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Abstract

Therapies that bind with immune cells and redirect their cytotoxic activity toward diseased cells 

represent a promising and versatile approach to immunotherapy with applications in cancer, 

lupus, and other diseases; traditional methods for discovering these therapies, however, are often 

time-intensive and lack the throughput of related target-based discovery approaches. Inspired 

by the observation that the cytokine, IL-12, can enhance antileukemic activity of the clinically 

approved T cell redirecting therapy, blinatumomab, here we describe the structure and assembly 

of a chimeric immune cell-redirecting agent which redirects the lytic activity of primary human 

T cells toward leukemic B cells and simultaneously cotargets the delivery of T cell-stimulating 

IL-12. We further describe a novel method for the parallel assembly of compositionally diverse 

libraries of these bispecific T cell engaging cytokines (BiTEokines) and their high-throughput 

phenotypic screening, requiring just days for hit identification and the analysis of composition­

function relationships. Using this approach, we identified CD19 × CD3 × IL12 compounds that 

exhibit ex vivo lytic activity comparable to current FDA-approved therapies for leukemia and 

correlated drug treatment with specific cell–cell contact, cytokine delivery, and leukemia cell lysis. 

Given the modular nature of these multivalent compounds and their rapid assembly/screening, we 

anticipate facile extension of this therapeutic approach to a wide range of immune cells, diseased 

cells, and soluble protein combinations in the future.

Graphical Abstract
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INTRODUCTION

Immune cell redirection (ICR) is a powerful and versatile therapeutic approach in which 

the cytotoxic activity of endogenous immune cells is redirected toward diseased cells via 

simultaneous, drug-induced cell binding. This strategy has demonstrated therapeutic benefit 

in preclinical models of cancer,12 HIV,3,4 lupus,5 and other diseases; however, only one 

such drug with an Fc-independent mechanism-of-action is currently approved for clinical 

use in the U.S.: the bispecific antibody, blinatumomab, which redirects T cell killing toward 

leukemic B cells. Given the ability of ICR therapies to co-opt a wide range of cell types 

(e.g., T cells, NK cells,6 and macrophages7) against both cell-surface and intracellular 

targets,8 enthusiasm for future drug development is high with dozens of drug candidates at 

or in clinical-stage development.2

In addition to their diversity of application, ICR immunotherapies can also vary widely 

in their composition and mode of delivery. They encompass nanoparticle,9-11 bispecific 

IgG,12,13 scFv fusion,14 and mRNA15 constructs, as well as vectors based on oncolytic 

viruses16 and engineered cells.17 While a majority of ICR therapies in clinical testing are 

produced using traditional genetic engineering techniques, one challenge to their discovery 

and development is the relatively low-throughput manner in which drug candidates can be 

investigated and the relatively high dependency of drug action on the affinity of individual 

cell-binding domains. Fusion protein engineering methods that rely on conventional plasmid 

vectors18 or de novo protein design19 often require months for expression and purification 

prior to screening, and the effects of associated modifications on subsequent protein affinity 

can be challenging to predict.20 Moreover, while response rates to blinatumomab are often 

impressive, remissions are not always durable.21 Methods to both accelerate the discovery 

and improve the potency of ICR therapies are therefore urgently needed.

Recently, we identified IL-12 as a key mediator of the immune response to leukemia cells 

in mouse models of B cell acute lymphoblastic leukemia (ALL), including that recombinant 

IL-12 therapy alone could improve T cell activation, immunologic memory, and overall 

survival in mouse models of the disease.22 Based on these findings, we hypothesized that 
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the activity of ICR therapies targeting T cells and leukemic B cells may be improved by 

concurrent delivery of IL-12, particularly if the two agents were tethered to one another in 

order to improve the typically poor circulation of IL-12 that limits its therapeutic potential.23

To examine this hypothesis, here we describe a method for the rapid assembly and 

screening of multivalent ICR drug candidates that redirect the lytic activity of T cells 

toward leukemic B cells and simultaneously codeliver T cell-stimulating IL-12 to yield 

multifunctional therapies which we term, bispecific T cell-engaging cytokines (BiTEokines). 

Using this discovery platform, we show that cytokine codelivery can dramatically alter 

the antileukemic activity of ICR immunotherapies and that the generation and screening 

of diverse libraries of BiTEokine candidates can be achieved in a matter of days, rather 

than weeks or months, thereby greatly accelerating the process of hit identification. Future 

extensions of this approach could enable the rapid identification of drug compounds with 

activity against cancer, autoimmune diseases, or pathogen infections and, given its modular 

nature, could be extended to a wide range of immune cells, diseased cells, and soluble 

protein combinations in the future.

RESULTS AND DISCUSSION

IL-12 Enhances Bispecific T Cell Engager Activity.

We22 and others previously found that IL-12 can improve cancer immune elimination via 

enhanced CD8+ T cell proliferation,24 cytotoxicity,17,25 survival,17 and T cell receptor 

(TCR) signaling.26,27 As clinically approved T cell engager therapies are thought to act 

primarily on a subset of CD8+ T cells,28,29 we posited that IL-12 may improve the lytic 

activity of blinatumomab which bispecifically targets T cell CD3 and leukemic B cell CD19. 

Following prolonged coculture of primary CD8+ T cells with CD19+ NALM-6 leukemia 

cells, we observed significant improvement in target leukemia cell lysis in the presence of 

IL-12, as measured by flow cytometry, (Figure 1a-c) as well as an associated increase in 

T cell proliferation (Figure 1d, Figure S1), and T cell activation (Figure 1e), as measured 

by dye dilution and interferon gamma (IFNγ) secretion, respectively. Together, these data 

demonstrate that IL-12 can improve the performance of T cell redirecting therapies in an ex 

vivo assay that is heavily relied upon to prioritize ICR drug candidates30,31 and that these 

effects are attributable, in part, to cytokine-enhanced T cell proliferation and activation.

This marked effect of IL-12 on blinatumomab activity is significant in that other T cell 

mitogens such as IL-2 have been previously combined with blinatumomab with relatively 

little impact on lytic activity.14,30 While the synergy observed here may be unique to IL-12, 

such differential effects may arise due to the fact that typical lysis assays are performed 

over much shorter durations (e.g., 4 h) and that the effects of IL-12 result, in part, due 

to cytokine-induced T cell proliferation (P = 0.020, Figure 1d, Figure S1). Interestingly, 

however, T cell expansion observed in the presence of both drugs was, alone, insufficient to 

fully account for the large change in target cell lysis (P = 0.027), thus future studies focusing 

on the role of IL-12 in modulating the selective expansion, differentiation,32 or activation 

CD8+ T cells in the presence of blinatumomab are warranted.
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Also, while not investigated further in this work, the observation of synergy between 

blinatumomab and recombinant IL-12 is significant in that the former is currently approved 

to treat relapsed/refractory and minimal residual disease positive (MRD+) B-ALL in both 

adults in children. And while IL-12 therapies have not advanced to phase III trials due 

to poor circulation and toxicity, several novel IL-12 drug candidates currently under 

investigation may benefit from combination with blinatumomab including adenoviral,33 

plasmid,34 mRNA,35 and affinity-targeted24,25 IL-12.

Design and Rapid Screening of CD19 × CD3 × IL12 BiTEokines.

Having shown that IL-12 potentiates the antileukemic activity of T cell-redirecting 

immunotherapy, we next devised a drug architecture that (i) directs the lytic activity of 

T cells toward leukemic B cells, (ii) simultaneously codelivers T cell-stimulating IL-12, 

and (iii) features a modular design amenable to combinatorial assembly of test compound 

libraries (Figure 2). We based the core scaffold of these structures on magnetic iron oxide 

nanoparticles due to their track-record of clinical use,36,37 ability to accommodate a wide 

range of IgG antibodies via Fc-protein G affinity, and rapid purification via magnetic 

field sedimentation. Antibody clones were selected due to their prior clinical testing as 

CAR-T cell constructs (CD19, SJ25-C1)38 or antibody-drug conjugates (CD3, UCHT1),39 

and their comparable IgG1-protein G affinity. Using this modular design, we surmised that 

varying BiTEokine protein abundance would result in differential capacity for drug-induced 

leukemia cell lysis through altered cytokine concentration or affinity/avidity toward cell­

surface epitopes.

To assemble BiTEokine test compound libraries, we dispensed equivalent numbers of 

magnetic nanoparticles into individual wells of a standard 96 well plate, each containing 

varying cocktails of fluorochrome-labeled antibodies directed against human CD19, CD3ε, 

(non-neutralizing) IL-12, or isotype control (Figure 3a, Figure S2). After incubation, 

magnetic field-induced sedimentation, and analysis of antibody abundance using a standard 

fluorescence plate reader, we then sterile-filtered the beads and added varying volumes 

of a novel single-chain variant of IL-12 (scIL-12), followed by incubation and further 

purification. Test compounds prepared using this method were highly reproducible batch-to­

batch, exhibiting stable hydrodynamic size and consistent antibody composition (Figure S3). 

Using this approach, BiTEokine libraries were prepared and characterized over the course of 

just 8 to 9 h.

In total, we synthesized 47 unique BiTEokine test compounds which varied widely in 

antibody composition, achieving a consistent, and near theoretical maximum, total coverage 

of 134 ± 15 IgG per particle (αCD19:1.5 ± 0.8 to 42 ± 4; αCD3:2.5 ± 0.5 to 59 ± 

3; αIL12 0.12 ± 0.08 to 15 ± 0.7; Figure 3b, Figure S4). Dynamic light scattering 

measurements indicated high stability of the subsequent test compounds in buffer, with 

hydrodynamic size increasing from 71.5 to 108.1 nm upon antibody surface-assembly 

(Figure 3c) with no appreciable change in particle morphology as measured by transmission 

electron microscopy (Figure 3d). We note that such size increases (ca. 36.5 nm) correspond 

closely to what one would expect following addition of a single monolayer of IgG1 (10–12 

nm hydrodynamic diameter)40 about these particles, augmenting their size to well-above 
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the size threshold for renal clearance in humans, thus potentially improving the circulation 

and associated therapeutic benefit of IL-12 therapy both alone and in combination with ICR 

immunotherapy. Together these data demonstrate that BiTEokine test compound libraries 

can be assembled rapidly, in parallel with a wide range of structural diversity.

With a test compound library in-hand, we next screened the lytic activity of BiTEokines 

following incubation with cocultures of primary human CD8+ T cells and CD19+ NALM-6 

leukemia cells and analysis by flow cytometry (Figure 3e,f). These screens were performed 

over 72 h using a low31 effector-to-target (E:T) ratio of 1:1 to allow for observable 

T cell proliferation and to closely reflect cell counts present in the peripheral blood 

of patients with MRD+ B-ALL41 and post-transplant relapsed B-ALL,42 populations for 

whom blinatumomab therapy is currently FDA-approved. As anticipated, BiTEokine test 

compounds varied widely in their corresponding lytic potential with median activity 

just 11% (n = 3) that of blinatumomab’s. The top eight screening hits, in contrast, 

exhibited lytic activity closely comparable to, and statistically indistinguishable (P > 0.98) 

from, blinatumomab (e.g., 035:62 ± 26%). Interestingly, these top performing BiTEokines 

displayed only a small number of B cell-targeting antibodies per particle (2 ± 1 to 3.2 ± 0.3) 

and an abundance for CD3 antibodies (24 ± 1 to 59 ± 3), thus largely limiting the potential 

for interaction with multiple B cells. Based on our prior studies in leukemia-bearing mice,22 

we anticipate additional therapeutic benefits from the delivery and prolonged circulation of 

IL-12 in vivo, due to its actions alone and when cross-exposed to antigens from lysed target 

cells.

Another attractive feature of this combinatorial screening approach is its ability to rapidly 

shed light on composition-function relationships unique to these novel multivalent drug 

architectures. For example, the bispecific antibody, blinatumomab, is well-known to target 

T and leukemic B cells with low and high affinity, respectively.43 Multivariate least-squares 

regression modeling of screening data (R2 = 0.82) indicated significant contributions from 

all BiTEokine antibody components; however surprisingly, here we observed that high 

αCD3/αCD19 ratio was, in fact, more closely associated with favorable lytic activity 

(Figure 3g,h). We were unable to rationalize this effect based on disparate antigen ratio 

(approx.44 1.2:1.0 CD19:CD3) or density given that this cell line was used extensively in 

the preclinical development of blinatumomab.30,31 The nonobvious finding that optimally 

lytic structures displayed effector cell antibodies 10- to 25-fold in excess of those toward 

target cells is significant in that prior studies of other multivalent ICR immunotherapies 

have previously focused on either single (i.e., approximately equimolar)9,11 or narrow ranges 

of antibody composition (e.g., 0.33- to 3-fold).10 Antibody ratios in these ranges induced 

only low levels of leukemia cell lysis in this work (Figure 3g); thus, the already impressive 

performance of prior multivalent ICR immunotherapies may be further improved by the 

systematic discovery approach described here. We further found that αCD19 abundance 

was a negative correlate of lytic activity and, conversely, that αCD3, αIL12, and T cell 

division (% divided) were positive correlates of leukemia cell lysis. Target cell lysis 

was also nominally improved by the tethering of IL-12 to BiTEokines in comparison 

to coadministration of cytokine with αIL12-deficient analogs (Figure S5, P = 0.26). 

Interestingly, the impact of IL-12 on drug activity appeared to bifurcate depending on its 

relative abundance on BiTEokines with low amounts of cytokine (approximately 2.3 ng/mL) 
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inducing high T cell division but low leukemia cell lysis, and high IL-12 (approximately 

270 ng/mL) inducing less rapid T cell division and high target cell lysis (Figure 3i-l). While 

future studies will be required to attribute the origin of these differential effects from IL-12, 

we speculate that (i) the novel ability of multivalent BiTEokines to induce TCR clustering45 

may allow them to redirect the activity of CD8+ T cell subsets outside of those typically 

acted upon by bispecific antibodies and (ii) that IL-12 concentration-dependent CD8+ T cell 

differentiation32 may enrich for T cell subsets with differential dependency on costimulation 

for drug-induced lysis (e.g., memory precursor or short-lived effector cells).

Activity and Specificity of BiTEokines.

After identifying hits from the BiTEokine activity screen, we sought to confirm that these 

compounds specifically targeted T and leukemic B cells via flow cytometry. As anticipated, 

we observed particle abundance-dependent increases in the labeling of T cells with CD3 

antibodies and B cells with CD19 antibodies, but no apparent αIL12-dependent cell 

specificity from BiTEokine test compounds (Figure 4a). In addition, we further confirmed 

that BiTEokine lytic activity arose from precise combinations of antibodies, rather than 

nonspecific antibody interactions, using compounds either fully or partially conjugated with 

isotype control antibody to approximately equivalent total amounts of IgG. While isotype 

control BiTEokines elicited only basal levels of activity (1.9% lysis), we observed >17-fold 

increases in lytic responses from lead compounds 35 and 37 (Figure 4b). Together, these 

data correlate cell-specific binding by BiTEokines with the lysis of leukemic B cells.

To further characterize the role of BiTEokines in inducing leukemia cell lysis, we performed 

imaging flow cytometry on cocultures of primary human CD8+ T cells and CD19+ NALM-6 

leukemia cells treated with fluorescently labeled hit compound 35 from the prior activity 

screen, as well as blinatumomab. Gating on doublets of T and B cells, we observed 

similar patterns of LAMP-1 (CD107a) positive vesicle accumulation, indicative of lytic 

granules and lysosomes, in both blinatumomab- and BiTEokine-treated cocultures (Figure 

5). Strikingly, we observed distinct accumulation of BiTEokines at the interface between T 

and leukemic B cells, further associating BiTEokine treatment with cell–cell contact with 

leukemia cell lysis.

CONCLUSIONS

Here, we describe a methodology for the rapid discovery of immune cell-redirecting 

therapies which are combinatorially self-assembled from recombinant proteins and magnetic 

nanoparticles. Motivated by the antileukemic activity of IL-12, both alone and in 

combination with the T cell engager therapy, blinatumomab, we devised a modular and 

convergently assembled drug structure that redirects the lytic activity of T cells toward 

leukemic B cells and simultaneously cotargets the delivery of T cell-stimulating IL-12. We 

show that compositionally diverse libraries of these CD19 × CD3 × IL12 BiTEokines can be 

assembled and screened over the course of just days—rather than months that are typically 

required using traditional recombinant techniques—enabling rapid hit identification and 

the delineation of important composition-function relationships. Using this approach, we 

identified BiTEokine hit compounds which exhibit ex vivo lytic activity comparable to 
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current FDA-approved therapies for leukemia. Detailed analysis of BiTEokine activity 

strongly correlated drug treatment with specific cell–cell contact, IL-12 delivery, and 

leukemia cell lysis. These results are particularly promising given that we anticipate 

additional in vivo therapeutic benefit from IL-12, due to immune memory resulting from 

crossexposure of cytokine with antigens from lysed target cells. Although future lead 

optimization may be required in order to maximize in vivo activity from these compounds, 

these studies demonstrate that optimal antibody composition and density can be rapidly 

determined using this approach; such information could be used to inform the synthesis of 

structurally analogous antibody-conjugated liposomes, viruslike particles (VLPs),46,47 and 

self-assembled protein cages48 for subsequent translation. Future studies investigating the 

impact of core scaffold size, spatial ordering antibodies, targeted cytokine neutralization, 

rather than delivery, may also lead to further improvements in BiTEokine activity or an 

expansion of disease targets, respectively. While a limited number of promising synthetic 

ICR agents have been previously described,9-11 these studies are the first—to our knowledge

—to present a method for the discovery and screening-based optimization of this promising 

class of immunotherapy. Given the rapid and modular nature of the approach presented here, 

we also anticipate facile extension to a wide range of immune cells, diseased cells, and 

soluble protein combinations in the future.

METHODS

Primary Cells and Cell Lines.

Deidentified, normal donor blood samples were obtained from ZenBio (Durham, NC). 

PBMCs were isolated from buffy coats by ficoll density gradient centrifugation. CD8+ T 

cells were isolated from PBMCs by negative selection using EasySep (Human CD8+ T cell 

Isolation Kit, Stemcell), assessed for ≥90% purity by flow cytometry, and cryopreserved. 

Primary cells and the NALM-6 cell line (gifted from Dr. Lia Gore, University of Colorado) 

were cultured in RPMI (10% FBS, 100 U/mL penicillin, 100 μg/mL streptomycin). Hek­

Blue IL-12 reporter cells were obtained from Invivogen and cultured in DMEM (10% 

FBS, 50 U/mL penicillin, 50 μg/mL streptomycin, 100 μg/mL Normocin, 1× HEK-Blue 

selection). All cells were cultured at 37 °C in a 5% CO2 humidified atmosphere and tested 

regularly for mycoplasma.

Therapeutic Antibodies and Recombinant Proteins.

Fluorochrome-conjugated IgG antibodies were purchased from Biolegend: anti-CD3 

(UCHT1), anti-CD19 (SJ25-C1), anti-IL-12 (C11.5), and IgG1 isotype control (MOPC21C). 

Single chain human IL-12 was purchased from Invivogen. Blinatumomab (anti-hCD19­

CD3) was obtained from Invivogen. Protein concentrations were measured via UV optical 

absorption (Nanodrop, Thermo).

BiTEokine Synthesis and Characterization.

Magnetic nanoparticles (50–80 nm) functionalized with protein G were obtained from 

Ocean Nanotech. Particles were validated for lot-specific sizing via DLS (DynaPro III, 

Wyatt). BiTEokine test compounds were prepared via addition of 1.65 × 1011 particles 

to antibody mixtures (PBS) for 10 min at room temperature with agitation at 200 rpm. 
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Antibody amounts per well ranged from 0.11 μg to 2.28 μg (αCD19), 1.25 μg to 24.31 μg 

(αCD3), 0.91 μg to 8.38 μg (αIL12), 1.76 μg to 11.27 μg (Isotype). Unbound antibodies 

were removed via magnetic field-induced sedimentation (≥8 min) and washing twice with 

PBS. Previously obtained calibration curves for antibody-particle binding were used to 

establish conditions for compound library preparation. Intermediate compounds were then 

passed through 0.45 μm sterile PVDF filters and 2 eq. of recombinant human single 

chain IL-12 (relative to αIL12 binding sites) was added to a subset of particles for 

30 min at room temperature with agitation at 200 rpm. Purified test compounds were 

obtained after magnetic field-induced sedimentation (≥8 min) and washing twice with 

PBS. Antibody abundance on test compounds was determined from spillover-corrected 

fluorescence intensity and comparison to standard curves for each fluorochrome-conjugated 

antibody. Particle-bound antibody fluorescence was linearly related to input antibody 

fluorescence over the ranges tested here.

BiTEokine test compounds were imaged via transmission electron microscopy at 80 kV 

using a Hitachi HT-7700 instrument following sample application to Formvar/carbon coated 

copper grids (400 mesh, Electron Microscopy Sciences) for 15 min and washing for 2 s 

with ultrapure water. Hydrodynamic size was measured via dynamic light scattering using a 

DynaPro III plate reader (Wyatt).

Standard Flow Cytometry.—Primary cells were stained for purity post-isolation using 

anti-CD45 (HI30, BD), anti-CD8 (RPA-T8, BD), and Near IR Live/dead stain (Invitrogen), 

then fixed with 4% formaldehyde (Thermo) and analyzed using a BD LSR II or a Cytek 

Aurora cytometer. Data were analyzed using FlowJo 10 software.

Imaging Flow Cytometry.—Cell multimers were fixed by gently adding 4% 

formaldehyde directly to cell cocultures to a final concentration of 2% for 15 min at 

room temperature. Cells were then permeabilized with saponin (BD Perm/wash), stained 

with anti-LAMP1 AF488 (eBioH4A3, Thermo), washed 2× and resuspended in PBS, then 

analyzed using an ImageStreamx Mk II (Amnis) instrument with 60× magnification in 

extended depth-of-field mode. Side scatter measurements were obtained using the default 

785 nm laser line. Data were analyzed using IDEAS software (Amnis).

Cytotoxicity Assay.—Target leukemia cells were stained with CFSE (Tonbo) or 

CellTrace Violet (Thermo) and T cells were left unstained or stained with CellTrace Yellow 

prior to coculture. Target cells and T cells were cocultured in 96 well u-bottom plates for 

up to 72 h. Count beads (Invitrogen) were added to each sample to determine absolute cell 

counts. After coculture, cells were stained with Near IR Live/Dead for viability and fixed 

with 4% formaldehyde prior to flow cytometric analysis. Test compounds for which multiple 

donors or multiple replicates were unobtained, or T cell donors from whom drug-induced 

lysis was not observed, were excluded from analysis. Specific lysis was calculated using the 

equation: %specific lysis = 100(%treated sample [violet+NIR LD+] - %isobeads[violet+NIR 

LD+])/(100–%isobeads[violet +NIR LD+]). Lysis measurements in all cases, including 

blinatumomab-treated controls, were <100%.
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Proliferation Assay.—Proliferation of T cells was measured by dye dilution of CellTrace 

Yellow (Thermo). Gating was performed using FlowJo software, and analysis of dye dilution 

data was performed using ModFit software (Verity) to determine proliferation index and 

percent divided.

ELISA Assay.—Human IFNγ was quantified via sandwich ELISA assay (430107, 

Biolegend) and per the manufacturer’s recommended conditions.

Statistics and Software.—Analyses were performed in Graphpad Prism, JMP Pro 14, 

and Modfit. Statistical comparisons were performed via one-way or two-way ANOVA with 

correction for multiple comparisons using Graphpad Prism. Analysis of BiTEokine variables 

contributing to optimal lytic activity was performed via standard least-squares modeling in 

JMP Pro 14.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Recombinant IL-12 enhances activity of the bispecific T cell engager therapy, 

blinatumomab. (a) Schematic of assay conditions for the coculture of primary human CD8+ 

T cells with CD19+ NALM-6 leukemia cells. Blinatumomab-induced (b,c) lysis of NALM-6 

leukemia cells and (d) T cell proliferation enhanced by coincubation with IL-12 as measured 

by flow cytometry. (e) Blinatumomab and IL-12 synergize to enhance T cell activation as 

measured by ELISA of IFNγ secretion into coculture supernatants. Data in (c,d) report 

representative dot plots and dye-dilution histograms, respectively. Cocultures in (c–e) were 

treated by blina (7 ng/mL) with or without IL-12 (3.5 ng/mL) in comparison to PBS vehicle 

over (c,d) 72 h or (e) 48 h. Values report (b) mean ± SEM (n = 3 donors) as analyzed by the 

mixed-effects model with correction for multiple comparisons and (e) mean ± SEM (n = 3 

donors) as analyzed by one-way ANOVA with Tukey’s correction for multiple comparisons. 

See Supporting Information for associate gating strategies. *p < 0.05, ****p < 0.0001.
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Figure 2. 
Structure and assembly of bispecific T cell engaging cytokines (BiTEokines). Schematic of 

drug-induced synapse formation between T cells and leukemic B cells, as well as synapse­

targeted delivery of the cytokine, IL-12. Inset illustrates the modular and rapid self-assembly 

of CD19 × CD3 × IL12 BiTEokines via addition of human IgG to protein G-conjugated iron 

oxide nanoparticles and subsequent cytokine complexation. The solid beige arrow denotes 

cytokine release or trans-presentation.
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Figure 3. 
High-throughput assembly and screening enables rapid identification of BiTEokines that 

induce efficient leukemia cell lysis. (a) Schematic of test compound library assembly. (b) 

Structural diversity of the BiTEokine library and (c,d) representative test compound size/

morphology as measured by antibody fluorescence intensity, dynamic light scattering, and 

transmission electron microscopy, respectively. (e) Schematic of coculture assay conditions 

and (f) parallel screening results rank-ordered by drug-induced lysis of CD19+ NALM-6 

leukemia cells by primary human CD8+ T cells. (g) Heatmaps illustrating concordance 

between target cell lysis the ratio of αCD3 to αCD19 per BiTEokine and (h) significance 

of antibody components to measured lysis values as modeled by multivariate least-squares 

regression. Univariate composition-function relationships reporting NALM-6 leukemia cell 

lysis versus (i–k) antibody abundance per particles and (l) T cell division. Values in (f) 

represent mean ± SEM of 2–3 T cell donors, each analyzed in duplicate. Lines in (i–l) report 

linear regressions with 95% confidence intervals. E:T, effector-to-target cell ratio. *p < 0.05, 

**p < 0.01.
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Figure 4. 
CD19 × CD3 × IL12 BiTEokines bind specifically and induce efficient leukemia cell lysis. 

(a) Cell fluorescence from various BiTEokine antibodies observed in cocultures gated on 

(top) primary human T cells or (bottom) NALM-6 leukemia cells as measured by flow 

cytometry. Top left: CD8+ T cells exhibit CD3 antibody fluorescence that increases in 

intensity with relative abundance on BiTEokines. Bottom middle: CD19+ leukemia cells 

exhibit CD19 antibody fluorescence that increases in intensity with relative abundance on 

BiTEokines. (b) Representative dot plots of BiTEokine-induced NALM-6 leukemia cell 

killing in comparison to isotype control-conjugated particles. Experimental conditions in (a), 

(b) are noted in Figure 3.
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Figure 5. 
BiTEokines localize at the interface between primary human T cells and NALM-6 leukemic 

B cells. Imaging flow cytometry of CD8+ T cells cocultured with NALM-6 leukemia cells at 

a 1:1 E:T ratio and treated with (a) blinatumomab or (b) CD19 × CD3 × IL12 BiTEokines 

(35) for 24 h at equimolar concentrations (130 pM). (a,b) report images from two different 

T cell donors. Arrowheads indicate localization of BiTEokines at the T-B cell interface. E:T, 

effector-to-target cell ratio. Scale bar is 7 μm.
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