmacological management of HF.7 In 1994, Cazeau et al. 
reported the acute haemodynamic response and clinical follow-up for a 
patient with cardiomyopathy and LBBB who underwent four-chamber 
pacing (including implantation of a left ventricular [LV] epicardial lead).8 
Currently, CRT with BVP is the only HF therapy that improves cardiac 
function, functional capacity and survival while decreasing cardiac 
workload and hospitalisation for HF.9–11 Although observational data on 
CRT with CSP are promising, randomised controlled clinical trials are 
needed to determine whether the clinical results following CSP are similar 
to those seen following conventional CRT with BVP.12,13 In addition, it may 
be useful in selected cases to combine BVP and CSP resynchronisation 
strategies in the form of His-optimised (HOT)- or left bundle-optimised 
(LOT)-CRT (Figure 2).

Challenges encountered during CSP include frequently elevated capture 
thresholds and/or loss of left bundle (LB) capture with HBP, an inability to 
penetrate the septum due to septal scar with LB branch area pacing 

(LBBAP) and tricuspid regurgitation associated with the implantation of 
LBBAP leads in close proximity (≤16 mm) to the tricuspid annulus.14–16

Non-response/Incomplete Response 
to Biventricular Pacing
Responses to BVP are variable and range from complete normalisation of 
cardiac function to a lack of benefit. There are many potential reasons for 
the failure of conventional CRT (Table 1).17 For example, the delivery of LV 
pacing depends on the coronary venous anatomy and can be complicated 
by suboptimal LV lead position (apical or anterior cardiac vein), a high LV 
threshold, lead dislocation and diaphragmatic pacing.18 Other factors 
limiting the use of conventional CRT include myocardial scar, fibrosis and 
an inability to effectively stimulate diseased tissue, and can result in slow 
myocardial impulse propagation and LV latency, with these effects 
amplified by the presence of right ventricular anodal capture.19–22 The 
inability to stimulate severely diseased myocardium or myocardial scar 
(associated with a stimulus-to-QRS latency ≥80 ms) presents a major 
obstacle to the effective delivery of CRT. Lesser degrees of latency 
(≥40 ms) are observed in almost 20% of patients undergoing CRT, and are 
more frequent in patients with ischaemic cardiomyopathy.23

Many of the challenges to conventional CRT have been improved by 
ventriculo-ventricular interval programmability, which allows for the pre-
excitation of slowly conducting scar tissue; quadripolar LV leads, which 
allow for electronic repositioning; multipoint stimulation; and targeted LV 
pacing from the LV lateral base.24–26 Furthermore, the measurement of 
sensed and paced interventricular delays may help predict the response 
to BVP and in the selection of patients who may benefit from CSP.27 In 
conventional CRT, fusion of LV pacing with the spontaneously conducted 
QRS has major advantages, and the release of device-based fusion 
optimisation algorithms, such as adaptive CRT (Medtronic) and SyncAV 
(Abbott), has resulted in improved clinical responses and a decreased 
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incidence of AF.28–31 However, many patients have underlying 
atrioventricular (AV) block, not allowing the delivery of fused CRT. 
Furthermore, CRT requires LV pre-excitation, which may conflict with the 
delivery of ventricular pacing at the optimal AV interval. These obstacles 
limit the application of conventional CRT. However, CSP, alone or in 
conjunction with LV pacing, may prove to be a viable solution in some of 
these cases. The His–Purkinje system is an endocardial structure. In 
terms of CRT response, studies have shown that endocardial stimulation 
in closer proximity to the specialised conduction system is more effective 
than epicardial stimulation, and may represent a form of distal CSP.32,33 
Finally, both conventional CRT and CSP can be derailed by AF and 
frequent premature ventricular contractions, requiring ablation of either 
the AV junction or the premature ventricular contraction focus.34

Physiological/Haemodynamic Advantages 
of Conduction System Pacing
A compelling rationale for the use of CSP is its ability to restore physiological 
ventricular activation and repolarisation. The extent to which normal 
physiological activation of the ventricular myocardium is achieved depends 
on the pacing strategy and pacing site (Figure 3). Although correction of 

LBBB by selective HBP (with the recruitment of fibres predestined to become 
the LB) represents the purest form of physiological resynchronisation, it is 
not feasible in all patients and its use is limited by high pacing thresholds, a 
low signal amplitude with compromised sensing and oversensing of His and 
atrial potentials.35,36 In contrast, deep septal LBBAP, initially described by 
Huang et al., is associated with better pacing thresholds, a larger signal 
amplitude and decreased potential of unwanted oversensing of atrial 
electrograms.37,38 The larger target area for LBBAP may be associated with 
a shorter time to master the technique.39 However, deep septal LBBAP is 
compromised by the non-selective premature capture of the septal 
myocardium and later activation of the right ventricle, with the potential to 
diminish the resynchronisation effect. The critical common denominator for 
all forms of CSP appears to be the early capture of the specialised 
conduction system, which may not always be easily achieved.

Acute Haemodynamic Effects of 
Conduction System Pacing
Acute haemodynamic studies have shown that CSP may result in superior 
electrical and mechanical resynchronisation compared with BVP.40,41 
Arnold et al. demonstrated reduced QRS duration and LV activation times, 
a reduced dyssynchrony index and an improved arterial blood pressure 
response with HBP than with BVP.40 Furthermore, Ali et al. demonstrated 
that HBP delivered better ventricular resynchronisation than LBBAP 
because right ventricular activation was slower during LBBAP.42 However, 
LBBAP was not inferior to HBP with respect to LV electrical resynchronisation 
and the acute haemodynamic blood pressure response.42 

Elliott et al. demonstrated superior electrical resynchronisation and a 
higher proportion of acute haemodynamic responders during biventricular 
(BiV) endocardial pacing and LBBAP compared with BiV epicardial 
pacing.43 Electrical resynchronisation was similar between BiV endocardial 
pacing and LBBAP; however, septal scar seemed to attenuate the 
response to LBBAP.43

Although conventional CRT achieves a reduction in LV dyssynchrony, CSP 
may result in complete restoration of cardiac electrical depolarisation and 

Figure 1: Timeline of the Development of CRT and Conduction System Pacing
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Figure 2: Possible CRT Strategies
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repolarisation. There is limited evidence that normalisation of ventricular 
activation by His–Purkinje CSP is associated with improved diastolic 
function.44,45

Reduction in Ventricular and Atrial Arrhythmias
Physiological resynchronisation by CSP may lower the risk of 
arrhythmias. In a large multicentre observational study, LBBAP was 

Table 1: Challenges Associated With Biventricular Pacing and Possible Solutions

Challenges Conventional solutions Solutions offered by CSP
Delivery of LV pacing is limited by cardiac venous anatomy
• Loss of capture
• Lead dislocation
• Suboptimal lead position (e.g. apical, ACV or MCV)
• Diaphragmatic pacing

• Quadripolar LV lead
• Epicardial LV lead
• QLV-guided lead placement
• Endocardial LV pacing

CSP can address many of these problems:
CSP does not rely on coronary venous anatomy and is not associated 
with the complications encountered during coronary venous pacing, 
such as poor lead position, and does not cause diaphragmatic pacing

Suboptimal RV/LV depolarisation balance scar
• Slowed myocardial impulse propagation in diseased tissue
• LV latency (long stimulus-to-QRS interval)
• RV anodal capture

• Quadripolar LV lead
• Multisite/multipoint LV pacing
• Endocardial LV pacing

• May deliver more effective CRT in these scenarios if there is no septal 
scar

AV synchrony
• Inter-/intra-atrial block
• Late atrial sensing
• Lack of LV pre-excitation due to fusion

• AV junctional ablation (precludes 
fused/adaptive CRT)

• Can be used in conjunction with AV junctional ablation and maintain a 
narrow QRS

AV block
• Inability to deliver fused BVP

• HOT-CRT/LOT-CRT allow combination of CSP and LV pacing 
(equivalent to fused CRT)

Non-LBBB
• RBBB
• IVCD

Questionable clinical outcomes of 
BVP in patients with QRS ≤150 ms

• CSP may be associated with better outcomes in this population

Competing PVC or AF derailing CRT • Ablation • May decrease the burden of ventricular and atrial arrhythmias

Ventricular pro-arrhythmia • Inhibit LV pacing = no CRT • May improve with CSP

ACV = anterior cardiac vein; AV = atrioventricular; BVP = biventricular pacing; CSP = conduction system pacing; HOT-CRT = His optimised CRT; IVCD = intraventricular conduction defect; LBBB = left 
bundle branch block; LOT-CRT = left bundle optimised CRT; LV = left ventricular; MCV = mid-cardiac vein; PVC = premature ventricular contraction; QLV = intrinsic left ventricular electric delay; RBBB = 
right bundle branch block; RV = right ventricular.

Figure 3: Comparison of His Bundle Pacing, Left Bundle Pacing and 
Biventricular Pacing in a Patient With Left Bundle Branch Block
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associated with a lower incidence of sustained and non-sustained 
ventricular tachyarrhythmias and new-onset AF compared with BVP 
(Figure 4).46 Physiological resynchronisation with CSP may not be 
associated with the ventricular pro-arrhythmia that is occasionally 
encountered with BVP and is likely a consequence of the reversal of 
activation in the LV lateral wall (epi- to endocardial) and the location of 
LV leads within scar tissue.47–50

In a prospective study of patients with non-ischaemic cardiomyopathy 
undergoing CRT with HBP for LBBB correction, Moriña-Vázquez et al. 
observed gradual improvement in multiple repolarisation parameters 
associated with arrhythmic death (QT interval, QT dispersion, T wave 
duration, the interval from the peak of the T wave to the end of the T wave 
[Tp–Te] and the Tp–Te:QT ratio).51 The use of permanent HBP to manage 
ventricular arrhythmias that developed after the initiation of BVP and were 

unresponsive to anti-arrhythmic and ablative therapies has been 
reported.52 More complete resynchronisation with CSP may diminish the 
incidence of ventricular and atrial arrhythmias.46

Conduction System Pacing in 
Right Bundle Branch Block and 
Intraventricular Conduction Defect
Conventional CRT in patients with non-LBBB (i.e. right bundle branch 
block [RBBB] and intraventricular conduction defect [IVCD]) is currently 
recommended for patients with a QRS duration >150 ms, but is less 
established in patients with RBBB and a QRS duration ≤150 ms.53 A meta-
analysis of five randomised clinical trials showed that QRS duration >140 
ms is a powerful predictor of the effects of CRT on morbidity and mortality 
independent of QRS morphology in patients with HF and moderate to 
severe LV dysfunction.54

In a study of patients with New York Heart Association (NYHA) class II–IV 
HF, reduced LV ejection fraction (EF) and RBBB with a QRS duration >120 
ms, HBP was successful in 37 of 39 (95%) patients, with narrowing of the 
RBBB in 29 of 37 patients (78%).55 The His capture and bundle branch 
block correction thresholds were 1.1 ± 0.6 and 1.4 ± 0.7 V at 1.0 ms, 
respectively.55 After a mean (± SD) follow-up of 15 ± 23 months, QRS 
narrowed from 158 ± 24 to 127 ± 17 ms (p=0.0001), LVEF increased from 31 
± 10% to 39 ± 13% (p=0.004) and NYHA functional class increased from 2.8 
± 0.6 to 2.0 ± 0.7 (p=0.0001) with HBP.55

In another study of 121 patients (mean age 74 ± 12 years, mean LVEF 35 
± 9%; 25% female, 49% ischaemic cardiomyopathy), LBBAP was 
successful in 107 (88%).56 The QRS axis at baseline was normal in 24% 
of patients, with the left axis in 63% of patients and right axis in 13% of 
patients. The LBBAP threshold and R wave amplitudes were 0.8 ± 0.3 V 
at 0.5 ms and 10 ± 9 mV at implantation, respectively, and remained 
stable during a mean follow-up period of 13 ± 8 months.56 LBBAP 
resulted in narrowing of the QRS duration from 156 ± 20 to 150 ± 24 ms 
(p=0.01) with a mean R wave peak time in V6 of 85 ± 16 ms.56 LVEF 
improved from 35 ± 9% to 43 ± 12% (p<0.01).56 Clinical and 
echocardiographic responses were observed in 60% and 61% of 
patients, respectively. Female sex and a reduction in QRS duration with 
LBBAP were predictive of an echocardiographic response and super-
response.56

Combination of Conduction System 
Pacing With Conventional CRT
In advanced cardiomyopathy, LBBB and IVCD may coexist. This may 
amplify LV asynchrony because LV activation in the setting of LBBB relies 
on long myocardial conduction pathways, and coexisting IVCD will 
further delay myocardial activation. Therefore, CSP may paradoxically 
improve the impact of coexisting IVCD. Under these circumstances, 
resynchronisation may be more complete if the intervention is at the 
level of the specialised conduction system in conjunction with sequential 
LV pacing (in myocardial areas activated late).

There have been a few observational studies on HOT-CRT.57,58 In a small 
retrospective observational multicentre study, HOT-CRT was performed in 
a series of 27 patients with LBBB/IVCD in whom partial or insignificant QRS 
narrowing was achieved by HBP alone compared with baseline.59 At 
baseline, all patients had therapy-refractory NYHA class III–IV HF 
symptoms and LVEF ≤35%. After device implantation, HOT-CRT resulted in 
improved electrical resynchronisation compared with conventional BVP or 
HBP alone. The QRS duration decreased from 183 ± 27 to 120 ± 16 ms 

Figure 4: Cox Survival Curves

0.25

P
ro

b
a

b
ili

ty
 o

f 
su

st
a

in
e

d
 V

T
/V

F

0.20

0.15

0.10

0.05

0.00

0

HR 0.46 (95% CI [0.29–0.74]; p<0.001)

A

9.3%

4.2%

707LBBAP

BVP 707

629

628

404

482

198

333

41

170

6

59

1 2

Time to sustained VT/VF (years)

No. patients with outcome

3 4 5

LBBAP BVP

0.25

P
ro

b
a

b
ili

ty
 o

f 
n

e
w

-o
n

se
t 

A
F 0.20

0.15

0.10

0.05

0.00

0

HR 0.34 (95% CI [0.16–0.73]; p=0.008)
6.6%

2.8%

1 2

Time to new-onset AF (years)

3 4 5

No. patients with outcome

436

454

397

404

255

317

123

229

24

115

3

38

LBBAP

BVP

LBBAP BVP

B

A: Probability of sustained VT/VT over time among all patients (n=1414). LBBAP was associated with 
a lower incidence of sustained VT/VF in patients undergoing CRT compared with BVP. 
B: Probability of new-onset AF over time in patients without a prior history of AF (n=890). LBBAP 
was associated with a lower incidence of new-onset AF compared with BVP. BVP = biventricular 
pacing; LBBAP = left bundle branch area pacing; VT = ventricular tachycardia. Source: Herweg 
et al. 2024.46 Reproduced with permission from Wolters Kluwer Health.



Conduction System Pacing as an Alternative for CRT

ARRHYTHMIA & ELECTROPHYSIOLOGY REVIEW
www.AERjournal.com

(34%) with HOT-CRT, compared with a decrease from 183 ± 27 to 162 ± 18 
ms (11%) with conventional BVP (p<0.05).59 The investigators observed 
significant echocardiographic and clinical improvement in patients with 
advanced HF treated with HOT-CRT.59

A multicentre observational study of 112 patients with CRT indication 
undergoing LOT-CRT reported an implant success rate of 81%.60 LOT-CRT 
resulted in improved electrical resynchronisation compared with 
conventional BVP or LB branch pacing (LBBP) alone. The QRS duration 
decreased from 182 ± 267 to 144 ± 22 ms (21%) with LOT-CRT, to 170 ± 30 
ms (7%) with conventional BVP and to 162 ± 23 ms (11%) with LBBP alone 
(p<0.001).60 Improvements were also seen in LVEF (from 28 ± 10% to 37 ± 
12%; p<0.001) and NYHA functional class (from 2.9 ± 0.6 to 1.9 ± 0.6; 
p<0.0001).60

In the HOT-CRT prospective randomised controlled trial, 100 patients (31% 
female, mean [± SD] age 70 ± 12 years, LVEF 31.5 ± 9.0%) were randomised 
to either the HOT-CRT arm (n=50) or BVP arm (n=50).61 If CSP resulted in 
incomplete electrical resynchronisation, a coronary sinus lead was added. 
HOT-CRT was successful in 48 (96%) patients and BVP-CRT was successful 
in 41 (82%; p=0.03).61 The QRS duration decreased significantly from 164 ± 
26 to 137 ± 20 ms in the HOT-CRT arm and from 166 ± 28 to 141 ± 19 ms in 
the BVP arm. Fluoroscopy duration was similar in the HOT-CRT and BVP 
arms (18.8 ± 12.4 versus 23.8 ± 12.4 minutes, respectively; p=0.05), as was 
procedure duration (119 ± 42 versus 114 ± 36 minutes, respectively; 
p=0.5).61 The change in LVEF at 6 months (primary outcome) was greater 
in the HOT-CRT than BVP arm (12.4 ± 3.0% versus 8.0 ± 10.1%; p=0.02), 
whereas the primary safety endpoint was similar (98% versus 94%, 
respectively; p=0.62). An echocardiographic response (i.e. improvement 
in LVEF >5%) occurred in 80% and 61% of patients in the HOT-CRT and BVP 
arms, respectively (p=0.06). Complications occurred in 3 (6%) and 10 
(20%) patients in the HOT-CRT and BVP arms, respectively (p=0.03).61 It is 
important to understand that HOT-CRT was only delivered and necessary 
in five patients (in whom CSP resulted in incomplete resynchronisation). 
Therefore, the results of this trial are more supportive of CSP by LBBAP 
(which was, in fact, delivered per protocol in 46/57 patients including 
patients cross over).

CSPOT (NCT04905290) is a prospective observational acute 
haemodynamic cross-over trial comparing conventional BVP, LBBP and 
LOT-CRT (Supplementary Table 1). At device implantation, all subjects 
underwent an acute pacing protocol comparing BVP, LBBP and LOT-CRT, 
serving as their own control. The primary outcomes of the electrical 
resynchronisation response at the time of implantation and the 
haemodynamic response measured by LV dP/dtmax have been 
published.62

LOT-CRT decreased QRS duration more than LBBAP and BVP. LOT-CRT 
increased LV dP/dtmax similarly to BVP and more than LBBAP alone. 
Compared with patients with LBBB, those with IVCD experienced less QRS 
reduction during resynchronisation pacing but similar improvements in LV 
dP/dtmax. The incremental value of LOT-CRT over LBBAP on LV dP/dtmax 
was most pronounced in subjects with a baseline QRS ≥171 ms and in 
subjects with deep septal pacing only. Further, anodal capture during 
bipolar LBBAP resulted in a diminished LV contractile force and earlier RV 
activation but no change in QRS duration when compared with unipolar 
LBBAP.62

Secondary outcomes at the 6-month follow-up include change in LVEF, LV 
end-systolic volume and a composite score based on mortality, HF events, 

termination of device function, NYHA functional class and patient global 
assessment.

Mapping Guidance in Choice of CRT
Upadhyay et al. performed LV endocardial septal mapping with a 
multielectrode catheter in patients with and without LBBB.63 Of the 
patients with an LBBB pattern, complete conduction block within the 
proximal left conduction system was observed in 64% (n=46) and intact 
Purkinje activation was seen in the remaining 36% (n=26).63 Intact Purkinje 
activation was observed in all controls (no LBBB). The site of block in 
patients with complete conduction block was at the level of the left His 
bundle in 72% and in the proximal LB branch in 28%.63 HBP corrected 
wide QRS in 54% of patients with an LBBB pattern and in 85% of those 
with complete conduction block (94% left intrahisian, 62% proximal LB 
branch).63 Correction of QRS with HBP was not seen in any patient with 
intact Purkinje activation.63 Whether high-density mapping of the His–
Purkinje system can predict implant success rates for permanent CSP 
remains to be investigated. An explanation for the findings reported by 
Upadhyay et al. may be that patients with slowed conduction or block in 
the more distal segments of the LB may not respond well to proximal HBP 
or LBBAP.

Ponnusamy et al. demonstrated that the presence of septal scar with 
transmural late gadolinium enhancement on cardiac magnetic resonance 
predicted LBBAP implant failure with high sensitivity and specificity.16 A 
preprocedural MRI with gadolinium may therefore be a useful adjunct test 
to plan CRT procedures with either CSP or BVP depending on the 
distribution of the myocardial scar. 

Available Evidence and Ongoing Trials
His Bundle Pacing
Numerous studies have investigated HBP with LB recruitment as a 
potential CRT strategy (Supplementary Table 1).5,36,40,44,55,64–71 These studies 
demonstrated a marked reduction in QRS duration, improved LVEF and 
improved NYHA functional class. However, it is important to acknowledge 
that most of these studies are observational and non-randomised. Only 
two studies have randomised HBP against BVP with a limited number of 
participants.44,72

The HIS SYNC trial was a randomised pilot study comparing CRT with HBP 
to CRT with BVP in 41 patients.73 Due to an inability to achieve appropriate 
resynchronisation and QRS narrowing, 10 of 21 (48%) patients crossed 
over from the HBP arm to the BVP arm. Similarly, 5 of 20 (25%) patients in 
the BVP arm crossed over to the HBP arm due to an inability to achieve 
appropriate coronary venous lead placement. This emphasises the 
complementary nature of both pacing techniques. However, the HIS SYNC 
trial showed a trend towards a more significant reduction in QRS duration 
with HBP. At a median follow-up of 6.2 months, the HBP and BVP arms 
showed similar improvements in LVEF.73

Vinther et al. published a small randomised study of 50 patients comparing 
CRT with HBP to CRT with BVP in patients with HF and LBBB.72 CRT with 
HBP resulted in similar clinical and physical improvements to those seen 
with BVP at the expense of higher pacing thresholds. In all, 28% of 
patients crossed over from HBP to BVP because of an inability to achieve 
LB capture.72

The HOPE-HF trial assessed whether AV-optimised HBP is superior to no 
pacing in patients with HF, an LVEF ≤40%, a PR interval ≥200 ms and 
either a QRS duration ≤140 ms or RBBB.74 The study found that HBP did not 
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increase peak oxygen uptake, but did significantly improve quality of life.74 
The HOPE-HF trial highlights the potential of HBP as a promising 
alternative to traditional pacing methods for patients with HF with first-
degree AV block.74

In summary, although HBP can achieve excellent electrical resynchronisation 
in most patients, its use appears to be limited by elevated pacing thresholds, 
low R wave amplitude and oversensing of atrial electrograms, as well as 
more distal conduction block below the level of the His bundle.36,40,64,65 
Suboptimal long-term lead performance due to elevated capture thresholds 
and/or loss of LB capture requires lead revision in 7–11% of patients 
undergoing HBP.14,36

Left Bundle Branch Area Pacing 
There are many observational and two small randomised studies 
investigating LBBAP as a CRT strategy (Supplementary Table 1).75–85 
According to these studies, LBBAP has emerged as a viable alternative to 
HBP and is associated with lower pacing thresholds, larger R wave 
amplitude and a lack of far-field oversensing of atrial electrograms. The 
LBBAP technique can be mastered in a shorter period of time.86–88 The 
discussion below is limited to the larger observational studies and the few 
randomised trials. 

The recently published I-CLAS observational study compared the clinical 
outcomes of 1,778 patients with HF with an LVEF of ≤35% undergoing CRT 
with either BVP or LBBAP.89 Paced QRS duration during LBBAP was 
significantly shorter than baseline (128 ± 19 versus 161 ± 28 ms, respectively; 
p<0.001) and significantly shorter than during BVP (144 ± 23 ms; p<0.001). 
Following CRT, LVEF improved from 27 ± 6% to 41 ± 13% (p<0.001) with 
LBBAP and from 27 ± 7% to 37 ± 12% (p<0.001) with BVP, with the change 
from baseline being significantly greater with LBBAP (13 ± 12% versus 10 ± 
12%; p<0.001).89 Propensity-matched analysis demonstrated that LBBAP 
was associated with an improved composite endpoint of HF 

hospitalisations and all-cause mortality than BVP (20.8% versus 28%; HR 
1.495; 95% CI [1.213–1.842]; p<0.001; Figure 5).89

Wang et al. conducted a small prospective randomised clinical trial 
(NCT04110431) comparing LBBAP to BVP in 40 patients with non-ischaemic 
cardiomyopathy, HF and reduced LVEF (≤40%).84 In all, 10% of patients in 
the LBBAP arm and 20% of patients in the BVP arm crossed over. An 
intention-to-treat analysis showed a significantly higher LVEF improvement 
at 6 months after LBBAP than BVP (mean difference 5.6%; 95% CI [0.3–
10.9]; p=0.039). The LBBAP arm also did have greater reductions in LV 
end-systolic volume (−24.97 ml; 95% CI [−49.58, −0.36 ml]) and N-terminal 
pro B-type natriuretic peptide (−1,071.80 pg/ml; 95% CI [−2,099.40, −44.20 
pg/ml]), and comparable changes in NYHA functional class, 6-minute walk 
distance, QRS duration and rates of CRT response compared with the 
BVP-CRT arm.84

The ongoing Left vs Left Randomized Clinical Trial (NCT05650658) is the 
largest clinical trial comparing CSP and BVP in CRT-eligible patients. The 
trial will include 2,136 patients followed up for at least 3 years. Unlike 
previous trials, the Left vs Left Randomized Clinical Trial will be 
adequately powered for the superiority of the primary composite 
endpoint of death and hospitalisation for HF. The trial is expected to run 
until 2029.

The His-Bundle Corrective Pacing in Heart Failure trial (NCT05265520) is 
an ongoing trial to evaluate the efficacy and mechanism of benefit of HBP-
enhanced CRT versus CRT with BVP in patients with HF and RBBB.

Until data from randomised clinical trials become available, CSP for CRT 
(in particular LBBAP) should be viewed as a viable bailout strategy in 
scenarios in which conventional CRT is challenging (see Table 1), and 
should only be considered if capture of the LB can be achieved, resulting 
in appropriate QRS reduction. 

Conclusion
The discovery of longitudinal dissociation and proximal conduction block 
of fibres predestined to become the LB or right bundle, and the ability to 
correct bundle branch block by pacing from the distal His bundle are the 
basic physiological principles underlying the use of CSP for CRT. Because 
permanent CSP was not possible, early CRT attempts revolved around 
BVP. Many factors contribute to the failure of conventional CRT with BVP 
and include challenging coronary venous anatomy, diaphragmatic 
stimulation, the inability to effectively stimulate diseased tissue and the 
inability to deliver fused CRT in patients with complete AV block. 
Epicardial LV stimulation with reversed epicardial-to-endocardial 
activation and pacing from scar tissue in the LV lateral wall likely explain 
the potential pro-arrhythmogenicity of conventional CRT. Many of the 
challenges associated with conventional CRT with BVP have been 
improved by ventriculo-ventricular interval programmability, quadripolar 
leads, targeted LV lead placement and endocardial LV stimulation. The 
introduction of HBP and LBBAP, allowing bundle branch block correction, 
has opened up new opportunities to address the limitations of 
conventional CRT with BVP, including unfavourable coronary anatomy, 
the inability to place a coronary venous LV lead, LV latency and exit 
block, ventricular pro-arrhythmia and the inability to deliver fused CRT in 
patients with AV block. It is likely that, in future, both BVP and CSP will be 
used in a complementary manner, even combining both strategies if 
needed. Further studies are needed to determine the hierarchical 
sequence of how to apply the individual techniques in specific clinical 
situations. 

Figure 5: Cox Survival Curve Analysis for the 
Composite Endpoint of Death or Heart Failure 
Hospitalisation Over Time (n=1,778)
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Cox survival curve analysis demonstrated a statistically significant reduction in the primary 
composite outcome of all-cause mortality or HFH with LBBAP compared with BVP.89 BVP = 
biventricular pacing; HFH = hospitalisation for heart failure; LBBAP = left bundle branch area 
pacing. Source: Vijayaraman et al. 2023.89 Adapted with permission from Elsevier.
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