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Abstract: To achieve mass, power and cost reduction, there is a trend to reduce the volume of many
instruments aboard spacecraft, especially for small spacecraft (cubesats or nanosats) with very limited
mass, volume and power budgets. With the current trend of miniaturizing spacecraft instruments one
could naturally ask if is there a physical limit to this process for star sensors. This paper shows that
there is a fundamental limit on star sensor accuracy, which depends on stellar distribution, star sensor
dimensions and exposure time. An estimate of this limit is given for our location in the galaxy.
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1. Introduction

Much progress in a variety of fields in science and technology could be accomplished thanks to
the miniaturization obtained in microelectronics in the recent decades. One of the most remarkable
examples is the prediction by Gordon Moore that the computational power would increase
exponentially, an empirical observation that became known as Moore’s law [1–4]. Yet, this rate of
improvement is not expected to last forever. Eventually a fundamental limit will be reached when
the size of transistors reaches atomic scales. Likewise, in other fields of science and technology,
fundamental limits to miniaturization and performance improvements are often found. For instance,
in the field of telecommunications, there is a theoretical minimum amount of energy that must be
spent to transmit a bit in a digital message from one point to another within a given time interval,
this quantity being closely related to Planck’s constant [5]. Hence, it is natural to ponder whether there
is a fundamental limit to the accuracy attainable by star sensors, given constraints such as the volume
in space it occupies, the length of time available for observations, and the distribution and brightness
of stars around it.

An attitude sensor is any instrument used aboard spacecraft to provide data to estimate its
orientation in space (attitude). Many spacecraft need to have an accurate knowledge of their attitude
in order to accomplish their mission goals (e.g., point cameras/telescopes, communication antennas,
thrusters, etc.). In order to do so, they use a variety of attitude sensors, such as sun and horizon sensors,
magnetometers and star sensors, which can be further classified into star scanners, used in spinning
spacecraft and star trackers, usually employed in three-axis stabilized spacecraft [6,7]. Star trackers
(STRs) are among the most accurate attitude sensors available for spacecraft use, by providing absolute
triaxial attitude measurements with errors typically in the order of few arc-seconds or less [8,9].
These sensors are in essence computerized optical cameras with the appropriate software for star
extraction, star identification, and attitude determination. Reference [10] provides a good explanation
of how star trackers work.

The purpose of this study is to present an estimate for the ultimate limits for attitude determination
from stars, imposed by fundamental laws of Physics, that is, limits that cannot be overcome by
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technology improvements, for our location in our galaxy. These estimates are useful as a basis for
assessing real star sensors as to their potential for improvements through technology advancements.
We will not discuss in this work practical limitations faced by existing, real world star sensors, such as
readout noise, non-ideal point spread function (PSF) in centroiding and distortions introduced by the
optics, since these limitations have already been well covered by the existing literature [11–13].

This paper is a revised and extended version of a work previously published as a doctoral thesis
chapter [14], being organized as follows: Section 2 describes the methodology used, Section 3 presents
and discusses the results, and Section 4 concludes this paper.

2. Methodology and Model Description

The star sensor model analyzed in this work is an ideal spherical star sensor, capable of measuring
the direction and energy of every photon incident on its surface. This ideal star sensor is able to
observe stars from any direction, that is, it has a field of view of 4π sr. The knowledge on the incoming
direction of photons in this model is limited only by diffraction at the star sensor aperture, assumed to
be circular with the same radius of the star sensor itself. In other words, it is assumed that the star
sensor aperture is given by the projection of the star sensor body on a plane perpendicular to the
direction of incoming photons. Figure 1 provides a sketch of the star sensor model adopted in this
work. In this model, the accuracy of the centroids of each star is limited only by diffraction and shot
noise. These effects depend only on the star sensor aperture, stellar spectra, and integration time
(exposure time). This ideal star sensor is completely black, as it absorbs every photon impinging on it.
Sections 2.1 and 2.2 provide more details on the assumptions adopted in this model.

Figure 1. Ideal star sensor model with stars on the background. To aid visualization, unrealistically
represented by a gray sphere here.

2.1. Basic Assumptions

The following basic assumptions were made:

Assumption 1. The star sensor has a spherical shape with a diameter D.

Assumption 2. It is able to detect every photon of stellar origin impinging on its surface.

Assumption 3. It is capable of registering the incoming direction and energy of every detected photon with an
accuracy limited only by Heisenberg’s Uncertainty Principle.

Assumption 4. Only photons detected during a period of length t—the exposure or integration time—are
considered for attitude determination.

Assumption 5. It is at absolute zero temperature.
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Assumption 6. The coordinates of the stars in an inertial reference frame with origin in the star sensor are
known with absolute precision.

Assumption 7. An unbiased optimal estimator is used to determine the star sensor attitude, and computations
are performed with infinite precision.

Assumption 8. Measurements obtained with this ideal star sensor are not merged with external measurements.

Assumption 2 implies that the star sensor field of view is 4π sr, in other words, it is capable
of observing the whole celestial sphere simultaneously, a fact that coupled to its spherical shape,
implies that the accuracy of this ideal star sensor does not depend on its attitude.

Assumption 3 and the fact that every photon is detected implies that the optics are ideal: 100%
transmission, with no defocusing and blurring, except for the blurring dictated by diffraction.

Assumption 5 means there is no noise of thermal origin within the star sensor.
Assumptions 4 and 8 limit the number of photons that will be observed by the ideal star sensor.

If exposure time were not constrained, it would be possible to get attitude measurement uncertainty
as low as desired, just by increasing the exposure time. In addition, this model does not consider
the possibility of combining current observations with previous observations to improve accuracy.
Assumption 4 also implies that the star sensor is able to measure just photons and no other particles.
The basis for this assumption is the fact that the only other particle known to science that could,
perhaps, convey better the positions of stars are neutrinos emitted at their core. However, these
particles interact so weakly with ordinary matter that their detection in star sensors is currently
impossible and may never become a reality [15].

Assumption 6 implies that the star catalog is perfect and that all corrections needed to bring the
coordinates, brightness and colors from the star catalog reference frame origin to the star sensor location
(corrections for stellar aberration, parallax, and redshift/blueshift) are performed with no errors.

Assumption 8 expresses the goal of obtaining a lower bound on attitude error for a single
star sensor used in isolation. If measurements from multiple sensors were permitted to be merged,
a significant improvement in attitude measurement accuracy would become possible. For example,
by interferometrically combining measurements from a small number of star sensors mounted in a
rigid structure and separated by a distance much greater than their diameters, it would be possible
to improve attitude determination by many orders of magnitude in comparison to the theoretical
estimate presented in this work, with attitude uncertainty being roughly inversely proportional to the
distance between them [16,17].

2.2. Simplifying Assumptions

In addition to the previous assumptions, to make this study feasible, the following additional
assumptions were also made:

Assumption 9. The whole Universe is assumed to be composed only by stars.

Assumption 10. Stars are considered as polychromatic point sources of light.

Assumption 11. Stellar spectra are approximated by the spectra of black bodies that best match the cataloged
star intensity given by star catalogs adopted here.

Assumption 12. All Solar System bodies (including the Sun) are disregarded.

Assumption 13. Stellar proper motion is disregarded.

Assumption 14. The star sensor is not rotating.
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Assumption 15. It is assumed that each detected photon can be univocally associated with the star from where
it originated.

Assumption 16. Stars are considered to be at an infinite distance.

Assumption 17. There is no obstruction from spacecraft structures or nearby bodies.

Simplifying Assumption 9 means that we are not considering as additional sources of attitude
information extended bodies, such as interstellar clouds, given that these sources are difficult to
precisely model and would hardly significantly increase our attitude knowledge. However, it does
not necessarily mean that all non-stellar pointlike sources will be excluded from analysis. This means
simply that any non-stellar pointlike source present in star catalogs, such as some quasars and some
distant galaxies, will be treated as if they were stars.

Regarding simplifying Assumption 11, ideally, the actual spectra of stars should be used, at least
for the brightest stars, something to be attempted in future works. Section 3.2 discusses the adequacy
of this approximation.

About simplifying Assumption 14, had the star sensor been rotating, but with knowledge of the
precise instant each photon was detected and a very accurate knowledge of its own angular velocity
vector, it would be possible to compute the incoming direction of every photon in a non-rotating
reference frame attached to the star sensor, thus reducing the problem of attitude determination of a
spinning star sensor to the problem of attitude determination of a non-rotating star sensor.

Regarding simplifying Assumption 17, had there been any obstruction in the field of view of
the ideal star sensor (such as obstruction from nearby bodies or obstruction by spacecraft structures),
its accuracy would necessarily be worse, since the obstructed stars would no longer contribute to the
attitude information gathered by the star sensor. Therefore, we assume that it has an unrestricted view
of the whole celestial sphere. In Section 3.4 we investigate the effects of reductions in the field of view.

Our computations disregard the Sun and other Solar System objects as additional references for
attitude determination, since these sources are difficult to model accurately. Also, the Sun being many
orders of magnitude closer and brighter than the other stars, from our vantage point in the Universe,
it is too bright to be directly observed by most, if not all, star sensors. However, an attitude sensor in a
distant future which is able to use and model very accurately the Sun and a neighboring planetary
body as additional attitude references, could, perhaps, overcome the estimates on the lower bound of
attitude uncertainty computed in this work. This is a topic to be better investigated in the future.

2.3. Model Description

Figure 2 presents a flowchart for the model used in this work. Basically, for each star in the
selected star catalog, an estimate for the lower bound on centroiding uncertainty is computed and
these estimates are used together with the unit vectors that represent the stars in the star catalog
reference frame to determine the lower bound on attitude determination uncertainty (box at the lower
right corner).

Unfortunately, no star catalog is complete. Therefore, any estimate obtained from an existing star
catalog will be incomplete, since the missing stars in that star catalog still can contribute to attitude
knowledge if they are observed by the star sensor, no matter how far or dim they are. To work around
this limitation, we plot the relation of attitude knowledge upper bound with star catalog size for a
number of publicly available star catalogs and extrapolate that to the estimated number of stars in
our galaxy, plus some margin, to account for extragalactic sources, as described in Section 3.3. In the
following sections, a more detailed description of the model used is given.
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Figure 2. Model for estimating the theoretical lower bound on attitude uncertainty for star sensors.

2.4. Black Body Model for Stars

In the model adopted in this work, the spectrum of each star is considered to be the spectrum of
an equivalent spherical black body, diluted by a non-dimensional geometric factor C arising from its
distance to the star sensor. Given that the spectral exitance of a black body is uniquely determined by its
temperature, only two parameters are needed in this model to determine the spectral distribution and
intensity of the electromagnetic radiation received by the star sensor from each star, the temperature T
and the dilution factor C. Mathematically:

Ee,λ,i(λ) = Ci ·Me,λ(Ti, λ) (1)

where:

• Ee,λ,i(λ) is the spectral irradiance received from star i by a surface located at the same place of the
star sensor and perpendicular to incoming rays, evaluated at wavelength λ;

• Ci is the geometric dilution factor for star i;
• Ti is the temperature of the black body that represents star i;
• Me,λ(Ti, λ) is the spectral exitance of the surface of the equivalent black body, at wavelength λ.

In this equation, both Ee,λ,i(λ) and Me,λ(Ti, λ) are given in unit of power per unit of area and per
unit of wavelength (e.g., W/m2/nm).

To uniquely determine these two parameters (T and C) for each star, at least two samples of their
flux taken at different wavelengths or at different spectral bands are needed. The following sections
describe how T and C are derived for each star from Hipparcos catalog data [18], using the cataloged
mV magnitudes and B−V color indexes. A similar procedure is performed with data from Hipparcos
using the V − I color indexes and data from other star catalogs.
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2.5. Black Body Temperatures from B−V Color Indexes

Taking as an example data from the Hipparcos catalog, the spectra of stars is taken as the spectra
of black bodies with intensities adjusted so that the integrated spectra over the Johnson’s B and V
bands [19,20] match simultaneously the flux at these bands derived from catalog data. To determine
equivalent black bodies temperatures for stars in the Hipparcos catalog, an empirical relation is
established in this section, linking the B−V color indexes given in the Hipparcos catalog with black
body temperatures.

The spectral exitance at wavelength λ of a black body at a temperature T can be computed as
follows [21]:

Me,λ(T, λ) =
2πhc2

λ5
1

e
hc

λkT − 1
, (2)

where h is the Planck’s constant, c is the speed of light in vacuum and k is the Boltzmann constant.
The spectral exitance will have units of power per unit area per unit wavelength ([W ·m−2 ·m−1] in SI
units). Numerical values of h, c and k used in computations were those adopted in the 2019 redefinition
of the SI base units [22].

By integrating the product of the spectral exitance of a black body with the Johnson’s B and V
bands energy responses it is possible to obtain the black-body fluxes in the B and V bands at its surface.
This procedure is described in detail by Bessell in Reference [19], Section 1.6—Synthetic Photometry:

ϕBB,B(T) =
∫ ∞

λ=0
Me,λ(T, λ)RB(λ)dλ (3)

ϕBB,V(T) =
∫ ∞

λ=0
Me,λ(T, λ)RV(λ)dλ, (4)

where ϕBB,B(T) = flux at the surface of a black body at temperature T in the Johnson’s B band and
RB(λ) = spectral energy response function of the Johnson’s B band. Analogously, ϕBB,V(T) and RV(λ)

are quantities related to the Johnson’s V band.
The RB(λ) and RV(λ) response functions were obtained by converting the tabulated values

recommended by Bessell (Table 1 on page 146 of Reference [20]) from normalized photonic responses
to normalized energy responses and interpolating the resulting values. The energy response functions
adopted in this work are shown in Figure 3.
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Figure 3. Spectral energy response of the B (blue) and V (visual) bands. The B band is the blue dashed
curve to the left.
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The conversion from normalized photonic response to normalized energy response was done by
multiplying the photonic response by the wavelength and renormalizing the results (Equation (A9)
in Reference [20]). The explanation for this procedure is given in Section A2 in the appendix of
Reference [20], on page 153. The method of interpolation used was a “shape-preserving piecewise
cubic interpolation”, provided by the MATLAB/GNU Octave function interp1 with method “pchip”.
Computations were performed in MATLAB R2015b with the script plot_BV_BB_script.m from the
.zip archive which supplements this work (see “Supplementary Materials” on page 20).

From the fluxes in the B and V bands, the magnitudes in these bands can be computed:

mBB,B(T) = −2.5 log10(ϕBB,B(T)/ϕREF,B) (5)

mBB,V(T) = −2.5 log10(ϕBB,V(T)/ϕREF,V). (6)

These equations give the apparent magnitudes in the B and V spectral bands of a spherical black
body for an observer situated just above its surface looking down towards its center. ϕREF,B and ϕREF,V
are the reference fluxes that define the zero points of the magnitude scales in these bands, having being
obtained by numerically integrating the spectrum of Vega (α-Lyr) multiplied by the band responses,
and adjusting their values such that the computed B and V magnitudes of Vega matches those in the
star catalog (mVega,B = 0.029 and mVega,V = 0.030 in Hipparcos). Mathematically:

ϕREF,B = 100.4mVega,B

∫ ∞

λ=0
EVega(λ)RB(λ)dλ (7)

ϕREF,V = 100.4mVega,V

∫ ∞

λ=0
EVega(λ)RV(λ)dλ, (8)

where EVega(λ) is the spectral irradiance from Vega measured at the top of Earth’s atmosphere.
The spectrum of Vega used in Equations (7) and (8) was obtained from file alpha_lyr_stis_008.fits
from the CALSPEC database [23], which at the time of this writing was available at http://www.stsci.
edu/hst/instrumentation/reference-data-for-calibration-and-tools/astronomical-catalogs/calspec.

Figure 4 shows the apparent magnitudes of black bodies versus temperature in the Johnson’s
B and V bands for an observer located at their surface. In this plot, brighter sources (more negative
magnitudes) are at the top. Note that the magnitude scale used in astronomy is reversed, with smaller
magnitudes meaning brighter sources. The magnitudes are said to be apparent because they depend
on the observer location, contrasting to stellar absolute magnitudes which are magnitudes of a star as
seen from a standardized distance [24].

The difference between the B and V magnitudes of a celestial body is its B − V color index.
Figure 5 presents the relation between the B − V color index and temperature for black-bodies.
The plot to the right relates the B−V color index with the multiplicative inverse of its temperature.
Note that this curve is much more linear than the direct relation between temperature and B−V color
index. Therefore, to get equivalent black-body temperatures for stars in the catalog, we use the 1/T
versus B−V curve for interpolation. To avoid temperature estimates with large errors from appearing,
the B−V color indexes in the Hipparcos catalog are clamped into the interval [−0.2357,+2.7028] before
conversion. These limits correspond to black-body temperatures of 30,000 K and 2000 K, respectively.
Most stars have effective temperatures in that range.

http://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-tools/astronomical-catalogs/calspec
http://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-tools/astronomical-catalogs/calspec


Sensors 2019, 19, 5355 8 of 23

103 104 105

Temperature (K)

-45

-40

-35

-30

-25

bl
ac

k 
bo

dy
 m

ag
ni

tu
de

s

B magnitude
V magnitude

Figure 4. Apparent magnitudes of a black body for an observer lying on its surface and looking down
towards its center versus black body temperature, in the Johnson-Morgan B and V bands. Note that the
vertical axis of this plot is reversed, with more negative magnitudes (brighter black-bodies) at the top.

It should be noted that for many stars, the temperature T used in our model will not be equal
to the effective temperature of the star but will usually be smaller. This is caused by interstellar
reddening—selective absorption by dust in the intervening light path from that star to the star sensor.
Likewise, the constant C will also have a different value.
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Figure 5. Relation between temperature (or its reciprocal) with B−V color index for black bodies.

2.6. Determination of the Geometric Dilution Factor C from Hipparcos Data

From temperature T, the equivalent black body’s visual magnitude at its surface (mBB,V,sur f ace) is
determined by interpolating the solid black curve in Figure 4. The dilution factor C is then obtained
by comparing this magnitude with the cataloged visual magnitude (mV) in the Hipparcos catalog,
using the following equation:

Ci = 100.4·(mBB,V,sur f ace,i−mV,i) (9)

The geometric dilution factor C will typically be between 10−20 and 10−14 for stars in the
Hipparcos catalog. In this equation, the subscript i indicates that the values refer to star i.
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2.7. Number of Photons Detected Per Unit Wavelength

This section derives equations for the number of photons that will be detected, per wavelength,
by the idealized star sensor used in this model, for a given exposure time t and a given star sensor
diameter D, also assumed to be equal to its aperture diameter. The energy of each photon is related to
its frequency ν by the following equation:

Eph = hν =
hc
λ

. (10)

Dividing the spectral irradiance at the location of the star sensor due to the black-body equivalent
of star i (Equations (1) and (2)) by the energy of a photon of wavelength λ, the following expression for
the spectral photon flux density received by the star sensor from the equivalent of star i is obtained:

ϕph,λ,i = Ci
2πc
λ4

1

e
hc

λkTi − 1
. (11)

This flux density has units of photons per unit of time per unit of area per unit of wavelength.
Multiplying this by the star sensor’s cross section area A = πD2/4 and by the integration time t
we obtain:

nph,λ,i = Ci · t ·
π2D2c
2 · λ4

1

e
hc

λkTi − 1
, (12)

which is the number of photons from star i black body equivalent being collected by the star sensor,
per unit wavelength.

2.8. Diffraction and Photon Noise

Diffraction and optics blurring set the format of the point spread function (PSF) of stellar image.
In an ideal star sensor, there is no optical blurring, except for that set by diffraction. Therefore, for the
star sensor model adopted in this work, the PSF function will be the diffraction pattern given by
a circular aperture of diameter D contained in a plane perpendicular to the incoming direction of
photons. This is the well known Airy pattern, consisting of a center disk with a series of concentric
rings [25].

If the description of Nature given by Classical Mechanics were correct, it would be possible,
at least in theory, to measure the intensity of the electromagnetic fields at the detector plane of an
ideal equivalent system composed by ideal lens and ideal detector with no error, from where the
true, error free direction of the incoming light rays would be obtained. However, the fact that light
is discretized in photons limits the amount of information that can be obtained, regardless of the
system considered. Instead of precisely defining the intensity of the electromagnetic fields at each
point in the detector (as thought by 19th century physicists), the PSF defines the probability density
function that a photon coming from a point source at infinity will be detected in a particular location
on the detector. Given that the number of photons detected is finite and these arrive at random
positions following the PSF, the centroid estimate for each observed star will be noisy, even for an
ideal system. The lower bound for the resulting uncertainty in centroiding can be obtained by many
different methods [26–28]. Section 4.1.1 in Reference [26] provides a detailed explanation, targeted at
telescopes and interferometers. In the next section we show how this derivation can be extended for
polychromatic sources (black-bodies).
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2.9. Lower Bound on Centroiding Error for Single Stars

Heisenberg’s uncertainty principle sets a fundamental limit for centroiding, and this limit assumes
the following form for monochromatic light of wavelength λ [26–28]:

σxc >
λ

4π∆x
√

N
(13)

where:

• σxc = angular centroiding uncertainty along an axis x perpendicular to the direction of incoming
photons, in radians;

• ∆x =
√∫

(x− x)2 dS /
∫

dS is the root mean square extension of the star sensor aperture

(entrance pupil) along the x axis, being x =
∫

x dS /
∫

dS the position in x of the aperture
geometric center; and

• N = number of photons detected.

For circular apertures of diameter D, ∆x = D/4. Substituting this into Equation (13) the following
expression for the reciprocal of the lower bound of variance of centroiding error (the Fisher information
F) over a circular aperture of diameter D, for monochromatic sources of light, is obtained:

1
σ2

xc
6

1
σ2

min
, FN,mono =

π2D2N
λ2 . (14)

Since stars are incoherent sources of light, the detection of a given photon is not correlated
with the detection of another photon from the same star. This means that the number of detected
photons from a given star will follow a Poisson distribution with parameter ι, being ι the expected
number of detected photons (we are using the Greek letter ι instead of the more common λ for the
Poisson distribution parameter to avoid confusion with λ used for wavelength). This parameter can
be obtained by integrating Equation (12). For large values of ι, the Poisson distribution narrows down
in comparison to the value of ι. This means that when the expected number of detected photons is
significantly large, the true value of the lower bound of centroiding accuracy will be very close to the
value predicted by Equation (14) if we substitute N by ι. Numerical tests have shown, assuming that
the centroiding error for exactly N detected photons follows a Gaussian distribution with a standard
deviation given by Equation (13), that the error between the actual centroiding error and the value
estimated by Equation (14) using ι in place of N will be smaller than 23% for N ≥ 1, 6.4% for N ≥ 10
and 0.51% for N ≥ 100. It is true that the actual probability density function for centroiding error along
one axis will not be exactly Gaussian, especially for a low number of detected photons, but a Gaussian
distribution provides a good approximation even when only one photon is detected.

Another consequence of the fact that the detection of a given photon is not correlated with the
detection of another photon from the same star is that the centroiding error of a centroid computed
using photons in the wavelength interval [λ1, λ2] is independent on the centroiding error using photons
in the wavelength interval [λ3, λ4] when these intervals do not overlap (λ2 < λ3 or λ4 < λ1). Therefore,
we can consider each wavelength interval individually and then merge the centroid estimates for
each wavelength.

For the discrete case of having n independent unbiased estimates of the same physical variable
(e.g., the x coordinate of a star centroid), each having a variance σ2

i , the best estimate for that variable is
obtained by summing these estimates using the reciprocal of their variances as weights [27,29]. In that
case, the variance of this optimal estimate will be given by:

σ2
T =

(
n

∑
i=1

σ−2
i

)−1

, (15)
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where σ2
T = total variance in the estimate of a scalar physical variable obtained by merging n

independent measurements and σ2
i = variance of each individual measurement i. Since the spectra

of black bodies is continuous, the following adaptation of Equation (15) is used to compute centroid
estimates for black bodies:

1
σ2

xc
=
∫ ∞

λ=0

d(σ−2)

dλ
dλ. (16)

The contribution from each wavelength to the knowledge of the centroid position can be obtained
from Equation (14) by replacing N with nph,λ,idλ, where nph,λ,i = dNph,i/dλ is the derivative with
wavelength of the number of photons from star i entering the star sensor aperture within an integration
time of t, as given by Equation (12) from Section 2.7. Hence, for each star i, the wavelength derivative
of the maximum knowledge physically attainable of its centroid position (derivative of its centroiding
Fisher information) is given by:

dF
dλ

=
d
(

σ−2
min

)
dλ

=
π2D2

λ2 nph,λ. (17)

Here we have dropped the subscript i to simplify notation. Plugging Equation (12) into
Equation (17) yields:

dF
dλ

= C · t · π4D4c
2λ6

1

e
hc

λkT − 1
. (18)

Integrating this equation for λ = 0 to ∞ gives Fi, the Fisher information for stellar centroid i and
its reciprocal σ2

min, the minimum variance for the centroid position error in x direction, being x an axis
perpendicular to the incoming light rays:

1
σ2

min
= Fi =

∫ ∞

λ=0

dFi
dλ

dλ = 12ζ(5)π4 · k5

h5c4 · D
4t · CiT5

i , (19)

where ζ(5) = 1.0369277551... is the Riemann zeta function evaluated at 5. Since the aperture is
symmetrical, Equation (19) gives the minimum centroiding variance for star i (σ2

min,i) along any axis
perpendicular to the direction of incoming light rays. From this equation, it can be noted that the lower
bound of the standard deviation on centroiding error along any axis perpendicular to the true direction
of the star is proportional to D−2 and t−1/2, when the number of detected photons is sufficiently large.
This means that the star sensor diameter has a much larger effect in the ultimate centroid accuracy and
precision than the exposure time.

2.10. Estimating the Lower Bound of Attitude Error from Many Stars

This section follows the formulation given by Markley and Crassidis in Reference [30], Section 5.5.
This formulation is valid when measurement errors are small, uncorrelated and axially symmetric
around the true direction of stars, conditions fulfilled by our model, except for ideal star sensors with
microscopic dimensions.

According to Equations (5.113) and (5.114) in Reference [30], the covariance matrix (Pϑϑ) of the
rotation vector error (δϑ) for an optimal attitude estimator is the inverse of the Fisher information
matrix F:

Pϑϑ = F−1, (20)

with:

F =
N

∑
i=1

1
σ2

min,i

[
I3×3 − rtrue

i (rtrue
i )T

]
, (21)

for the ideal star sensor model adopted in this work. In this equation, I3×3 is a 3× 3 identity matrix
and rtrue

i is the true direction of star i, represented by a unit vector expressed as a 3 × 1 column
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matrix. rtrue
i is given in an inertial reference frame and N is the number of identified stars used in

attitude computation.

2.11. A Compact Metric for the Attitude Error

Even though the covariance matrix Pϑϑ provides detailed information about the attitude
uncertainty, as it has six independent parameters it has the disadvantage of being hard to visualize.
Therefore, to perform comparisons, we use a more compact metric derived from it:

(ϑ̄rms)
2 = E{ϑ2} = tr(Pϑϑ). (22)

The trace of the covariance matrix Pϑϑ gives the variance of the overall attitude error, that is,
the sum of the variances of the attitude error around the three defining axes of the reference frame. It is
also equal to the square of the limiting value of the root mean square (rms) of the angle theta (ϑ) of the
Euler axis/angle parameterization of the attitude error when the number of attitude determinations
tends to infinity.

When the star sensor diameter and exposure time are large enough so that most stars contributing
to the Fisher information matrix F have many detected photons, the lower bound of the expected
rms value of theta (ϑ̄rms,min) can be computed by Equations (19)–(22). These equations can also be
rearranged in the following manner, which makes more explicit the dependence of ϑ̄rms,min with D
and t:

ϑ̄rms,min = G · D−2 · t−1/2, (23)

with

G =

√√√√√ h5c4

12ζ(5)π4k5 · tr

( N

∑
i=1

CiT5
i
[
I3×3 − rtrue

i (rtrue
i )T

])−1
, (24)

G is a constant that depends only on stellar distribution around the star sensor, stellar brightness and
on attenuation of stellar light by the intervening medium.

3. Discussion and Results

3.1. Star Catalogs Used

The Hipparcos star catalog was initially selected because it was, until very recently, one of the
most accurate star catalogs available for precise attitude work. Therefore, we already had all the
tools needed to process it. Unfortunately, the Hipparcos star catalog having less than 120,000 stars is
too short to give an adequate basis for extrapolation. Therefore it was decided to include data from
two larger catalogs, the Tycho-2 [31,32] with around 2.5 million stars and 2MASS [33] with about
470 million objects. A slightly more accurate basis for extrapolation would had been obtained if we
had included larger star catalogs such as the Gaia DR2 star catalog [34] or the USNO-B star catalog [35].
However, this would have required us to rewrite most tools used in star catalog processing to make
them run in a reasonable time in the hardware that was available to us.

The Hipparcos and Tycho-2 star catalogs give magnitudes in the optical regime (near ultraviolet,
visible and near infrared), whereas the 2MASS star catalog gives magnitudes in the near/shortwave
infrared bands J(1.25 µm), H(1.65 µm) and Ks(2.16 µm).

3.2. Adequacy of the Black-Body Approximation

In order to check the adequacy of the black-body approximation used in Section 2.4, we have
performed a numerical integration of Equation (17) for some selected stars, using their actual spectra.
It was observed that, given the color index used, the black-body approximation provides a good fit for
some stars, but the fitting is not so good for all of them. Figure 6 compares the actual spectra of two
stars with the spectra of their black-body equivalents, derived from their B−V color indexes and V
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magnitudes (mV) given in Table 1 using the methods described in Sections 2.5 and 2.6. Spectral fluxes
in Figure 6 are given in power per unit area per frequency (or wavelength) decade.
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Figure 6. Comparison between the actual spectra for the Sun and Vega (α-Lyr) with the spectra of
their black-body equivalents derived from their B − V color indexes and V magnitudes with the
methodology explained in Sections 2.5 and 2.6. Actual spectra represented by continuous line. Dashed
lines represent the spectra of equivalent black-bodies.

Table 1 also presents a comparison between the lower bound of centroiding error obtained by
numerical integration (σmin,num, in the last row of the table) and the lower bound of centroiding error
σmin,BB obtained from the black-body approximations. To show how σmin,BB can vary depending
on the spectral bands used for estimating the equivalent black-bodies, results are presented for two
photometric systems—Johnson’s UBV and 2MASS JHKs, with the derived black-body parameters
(T and C) also shown. As can be seen, the error in σmin,BB is typically less than a factor of 2 but
sometimes it can be much larger (see for example star VB8).

Table 1. Comparison for some selected stars when D = 10 cm and t = 100 ms.

Parameter Star
Name/Symbol Unit Vega 1757132 Sun * KF06T2 VB8

spectral type - A0V A3V G2V K1.5III M7V

mV mag 0.030 11.81 −26.75 13.97 16.80
B−V mag −0.001 0.26 0.65 1.18 2.01

T K 13,231 8580 5711 3951 2613
C 1 2.96 · 10−17 1.87 · 10−21 2.42 · 10−5 9.59 · 10−21 2.01 · 10−20

σmin,BB rad 1.19 · 10−10 4.42 · 10−8 1.08 · 10−15 1.36 · 10−7 2.63 · 10−7

mH mag −0.004 11.23 −28.24 11.26 9.17
H − Ks mag −0.005 0.02 0.04 0.10 0.34

T K 10,417 8961 8059 6050 3282
C 1 4.80 · 10−17 1.94 · 10−21 1.41 · 10−5 3.72 · 10−21 1.05 · 10−19

σmin,BB rad 1.70 · 10−10 3.89 · 10−8 5.94 · 10−16 7.50 · 10−8 6.50 · 10−8

σmin,num rad 1.74 · 10−10 5.53 · 10−8 1.14 · 10−15 1.48 · 10−7 9.24 · 10−8

* Not used in the results presented in this work, due to its extreme proximity (see explanation at the end of
Section 2.2).
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The magnitudes and color indexes listed in Table 1 were computed from spectra downloaded
from the CALSPEC database (see Section 2.5). For the UBV system, the zero points that define the
origin of the magnitude scales were computed using the method described in Section 2.5. For the
2MASS JHKs system, the zero points were considered to be the zero-magnitude in-band fluxes listed
on the third column of Table 2 from Cohen et al. [36].

Color Index Limiting Values

As explained in Section 2.5, the color indexes were limited to the interval that corresponds to
a temperature range of 2000 K to 30,000 K. It was observed that, when the upper temperature limit
was raised to more than 100,000 K, the Fisher information matrix would be dominated by a few
very blue, hot stars where the interpolation from the color index curve versus temperature would
give a very high temperature, much higher than their actual temperatures, leading to a significant
underestimate of ϑ̄rms,min. In fact, even the 30,000 kelvins upper limit adopted in this work might be
too high, resulting that the ϑ̄rms,min estimated here is probably lower than the actual lower bound of
attitude error attainable by star sensors.

The lower limiting temperature of 2000 K could perhaps be set to a lower value (e.g., 500 K),
in order to better accommodate interstellar absorption and the existence of brown dwarfs. However,
it was noted that this lower temperature limit has very little effect in the estimated value of ϑ̄rms,min.

The optimal selection of temperature limits to be adopted for the black-body model will be a
subject of a future work, if this model is not abandoned in favor of a more accurate stellar spectra model.

3.3. Results from Catalogs and Extrapolation

Some scripts were written to numerically evaluate the lower bound on star sensor attitude
error for different star catalogs, different spectral bands and limiting the number of stars used in the
computations to the N brightest cataloged stars, with N varying from two stars to the whole star
catalog. Figure 7 shows results obtained with the catalogs described in Section 3.1 for D = 1 m and
t = 1 s. The letter codes B-V, V-I, BT-VT, J-H, J-Ks and H-Ks indicate the spectral bands and catalog
used for each curve. These curves form a basis for extrapolation (dashed lines) from where it is possible
to obtain an interval that will very likely contain the true value of the parameter G in Equation (24) for
our location in the galaxy. In this figure, we have chosen D = 1 m and t = 1 s instead of more typical
star sensor values because the chosen values lead directly to the numerical value of G in SI units when
performing the extrapolation.

Performing a rough extrapolation, we obtain for N = 300 · 109 stars, an estimated number of stars
in our galaxy [37], ϑ̄rms ≈ 1.2 · 10−14 rad for the lower extrapolation curve and ϑ̄rms ≈ 5.8 · 10−14 rad
for the upper extrapolation curve. However, there were many approximations made in the model,
mainly the assumption of black-body spectra for stars. Therefore, the ϑ̄rms upper and lower estimates
for D = 1 m and t = 1 s could still be wrong by a factor of 1.5 or 2. Hence, additional safety factors
represented by the red vertical arrows along the 3 · 1011 stars dashed dotted line in Figure 7 were
included. With these safety factors, and considering that the contribution of extragalactic sources is
negligible (Section 3.3.1), which makes ϑ̄rms(N = 300 · 109) ≈ ϑ̄rms,min, it should be safe to assume that
the true value of the G constant is: 7 · 10−15 rad m2 s1/2 < G < 10−13 rad m2 s1/2.
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Figure 7. Estimates of ϑ̄rms for an ideal star sensor with D = 1 m and t = 1 s, obtained from
the following star catalogs: Hipparcos, Tycho-2 and 2MASS and their subsets of brightest stars.
Extrapolation curves shown as dashed lines.

3.3.1. Contribution from Extragalactic Sources

The contribution of all existing extragalactic sources in the known Universe for the attitude
accuracy is probably very small (probably less than 10% of the overall Fisher information). The reason
for that is the vast distances between galaxies in comparison to their dimensions. For example,
the nearest galaxy about the same size or larger than our galaxy is the Andromeda Galaxy. Its center
lies about at a distance of 780 kpc from us [38], which is about 10–20 times the diameter of their disks.

Our galaxy, the Milky Way Galaxy, is orbited by many dwarf galaxies, such as the Small and
Large Magellanic Clouds, but the total number of stars in these dwarf galaxies is less than 10% of the
number of stars in our galaxy, therefore their contribution is also negligible.

Considering that the light intensity (and number of detected photons per unit time) falls off with
the square of the distance from the source and that the Fisher information contributed by a star is
proportional to the number of detected photons from that source, it is easy to see that the contribution
from extragalactic sources will be small.

Nevertheless, some extragalactic sources were included in our estimates. Extragalactic sources
can be divided in two categories, based on their apparent angular dimensions: extended sources and
pointlike sources. Extended sources were excluded from analysis due to simplifying Assumption 9 in
Section 2.2. However, many pointlike extragalactic sources were already present in the 2MASS Point
Source Catalog which was used in Figure 7.

3.3.2. Accuracy Degradation in Small Ideal Star Sensors with Short Exposure Times

When performing the extrapolation in Figure 7 to compute constant G, it was assumed that all
point sources that can contribute to attitude knowledge would be observed. However, this is not
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always true, especially for very small star sensors, or when the exposure time t is very short. In these
cases, many weak sources will have a low probability of being observed, due to the fact that for most
measurements taken by the ideal star sensor no photon from these sources will hit its surface within
the exposure time interval of t. This results in an additional degradation in the average accuracy of the
star sensor, even when all assumptions described in Sections 2.1 and 2.2 are fulfilled.

From Figure 7 it is possible to get a rough idea of how much the accuracy of an ideal star sensor
suffers from this effect. This figure indicates that the accuracy is severely degraded if the average
number of observed stars is less than 104, but the degradation is small when, on average, more than
108 stars are observed.

Numerical tests with sections of the 2MASS star catalog, containing stars from the middle sections
and last sections when 2MASS was sorted by magnitude, indicate that when D = 0.1 m and t = 0.01 s,
for more than half of the 2MASS catalog stars (more than 2.3 · 108 stars), the expected number of
photons arriving at the star sensor (ι) will be larger than one. Indeed, for stars in the middle of 2MASS,
ι > 1.6, meaning these will have a probability of being detected, from the Poisson distribution, larger
than 1− e−1.6 = 79.8%. From the distribution of stars versus limiting magnitude, we know that the
average number of observed stars by an ideal star sensor (stars with at least one photon hitting the star
sensor) will be roughly equal to the number of stars having ι > 1.0. Therefore, it is safe to assume that
for D > 0.1 m and t > 0.01 s much more than 108 stars will be observed on average.

Considering that the number of photons from a given source detected by the star sensor is
proportional to the product of its aperture area and exposure time, therefore, being also proportional
to D2t, it is easy to see that the same result will hold for any other combination of star sensor
diameter D and exposure time t that satisfies the inequality D2t > 0.0001 m2·s. Therefore, ideal
star sensors that satisfy D2t > 0.0001 m2·s will come close to the theoretical limit established by
Equation (23), being probably within the uncertainty interval of constant G obtained from Figure 7.

The numerical tests described in this section can be performed by providing appropriate
parameters to the function lower_bound_from_starcat.m in the “Supplementary Materials”.

3.3.3. Need to Consider Some Stars as Extended Sources

The lower bound on attitude uncertainty is so low that future star sensors would probably
need to consider some stars as extended bodies and correct the effects of stellar spots (akin to sun
spots, but in other stars) in their atmospheres to be able to come close to this theoretical lower
bound, something that is unthinkable for current generation star sensors. For example, the star
R Doradus—the star with largest apparent diameter after the Sun—has an apparent diameter of
57 ± 5 mas [(2.76 ± 0.25)·10−7 rad] [39].

3.4. Effects of Field of View Restriction on Star Sensor Accuracy

Up to this point, we have considered unobstructed ideal star sensors, according to simplifying
Assumption 17 in Section 2.2. However, in practice, real star sensors have limited FOVs (fields of
view), and even if it were possible to design a star sensor with an unlimited field of view (FOV), parts
of the sky would be obstructed by the spacecraft itself. Therefore, in this section we investigate how
limitations in the FOV affect their accuracy.

The model adopted in this section is that of a diffraction limited and photon noise limited star
sensor, based on the model presented in the previous sections, but with limitations in its FOV. Its FOV
is considered to be a cone with a diameter varying from 360◦ (full celestial sphere) down to 4◦

(narrow FOV). For numerical computations, we assume an aperture diameter D of 10 cm and exposure
time t of 10 ms. Computations were performed for two orthogonal pointing directions in the sky,
labeled “target 1” and “target 2” and also for their combination. Due to practical reasons, we were
forced to limit the catalog size used in this study (see Section 3.4.1). The estimates presented here
were computed considering all stars in 2MASS up to J magnitude of 12.5750. This corresponds to the
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brightest 26,036,431 stars in J band, about 5% of the full 2MASS star catalog. For each star, equivalent
black bodies have been computed from the J and H magnitudes. Results are presented in Table 2.

Table 2. Estimated accuracies for an “ideal” field of view (FOV) limited star sensor versus its FOV
diameter, for D = 10 cm and t = 10 ms. Note: Estimates have large uncertainties, actual values may be
up to three times as larger or smaller than the values shown.

FOV
Attitude Error (ϑ̄rms)

(in Milli-Arc-Seconds)

Target 1 Target 2 Both

360◦ 0.0073 0.0073 0.0051
90◦ 0.0369 0.0202 0.0152
25◦ 0.641 0.120 0.0754
10◦ 3.29 1.231 0.213
4◦ 31.6 10.8 0.720

The first direction—labeled “target 1”—points towards the First Point of Aries (RA = 0 h, dec = 0◦),
which is a region with a low density of stars, whereas “target 2” points to (RA = 6 h, dec = 0◦) in the
Orion constellation, a region full of bright stars. The last column—labeled “both”—includes results that
would be obtained when the individual measurements of identical single head star sensors pointing at
“target 1” and “target 2” were merged using an efficient estimator. This is equivalent to having a star
tracker with two optical heads.

As can be seen from Table 2, for a fixed aperture diameter D and exposure time t, there is a
significant degradation in the attitude accuracy attainable by the star sensor as its FOV becomes
narrower, even under the assumption that the star sensor is ideal, in the sense of being limited only by
diffraction and photon noise. Also, as the FOV becomes narrower, the dependence on the region of
the sky to where the star sensor is pointing becomes evident. We also observe, especially for narrow
FOVs, that a significant gain in accuracy can be obtained when measurements from different directions
orthogonal to each other are combined together. This is one of the reasons for many spacecraft having
at least two star sensors (or star sensors with two or more optical heads) pointing at orthogonal or
close to orthogonal directions.

The first row in Table 2 presents results for a star sensor having an unrestricted FOV of 4π sr.
Given that the FOV in this case is the whole celestial sphere, naturally their accuracy will be the
same, regardless of their pointing direction. By combining their measurements using an efficient
estimator, but without using interferometry, the attitude uncertainty decreases by a factor of

√
2.

Had these measurements been interferometrically combined, much larger gains in attitude accuracy
would become possible. Notice that when this row was computed, we have ignored the fact that one
star sensor will be partially obstructing the field of view of the other when they are placed close to
each other.

It should be noted that the values presented in Table 2 have large uncertainties. The actual values
of ϑ̄rms for FOV limited “ideal” star sensors with unlimited internal star catalog may be a factor of two
or three times larger or smaller than the values shown in this table. Most of this uncertainty is caused
by the approximation of real spectra of stars by the spectra of equivalent black-bodies (see Section 3.2)
plus uncertainties in the cataloged magnitudes, followed by limitation in the size of the star catalog
used when computing these estimates.

The results presented here can be better appreciated in Figure 8, in Section 3.5.

3.4.1. Quality Assessment of Estimates Presented

Due to development and computational time constraints, we had to restrict the number of
stars used in the study performed in this section. Out of the 20 sections generated by one of our
preprocessing tools (file 2mass/sort_2mass_JHK.m in the supplementary materials), we have used
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only the first section (generated file psc_JHK01.mat), containing the brightest stars in J band. Despite
this limitation in this short study, the results are not very far from what would be obtained had we
considered the full 2MASS star catalog. Judging from Figure 7, had we used all the stars in 2MASS,
the estimated ϑ̄rms values would probably reduce by about 20% or 30%. This small improvement pales
in comparison to the large uncertainty factor of two or three resulting from the approximation of real
stellar spectra with spectra of equivalent black-bodies derived from cataloged magnitudes.

Another way to assess the quality of the estimates presented in Table 2 is to compare the
values in the first row of Table 2 with the theoretical limit given in Section 3.3: For D = 10 cm
and t = 10 ms we have from Equation (23) that 7 · 10−12 rad < ϑ̄rms,min < 10−10 rad. Converting
values to milli-arc-seconds, we find: 0.0014 mas < ϑ̄rms,min < 0.0206 mas. It can be seen that the
tabulated value of ϑ̄rms = 0.0073 mas for a single star sensor with unobstructed FOV is well within the
uncertainty range of ϑ̄rms,min.

An ideal star sensor with D = 10 cm and t = 10 ms would also suffer a small loss in its
accuracy due to the fact of rarely being able to observe extremely dim stars. However, as explained in
Section 3.3.2, this effect is small for this combination of D and t, being smaller than the loss caused by
limiting its internal catalog to stars with mJ 6 12.575.

3.5. Comparison with Existing Star Sensors

To give a feeling of how much room for improvement there is for future technology developments,
Figure 8 compares the reported accuracy of ten different single head star sensors [40–47] with the
theoretical lower bounds of equivalent spherical star sensors. The comparison is performed in terms
of the combined metric D2t1/2, according to Equation (23), which makes it possible to compare many
different star sensors and arrangements in a single plot.

In Figure 8, blue circles represent single star sensors used in isolation. The effective diameter
used for computing the D2t1/2 metric in this arrangement has been taken as the approximate diameter
of the smallest sphere that encloses its optical head, excluding its baffle. The second arrangement
studied consists of two identical star sensors pointing at orthogonal directions used in combination,
being represented by orange squares. The diameter used for computing the D2t1/2 metric for this
arrangement has been taken as being 1.6 times larger than the previous. Even though for some star
sensors it may be possible to get a tighter packing, we have chosen this factor of 1.6 to give some
allowance for connectors and cables. For three out of ten star sensors, it was also possible to draw
their positions in the plot considering their optical diameter aperture in place of the diameter of the
minimum enclosing sphere. These are indicated by dark yellow markers to the left, connected by
dashed light blue lines to their corresponding estimates described previously. Lines joining different
arrangements of the same star sensors were added to facilitate comparisons. The figure also includes
examples of “ideal”, but FOV limited and catalog limited star sensors, taken from Table 2. Their FOV
diameter varies from 4◦ to 360◦. The results obtained for two “ideal” star sensors in combination (last
column of Table 2) are labeled “ideal, two optical heads” in the figure. The diameter of the smallest
sphere enclosing two “ideal” star sensors is twice the diameter of a single “ideal” star sensor.

The solid line at the bottom left part of this plot denotes the lower estimate of the lower bound of
the attitude error ϑ̄rms,min, derived from the lower curve in Figure 7. The dashed line immediately above
this solid line is the upper estimate of the the lower bound of the attitude error ϑ̄rms,min, derived from
the upper curve in Figure 7. The true lower bound of attitude error (ϑ̄rms,min,true) that can be obtained
using solely electromagnetic radiation emitted by bodies outside the Solar System should lie between
these two curves. No star sensor that satisfies the Assumptions 4 and 8 stated in Section 2.1 should
be able to surpass ϑ̄rms,min,true without making use of additional attitude reference sources, such as
the Sun and other Solar System objects (excluded from analysis by the simplifying Assumption 12 in
Section 2.2) or artificial attitude references.
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Figure 8. Comparison between some commercial star sensors with the upper and lower limits of the
theoretical lower bound on attitude uncertainty.

We have opted to exclude the baffle in the estimate of D, because the sole reason for including a
baffle in star sensors is to protect them from being temporarily blinded by stray light coming from
the Sun and other bright sources (Earth, Moon and other spacecraft parts), something that would
not happen in the absence of Solar System objects. Also, including the baffle would greatly inflate
the diameter D of the smallest enclosing sphere. The accuracy used in this plot for star sensors
used in isolation was derived from the reported (1-σ) noise equivalent angle or attitude accuracy,
using the equation ϑ2

rms = σ2
x + σ2

y + σ2
z , being σx = σy the uncertainties around the cross-boresight

axes (pitch and yaw angles) and σz the uncertainty around the boresight axis (roll angle). For details
on how the accuracy of two star sensors used in combination was computed, see file plotFig8.m in
the supplementary materials.

It is interesting to note that for most star sensor examples plotted in Figure 8, a combination of
two star sensors comes closer to the theoretical limit than a single star sensor, even with the penalty
of (1.6)2 = 2.56 in the plotted D2t1/2 metric. This happens because in single headed star sensors,
the uncertainty in the roll angle is usually much larger than those in the yaw and pitch angles, but when
measurements from two star sensors pointing at orthogonal or almost orthogonal directions are merged,
it is possible to compensate the poor roll angle measurement of one unit with one of the more accurate
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yaw/pitch measurements from the other unit (or their combination, depending on how the defining
axes are oriented), thus allowing accurate attitude knowledge in all three axes. The explanation for the
poor accuracy in roll angle lies in the following fact: A rotation around the boresight axis (roll) by a
small angle (for example, one degree) will cause a much smaller shift in the scene that a single head
star sensor is observing than a rotation by the same angle around a cross-boresight axis (yaw/pitch or
a combination of them). A rotation around the boresight axis will be perceived by the star sensor as a
rotation of stars around a point in the center of its FOV, whereas for a rotation around a cross-boresight
axis the star sensor will see all stars moving in the same direction across its FOV.

It should be noted that the positions of the star sensors listed in this plot may have considerable
errors. For example, for some of them, the actual D2t1/2 values and rms attitude errors could be
actually a factor of two or three smaller than those shown in the plot. Reasons for these discrepancies
lie in the fact that many star sensor manufacturers, being conservative, quote worst case conditions in
their product briefs, plus the many approximations and assumptions we have made when creating
this plot. Therefore, we advise against the idea of trying to compare different products based on
Figure 8, considering that it was created only from publicly available information, not always complete
or accurate. Detailed information on the sources and the methods used to create this plot can be seen
in the comments inside plotFig8.m which is included in the supplementary materials.

As can be seen, there is still a lot of room for improvement in star sensors. The theoretical lower
bound is around six to eight orders of magnitude lower than what is currently attained by most
star sensors.

4. Conclusions

To our best knowledge, Chapter 7 in the doctoral thesis of the first author [14] was the first work
which provided estimates on the lower bound of attitude uncertainty attainable by star sensors in
the Solar System’s stellar neighborhood. These derived limits are valid in our stellar neighborhood
regardless of the star sensor technology, when no Solar System body can be used to significantly
augment attitude determination (for example, for a spacecraft a few light years from home in the
far future). Being the first work to attempt to derive the numerical values of this limit, it did not
aim for much accuracy. This explains the large factor (of about one order of magnitude) between the
upper and lower estimates of this lower bound on attitude uncertainty presented in that work and
revised here. Nevertheless, these results suffice for the purpose of obtaining an order of magnitude
evaluation on how much room for improvement there exists for current state of the art star sensors.
It is shown that the accuracy of current star sensors can still improve by about seven orders of
magnitude before reaching the ultimate limits imposed by laws of Physics and stellar distribution in
our stellar neighborhood.

To facilitate verification of the results presented in this work and to foster a culture of open
collaboration in the scientific community, the authors make the source code of the routines used to
generate results presented in this work available to anyone interested as a free open source software,
accompanying the on-line version of this work. To assure long term preservation, these routines were
also published in other places, described below in the Section “Supplementary Materials.”

Supplementary Materials: The routines used to generate most of the figures and results presented in this work
are available online at http://www.mdpi.com/1424-8220/19/24/5355/s1 inside STR_Limits_r04.zip, being made
available under an OSI approved BSD 3 clause copyright license (https://opensource.org/licenses/BSD-3-Clause).
STR_Limits_r04.zip is 528,720 bytes long and its MD5SUM is F067124515B7D3B6296778496FBE9C45. To assure
long term preservation, this archive was also published in a public data repository (https://doi.org/10.5281/
zenodo.3551967) and in an institutional repository (http://urlib.net/rep/8JMKD3MGP3W34R/3U448R8).
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