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Abstract
Study Objectives: The brain appears to use internal models to successfully interact with its environment via active predictions of future events. Both internal models 

and the predictions derived from them are based on previous experience. However, it remains unclear how previously encoded information is maintained to support 

this function, especially in the visual domain. In the present study, we hypothesized that sleep consolidates newly encoded spatio-temporal regularities to improve 

predictions afterwards.

Methods: We tested this hypothesis using a novel sequence-learning paradigm that aimed to dissociate perceptual from motor learning. We recorded behavioral 

performance and high-density electroencephalography (EEG) in male human participants during initial training and during testing two days later, following an 

experimental night of sleep (n = 16, including high-density EEG recordings) or wakefulness (n = 17).

Results: Our results show sleep-dependent behavioral improvements correlated with sleep-spindle activity specifically over occipital cortices. Moreover, event-

related potential (ERP) responses indicate a shift of attention away from predictable to unpredictable sequences after sleep, consistent with enhanced automaticity 

in the processing of predictable sequences.

Conclusions: These findings suggest a sleep-dependent improvement in the prediction of visual sequences, likely related to visual cortex reactivation during sleep 

spindles. Considering that controls in our experiments did not fully exclude oculomotor contributions, future studies will need to address the extent to which these 

effects depend on purely perceptual versus oculomotor sequence learning.
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Statement of Significance

Our brains predict sensory inputs based on previous experience. However, it is unclear how previously acquired visual knowledge is used 
to predict future inputs. Because sleep is important for memory consolidation, we investigated whether humans are better at predicting 
a visuo-spatial sequence when allowed to sleep after learning. We found that a higher number of sleep spindles specifically over visual 
brain areas is associated with better predictions of visual inputs afterwards. This was accompanied by a reduced need for attention for 
predictable information. Sleep spindles are a hallmark of non-rapid eye-movement sleep and are associated with offline reactivation of 
wake experience. Our results suggest that active consolidation of previous experience during sleep spindles supports accurate predictions 
of future visual inputs.
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Introduction

Our environment contains a multitude of statistical regularities 
which we exploit during perception and action [1]. Theories of 
efficient coding originally proposed that regularities are dis-
carded during perception to reduce the amount of information 
transmitted along sensory hierarchies [2]. More recent theories 
of hierarchical predictive coding extended this notion to claim 
that, instead of being discarded, regularities are represented at 
different levels of a hierarchical system, and are used to pre-
dict future perceptions as well as the consequences of behavior 
[3–9]. An important aspect of such theories is the question of 
how regularities are extracted and stored in order to ensure 
adaptive behavior across extended periods of time. Sleep, as a 
pivotal factor in memory consolidation [10, 11], may support 
the extraction and consolidation of regularities. However, the 
literature is inconclusive in this respect: whereas some studies 
found beneficial effects of sleep on implicit regularity extraction 
[12–24], others found no effect [25–31] (for reviews, see [32, 33]). 
In particular, it remains unclear whether sleep plays a role in 
extracting and distributing predictive templates [34].

In a behavioral study, we previously demonstrated that sleep 
improves predictive processing of spatio-temporal sequences, 
as well as the transfer of learning to a different temporal con-
text [35]. However, first, the sleep-associated neural events 
underlying this selective consolidation and transformation re-
main to be determined [36], and second, it is unclear how sleep 
affects subsequent neural responses to predicted vs. unpre-
dicted stimuli.

Regarding the first question, thalamocortical sleep spindles 
(i.e. short bursts of waxing and waning oscillations occurring 
during stage 2 and slow-wave sleep) might orchestrate consoli-
dation of spatio-temporal sequences. There is accumulating evi-
dence that sleep spindles are involved in memory processing 
[37–39], and several studies have reported modality-specific 
correlations between spindle activity and behavioral perform-
ance: Nishida and Walker [40], Tamaki et al. [41], and Johnson 
et al. [42] found that sleep spindles over premotor regions con-
tribute to motor learning. In the visual domain, similar results 
have been reported for high-level declarative learning [43, 44] 
and low-level perceptual learning [45], with increased spindle 
activity over posterior cortices correlating with better retention. 
Importantly, spindle activity has been shown to be coupled not 
only to learning success but also to subsequent reactivation of 
task-relevant cortices during sleep [46–48]. Here, our goal was 
to extend these findings by testing whether sleep spindles over 
visual cortices are specifically related to active predictions of 
spatio-temporal regularities.

As to the question of how sleep affects responses to pre-
dicted vs. unpredicted stimuli, our previous behavioral results 
showed that sleep, while enhancing responses to predicted 
stimuli, impairs performance (i.e. increases error rates and reac-
tion times) for unpredicted stimuli [35]. An explanation for this 
impairment arising in the context of predictive coding theory is 
that unpredicted stimuli elicit heightened mismatch responses 
once knowledge of the sequence is more consolidated after 
sleep. In the present study, our aim was to examine this hypoth-
esis, that is, to investigate the electrophysiological correlates of 
attention regulation towards predicted vs. unpredicted stimuli. 
We were especially interested in early (N1 and N2), as well as 
later (P3) event-related potential (ERP) components based on a 

large body of evidence showing that these components are most 
closely linked to attention [49–53]. Importantly, these compo-
nents have also been suggested to play a role in the prediction of 
upcoming stimuli, especially within the literature on sequence 
learning [54–58]. A  few studies have suggested an association 
between prediction and allocation of attentional resources, such 
that there is a reduced need to allocate attention to predicted 
vs. unpredicted stimuli [58–60]. More generally, predictions have 
been suggested to interact with attention, thereby enhancing 
the precision of perceptual inference [61–63]. However, this 
complex relationship is not well understood, especially with 
respect to sleep-dependent consolidation. Our study aimed to 
shed light on this matter. We expected to observe increases in 
early (N1 and N2) as well as later components (P3) of the visual 
evoked potential in response to unpredicted stimuli specifically 
after sleep.

To investigate these hypotheses, we developed a novel se-
quence learning protocol and recorded behavioral perform-
ance and high-density EEG during initial task training and 
during a test session two days later. Two groups of healthy 
participants either slept or were deprived of sleep during the 
night after initial training. In the sleep group, we also recorded 
polysomnography including high-density EEG. Importantly, the 
test session did not take place until two days later, allowing for 
two nights of recovery sleep. We refer to sleep-deprived partici-
pants as the Wake group, because our goal was to study effects 
of sleep versus wakefulness while controlling for both circadian 
factors and acute effects of sleep deprivation.

Most previous studies investigating sequence learning, also in 
the context of sleep, employ some version of the serial reaction-
time task (SRTT [13, 14, 20, 25, 30, 64]), in which perceptual and 
motor learning can be difficult to disentangle [65, 66]. However, 
the few studies investigating sleep-dependent consolidation of 
perceptual sequences suggest that perceptual representations 
profit especially from sleep [17, 67–69] (but see [70]). Our protocol 
aimed to focus on perceptual sequence learning by having par-
ticipants perform an explicit motor task based on a visual fea-
ture (stimulus orientation) that was essentially random and, 
importantly, independent of the sequence of stimulus locations 
that was to be learned implicitly. This was done to isolate the 
contribution of the visual system to sequence learning. While 
our protocol and control measures do not allow us to separate 
perceptual from oculomotor learning, the present study is, to 
our knowledge, the first to investigate the role of sleep spindles 
and event-related potentials in visual sequence learning. Our re-
sults indicate that sleep supports visual sequence learning via a 
sleep-spindle-based mechanism and a subsequent reduction of 
attentional resources allocated to predicted stimuli.

Methods

Participants

Thirty-three young healthy male adults participated in the 
study (mean age: 25  years; range: 19–36). The sample size in 
our experimental design was determined by a statistical power 
calculation based on previous perceptual sequence learning 
studies [17, 67, 69] (mean effect size for a significant sleep/
wake × pre/post × stimulus type interaction: η2p  =  0.21 [range: 
0.07–0.42]), a power of 1 – β = 0.8, and α = 0.05. The choice of an 
all-male sample was made to reduce variance due to the female 
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hormonal cycle known to affect sleep-dependent memory pro-
cessing (e.g. [71, 72]). However, this choice limits the general-
izability of our results and future studies should specifically 
investigate whether our findings apply to women as well. Half 
of them were assigned to a Sleep group (nsleep  =  16), the other 
half to a Wake group (nwake = 17). Note that due to bad wake EEG 
quality in one participant we recorded data from one additional 
participant in the Wake group and included them both in the 
behavioral analyses. The Sleep group was trained before night-
time sleep, and the Wake group before a nocturnal period of 
wakefulness (i.e. sleep deprivation). Importantly, participants 
did not know if they were going to sleep or stay awake during 
the night until the end of the Training session and right before 
bedtime. They were told that there was an equal chance they 
would sleep or stay awake. This was done to ensure there would 
be no effects of experimental group assignment on training per-
formance. Both groups were tested again two days later, that is, 
after the Wake group had two nights of recovery sleep to coun-
teract acute effects of sleep deprivation (Figure 1). Participants 
did not take any medication, did not report any neurological or 
psychological disorders, were right-handed, and had normal or 
corrected-to-normal visual acuity. They were asked not to ingest 
caffeine or alcohol and not to take naps during the days of the 
experimental sessions. Musicians and professional typists were 
excluded from the study. All participants were included in the 

final analyses of behavioral data (reaction times) and sleep spin-
dles (Sleep group only). Three participants in each group were 
excluded from analyses of event-related potentials due to bad 
wake-EEG quality (non-stereotypic artifacts, potentially related 
to head movements and not present during sleep). Importantly, 
we found that average spindle events in the three Sleep partici-
pants excluded from event-related potential analyses were not 
different from other participants (all values within the range 
of ± 2 SD of the mean across all other participants for fast and 
slow spindle count, density, amplitude and power density). All 
participants gave written informed consent and were paid for 
participation. The experiment was approved by the ethics com-
mittee of the Medical Faculty at the University of Tübingen and 
conducted in accordance with the approved guidelines.

Stimuli and task

Visual stimuli were shown on a 19-inch, 5:4 TFT display, with 
the layout consisting of a central fixation cross and four pos-
sible peripheral stimulus locations (Figure 1, A). Participants 
saw sequences of colored (red, blue, green, or yellow) Gabor 
gratings occurring at one of the four locations. The Gabor 
gratings were tilted either at an angle of 45° or 135° (stimulus 
size: 5° of visual angle, eccentricity: 7.5° [span: 5°–10°], spatial 
frequency: 1.5 cycles per degree, FWHM contrast: 1.7°; mean 

Figure 1. Task and experimental design. (A) Participants’ explicit motor task was to indicate (by button press) as fast and accurately as possible at which of two possible 

orientations (45° or 135°) each Gabor grating is tilted, while fixating the cross in the middle of the screen at all times. (B) Upper panel displays the perceptual sequence 

to be learned implicitly. Middle panel shows an example random sequence. Note that location and color are correlated in sequence but uncorrelated in random blocks. 

Bottom panel illustrates predictable orientation trials of the explicit motor task (i.e. stimulus orientation changed predictably to the other direction following a triplet 

of equal orientations). (C) Three to ten days after an adaptation session including an adaptation night in the sleep laboratory (Sleep group only), sequence knowledge 

was acquired during the Training session in the evening. Following a normal night of sleep (Sleep group) or night-time wakefulness (Wake group) in the sleep laboratory, 

participants had two (recovery) nights of regular sleep at home. In the evening of the next day, participants were tested on their sequence knowledge (Test session).
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luminance equivalent to the gray background; see http://
www.cogsci.nl/software/online-gabor-patch-generator). 
Participants’ explicit motor task was to respond to the (es-
sentially random) orientation of each stimulus with a cor-
responding key press (left-hand index finger for 135°, right 
index for 45°) on a standard computer keyboard. The next 
stimulus appeared after a response-to-stimulus interval (RSI) 
of 200 ± 50 ms, with the jitter period selected randomly from 
a uniform distribution. To establish the visual sequence to be 
learned implicitly, in “sequence” blocks, the locations at which 
the gratings appeared followed a predictable sequence. In 
control blocks, this sequence was unpredictable (“random”). 
More specifically, sequence blocks consisted of a repeating se-
quence of eight locations, a regularity the participants were 
not informed about (depicted in Figure 1, B). Given that button 
presses (corresponding to stimulus orientations) were essen-
tially random, differences between reaction times for random 
vs. sequence blocks may be interpreted as visual rather than 
(peripheral) motor learning. To facilitate learning [12, 73, 74], 
stimulus color was fully correlated with the location sequence 
in sequence blocks (Figure 1, B); in random blocks, there was 
no correlation between location and color (r = 0.0, p = 1.00).

All participants were trained on the same spatial sequence, 
which adhered to the following constraints: (1) stimuli occurred 
equally often at each of the four locations; (2) stimuli at a given 
location were always followed by at least two stimuli at other 
locations before the first location could be stimulated again (no 
triplets; e.g. 1-4-2-1, not 1-4-1-2); (3) stimuli never occurred at 
more than two neighboring locations in a row (no runs; e.g. not 
1-2-3 or 4-3-2); and (4) stimuli at a given location did not pre-
dict stimuli at any of the other locations more than once within 
the sequence (no double predictions). We selected one grammar 
fulfilling these conditions (a-b-c-a-d-c-b-d) which can be trans-
lated into eight possible permutations. Of these, we selected one 
to be presented to all participants (i.e. 2-1-3-2-4-3-1-4). Thus, our 
location sequence followed a second-order conditional (SOC) 
rule [35, 75], i.e. a stimulus at a given location can fully and only 
be predicted by a combination of the two preceding stimulus 
locations.

In order to minimize behavioral and electrophysiological 
adaptation effects, for the explicit motor task, we implemented 
the additional constraint that the same stimulus orientation 
must not occur more than three times in a row. Given that 
stimulus orientation was the task-relevant feature, this con-
straint implies a deterministic regularity that is arguably more 
powerful than the location sequence, particularly because it ap-
plied to both sequence and random blocks. We therefore report 
additional analyses in which we separate these “predictable 
orientation trials” (17.4% of all trials on average; Figure 1, B) from 
“unpredictable orientation trials.”

Each experimental block consisted of 96 trials made up of 
11 repetitions of the 8-item location sequence plus an add-
itional, randomly split sequence whose two parts were added 
to the beginning and the end of each block to minimize the 
risk of the participants becoming aware of the regularity [35]. 
Between blocks, there were programmed breaks of 30 sec-
onds, after which participants were free to initiate the next 
block whenever they chose. Participants were explicitly in-
structed to continue only when they felt ready to do so, in 
order to reduce the effects of fatigue. We encouraged parti-
cipants to respond as fast and as accurately as possible, and 

both mean reaction times and the number of errors were 
displayed after each block to boost participants’ motivation. 
Stimuli disappeared immediately after each button press, in-
dependently of whether the response was correct or incor-
rect. Stimulus presentation was performed using Presentation 
(Neurobehavioral Systems; RRID:SCR_002521).

Procedure

Before the experiment proper, participants came to the labora-
tory for initial testing and adaptation (Sleep group at 10:00 
pm, Wake group at 08:00 pm; see Control analyses for details). 
Participants in the Sleep group spent an adaptation night in 
the sleep laboratory, including wearing a high-density EEG net. 
Participants were further asked to keep a sleep journal (asking 
for bedtimes and sleep quality) for the seven nights preceding 
the experiment.

Three to 10  days after the adaptation session, partici-
pants in both Sleep and Wake groups came to the laboratory 
at 08:00 pm for the Training session. After placement of the 
high-density EEG net, participants were tested on their vigi-
lance and subjective sleepiness (Stanford Sleepiness Scale [76, 
77]). The sequence learning task started at 10:00 pm: after a 
short warm-up of 48 random trials, participants performed 11 
training blocks that consisted mostly of sequence blocks, with 
three interleaved random blocks (i.e. the fourth, sixth, and 
eighth training block), to probe for sequence learning during 
Training.

Participants in the Sleep group were then given the oppor-
tunity to sleep in the sleep laboratory for eight hours from 11:00 
pm to 07:00 am, including the EEG net. The next morning, they 
completed a sleep quality questionnaire (SF-A/R). Conversely, 
participants in the Wake group stayed awake for the whole 
night (i.e. they were sleep deprived). Wake participants did 
not wear high-density EEG nets during the deprivation period. 
However, night-time wakefulness was accompanied and 
closely monitored by the experimenter and included watching 
documentaries and playing easy board and computer games 
with lights dimmed. Importantly, the experimenters did not 
report any sleep bouts in any of the Wake participants during 
this time. After the experimental night, all participants left the 
laboratory and were asked to stay awake during the day and 
to adhere to their normal sleep/wake rhythms over the course 
of the two following days and recovery nights. This served 
to counteract the effects of sleep deprivation in the Wake 
group. They were further asked to document their bedtimes 
and sleep quality in a sleep journal, and not to take any day-
time naps during the retention interval (i.e. between Training 
and Test). Activity patterns were controlled by actimetry 
(Actiwatch 2, Philips Respironics). Additionally, day activities 
were recorded via a questionnaire (for more information, see 
Control analyses).

Following the two recovery nights, all participants came to 
the laboratory at 04:30 pm for the Test session. After placement 
of the EEG electrodes, they performed a warm-up of 48 random 
trials, followed by 10 task blocks (alternating random and se-
quence blocks, with the  starting condition counterbalanced 
across subjects). Finally, we probed participants’ explicit se-
quence knowledge with a series of additional tests (see Control 
analyses).

http://www.cogsci.nl/software/online-gabor-patch-generator
http://www.cogsci.nl/software/online-gabor-patch-generator
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Data reduction and analysis

Behavioral performance
Sequence learning was assessed in terms of individual me-
dian reaction times. General task learning during Training was 
analyzed using a mixed analysis of variance (ANOVA) with 
between-subjects factor Sleep/wake and within-subjects factor 
Block (Block 1 to Block 11). To test for sequence-specific learning 
during Training, we further used a mixed ANOVA with the add-
itional within-subjects factor Block type (sequence vs. random 
blocks), for which we used the mean of the medians of each 
block type. Sleep-dependent consolidation of visual sequence 
learning was assessed via mixed ANOVAs on data from the Test 
session with between-subjects factor Sleep/wake, and within-
subjects factor Block type.

In additional analyses, we tested whether participants also 
learned the rule that the same orientation of a grating must not 
occur more than three times in a row. In these analyses, we fo-
cused on the predictable fourth stimulus following a triplet of 
equal orientations (predictable orientation trials). In total, 350 
of 2,016 trials were predictable orientation trials (i.e. 17.4% of all 
trials; 189 during Training and 161 during Test). Variance caused 
by the different alternations of sequence and random blocks 
during Test (sequence first vs. random first) was controlled for 
by inserting “test order” as a covariate, which led to a significant 
improvement of the statistical model (p =  .036). Conversely, to 
test for unpredictable orientation trials, we performed an ana-
lysis excluding predictable orientation trials.

To assess whether subjects acquired explicit sequence 
knowledge as well as how participants slept during the recovery 
nights, we ran additional tests and collected actigraphy data re-
ported in the Control analyses.

Event-related potentials
During task performance, EEG data were recorded unfiltered 
using 128-channel HydroCel Geodesic Sensor Nets (Electrical 
Geodescs, Inc., Amsterdam, The Netherlands), at a sampling rate 
of 500 Hz. All EEG data processing was performed offline using 
EEGLAB v14.1.2 and ERPLAB v7.0.0. Data were bandpass (between 
0.1 and 70 Hz) and notch filtered (between 45 and 55 Hz) using 
the EEGLAB function “pop_eegfiltnew” (i.e. Hamming windowed 
zero-phase since FIR filters with roll-offs at 6 dB). The bandpass 
filtering between 0.1 and 70 Hz was used to reduce distortion 
of the ERP waveforms [78]; the width of the notch filtering of 
50 ± 5 Hz was used to cover the width of the line noise and its 
interaction with the analog-to-digital converter. Afterwards, 
data were downsampled to 250 Hz. Non-stereotypical artifacts 
were removed manually, and bad channels were interpolated 
(using the “spherical” algorithm as implemented in EEGLAB). 
Bad channel detection was guided by the “automatic channel re-
jection” tool from EEGLAB, by visually screening channel power 
spectra, and by visually screening the raw signal. On average, 
1.3 (range: 0–5) and 2.1 (range: 0–7) channels were interpolated 
per participant in the Training and Test sessions, respectively. 
This was followed by re-referencing from Cz to the average of 
all electrodes. Independent component analysis (ICA) was per-
formed using the extended “runica” infomax algorithm as im-
plemented in EEGLAB. To yield better results, this was done on 
separate data that were only notch- (between 45 and 55 Hz) and 
high-pass filtered (at 1 Hz), but were otherwise identical (i.e. 
the same non-stereotypical artifacts were removed, and the 

same channels were interpolated before performing ICA). ICA 
weights were then transferred to the 0.1-Hz high-pass filtered 
data [79], which were used in all further analyses. Independent-
component-based correction was performed for muscle and 
heartbeat artifacts. Epochs containing stereotypical eye blink 
and eye movement artifacts were detected and rejected at a 
later stage using algorithms implemented in ERPLAB (see below) 
[78, 80]. This was done to account for changes in sensory input 
caused by eye blinks and eye movements (e.g. an eye blink 
during stimulus presentation may lead to not properly seeing 
the respective stimulus, and eye movements themselves create 
sensory ERP responses caused by the changing visual input), 
which are not addressed by ICA correction [78].

In ERPLAB, epochs were extracted from −200 to 500  ms 
around stimulus onset. Baseline correction was performed 
for the period preceding stimulus onset (−200 to 0  ms). Then, 
bad epochs were flagged using different algorithms for simple 
voltage threshold (if the amplitude at any channel exceeded ± 
120 µV); moving window peak-to-peak threshold and step-like 
artifacts (different algorithms for the detection of eye blinks 
and eye movements, respectively; both applied at a threshold 
of ±100 µV in moving windows of 200 ms width and 50 ms step 
size). Averaged event-related potentials (ERPs) were then com-
puted per condition, excluding flagged epochs and epochs con-
taining boundary events (i.e. events that resulted from prior 
data rejection), and ERPs were then used to calculate grand 
averages. After rejection of artifactual epochs, an average of 182 
(range: 45−270; Training, random), 451 (range: 81−691; Training, 
sequence), 338 (range: 56−447; Test, random), and 344 (range: 
143−473; Test, sequence) artifact-free epochs were included for 
ERP analyses. Electrodes and latencies for each component were 
determined visually using scalp maps of the Training session 
(baseline). Specifically, we created sequences of grand average 
scalp maps at a high temporal resolution and visually searched 
for activity within expected time windows for the components 
(N1 was detected within a time window of 150−210  ms; N2: 
242−302  ms; P3: 310−380  ms). Within these time windows, we 
selected electrodes of interest that contributed strongest to the 
components with the highest (P3) or lowest (N1 and N2) peak 
voltages (i.e. electrodes 61, 62, 67, 72, 77, and 78 of the EGI system 
for N1; electrodes 54, 55, 61, 62, 78, and 79 for N2; electrodes 
61, 62, 67, 77, and 78 for the P3). Electrodes of interest with the 
highest (lowest) peak voltage and the respective approximate 
time windows were used to determine peak latencies for each 
component using ERPLAB’s “peak latency” function of the “ERP 
Measurement Tool” (i.e. 180, 272, and 320 ms for N1, N2, and P3, 
respectively). Then, mean amplitudes (peak latency ±30 ms for 
N1 and N2 components; peak latency ±50 ms for the P3 compo-
nent) were calculated for each component, electrode of interest, 
block type (random and sequence blocks), and participant in the 
Test session. For statistical analyses, we used mixed designs 
for each component with between-subject factor Sleep/wake 
and within-subject factors Block type (sequence vs. random 
blocks) and Electrode (depending on the number of electrodes 
of interest).

Sleep recordings
During sleep, participants continued to wear the 128-channel elec-
trode net. The nets cover parts of the face, so that sleep scoring 
can be performed without additional electrodes. Thus, we selected 
electrodes corresponding to channels C3 and C4, mastoids A1 and 
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A2, diagonal EOG electrodes (electrodes E126 and E25 of the EGI 
system) and two electrodes positioned on the jaw (E48 and E119). 
We used FieldTrip (RRID:SCR_004849) [81] to filter EEG, EOG and 
mastoid electrodes between 0.5 and 40 Hz, and EMG electrodes be-
tween 5 and 90 Hz (fourth-order two-pass Butterworth bandpass 
filters). Additionally, all channels were notch filtered between 45 
and 55 Hz (fourth-order two-pass Butterworth bandstop filter). 
Then, data of all channels were downsampled to 250 Hz, EEG elec-
trodes were re-referenced to the average of the two mastoids, and 
bipolar derivations were calculated for the diagonal EOG arrange-
ment as well as for the two EMG electrodes. Sleep scoring was 
then performed manually based on 30-second epochs, according 
to standard criteria [82] (see Control analyses).

Sleep spindle detection was performed using an algorithm 
implemented in SpiSOP (RRID:SCR_015673). Based on the in-
dividual power spectra for sleep stages S2, S3, and S4, the fre-
quencies for slow (mean center frequency, 11.45 Hz) and fast 
spindles (mean center frequency, 13.57 Hz) were determined 
for each subject individually. These frequencies were then used 
for individualized spindle detection in each subject and elec-
trode, based on data for sleep stages S2, S3, and S4. Minimum 
and maximum spindle detection length were set to 0.5 and 3 s, 
respectively. Our main focus in this visual task was on occipital 
spindles. To test the specificity of spindles detected at occipital 
sites, we calculated the overlap of spindle occurrence between 
electrode Oz and all other electrodes. A spindle detected at an-
other electrode site was defined as co-occurring with a spindle 
at Oz when it was detected within ±0.25 seconds from the 
maximum spindle peak at Oz. Correlation analyses were per-
formed on a pre-defined occipital cluster including electrode 
Oz and directly neighboring electrodes (i.e. electrodes E70, E71, 
E74, E75, E76, E82, and E83 of the EGI system). Spindle measures 
(amplitude, power density, count, and density for fast and slow 
spindles, respectively) were averaged across these electrodes 
and then correlated with behavioral performance (i.e. the re-
action time difference between random and sequence blocks 
during Test). We further tested the topographical specificity 
of occipital correlations by transforming Pearson correlation 
coefficients (r) to z values (Fisher’s r-to-z transformation) and 
comparing the distribution of the occipital cluster with the dis-
tribution of all electrodes. To correct for multiple correlations 
with the different spindle measures, we used false discovery 
rate (FDR)-correction following the Benjamini–Hochberg  pro-
cedure and report FDR-corrected p values for all correlation 
measures, both for the correlations and the topographical 
specificity tests [83, 84]. Additional robustness tests were per-
formed by comparing the occipital electrode cluster with all 
other 84 clusters outside of the occipital region of interest that 
have a similar size (7 ± 1 electrodes) and spatial arrangement 
(one central electrode and surrounding electrodes that lie 
within the same radius as in the occipital cluster). Specifically, 
we calculated the averaged z values per cluster and subtracted 
each of them from the averaged z values of the occipital 
cluster. Finally, based on the resulting distribution of difference 
values we calculated 95% confidence intervals (CI) for each 
spindle measure. To test for differences between correlations 
of Training and Test, we used Steiger’s Z test [85, 86]. ERPLAB’s 
plotting function was used to display topographic distributions 
of spindle count, power density and correlations between be-
havioral sequence learning success and spindle power density 
for each electrode.

Eye tracking
We additionally collected eye tracker data throughout the meas-
urements (The Eye Tribe Tracker, The Eye Tribe ApS, Copenhagen, 
Denmark). Fixation coordinates were extracted for single events 
(corresponding to the interval stimulus onset and offset, with 
the latter dependent on participants’ response time). ROIs were 
defined as the area around the fixation cross (central fixation) 
as well as the respective stimulus location (stimulus gazing). 
Percentage of gaze time was then calculated as the number of 
fixations within each ROI divided by the number of eye tracking 
data points per event.

Statistics
Two-tailed tests were chosen for all statistical analyses. The level 
of significance was set to p = .05. Mixed ANOVAs as implemented 
in the GLM module of SPSS 24 (RRID:SCR_002865) were used, in 
combination with follow-up t-tests. Greenhouse–Geisser correc-
tion of degrees of freedom was applied when the assumption of 
sphericity was violated. We report original degrees of freedom 
and corrected p values in these cases.

Results

Sleep enhances behavioral signs of sequence 
learning for predictable but not unpredictable motor 
responses

The main aim of our study was to assess the effect of post-
training sleep vs. wakefulness on implicit visual sequence 
learning. To account for the change across the retention periods 
of sleep and wakefulness, averaged reaction times of the last 
two training blocks (see Control analyses) were subtracted from 
reaction times at the Test session for each individual. As a be-
havioral measure of sequence learning during the Test session, 
we used the individual gain (i.e. the difference) in reaction time 
for sequence blocks as compared to random blocks. At the Test 
session, participants demonstrated knowledge of the implicit 
location sequence (indicated by a significant difference be-
tween reaction times for random and sequence blocks) inde-
pendently of whether they belonged to the Sleep or the Wake 
group (F(1,31) = 12.814, η2p = 0.29, p = .001; estimated mean differ-
ence ± SEM: 6.78 ± 1.90 ms), with no difference in magnitude of 
this effect between the groups (Sleep/wake × Block type inter-
action, F(1,31)  =  0.29, p  =  .597; Figure 2, A) and no Sleep/wake 
difference on general task learning (irrespective of Block type; 
F(1,31) = 0.25, p = .624).

We suspected that the absence of a clear-cut sleep effect 
on sequence learning was a consequence of the task paradigm 
designed to make visual learning implicit and independent 
of peripheral motor learning. Indeed, participants’ primary 
motor task was to respond as fast as possible to the orienta-
tion of each grating, and here the only sequential constraint 
was that the same orientation did not occur more than three 
times in a row. This was implemented to minimize behav-
ioral and neural adaptation effects, but added a predictable, 
component to the explicit motor task. Exploratory post-hoc 
analyses confirmed that participants in both groups learned 
this rule, responding faster to the predictable fourth stimulus 
following a triplet of equal orientations (“predictable orien-
tation trials”) compared to all other trials (i.e. “unpredictable 
orientation trials”; F(1,31) = 15.87, η2p = 0.34, p < .001; estimated 
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means ± SEM: 502.66  ± 10.35 and 513.38  ± 10.83  ms for pre-
dictable and unpredictable orientation trials, respectively). 
Indeed, some subjects noticed this regularity explicitly (see 
Control analyses).

We did not find a significant Sleep/wake × Predictability 
(predictable vs. unpredictable orientation trials) × Block type 
interaction (F(1,31) = 2.62, p = .115). Nevertheless, we performed 
additional exploratory analyses to examine signs of sequence 
learning (i.e. the gain in response speed for sequence vs. random 
blocks) separately for trials with predictable and unpredict-
able orientation of the grating. Analyses of trials with predict-
able grating orientation indeed showed a significantly greater 
gain in response speed for sequence blocks in the Sleep group 
than in the Wake group (Figure 2, B; Sleep/wake × Block type, 
F(1,30)  =  4.62, η2p = 0.13,p  =  .040; t(15)  =  3.34, Cohen’s d  =  0.22, 
p  =  .004 and t(16)  =  0.41, p  =  .687, for post-hoc pairwise com-
parisons of sequence vs. random blocks for the Sleep and 
Wake groups, respectively). By contrast, when restricting the 
analysis to unpredictable orientation trials, Sleep and Wake 
groups performed virtually identical (Sleep/wake × Block type, 
F(1,31) = 0.00, p = 0.992; Figure 2, C). Again, we did not observe 
a main effect of Sleep/wake irrespective of Block type (p ≥ .570 
for both predictable and unpredictable orientation trials). These 
results indicate that sleep enhances behavioral signs of im-
plicit visuo-motor sequence knowledge. However, this effect 
only emerges when explicit motor responses are predictable, a 
condition that presumably absorbs fewer attentional resources 
than unpredictable trials. Given the exploratory nature of our 
analyses on predictable and unpredictable orientation trials and 
our primary focus on sequence learning irrespective of predict-
ability on the explicit motor component, we performed all fur-
ther analysis including all trials.

Occipital sleep spindles predict improvement of 
sequence learning performance

The main hypothesis of our study was that sleep spindles 
contribute to the consolidation of visual sequence knowledge 
during sleep. We were especially interested in fast spindles (~12–
15 Hz; Figure 3, A), which are most pronounced over posterior 
regions [87], are thought to be involved in memory systems con-
solidation during sleep [11, 33, 38], and have been shown to be 
implicated in visuo-spatial processing [43, 44]. We expected that 
especially occipital spindles would contribute to the consolida-
tion of visuo-motor sequence knowledge (as indicated by the re-
action times difference between random and sequence blocks).

The number of fast spindles during stage 2 sleep and slow-
wave sleep (SWS) over the course of the night was maximal at 
electrode Pz (mean: 1,710 fast spindles, Figure 3, B), and both 
fast spindle amplitude (i.e. the mean amplitude of discrete 
fast spindle events, measured from trough to peak) and power 
density in the fast spindle band was highest between electrodes 
Cz and Pz (Figure 3, B). Still, large numbers of fast spindles were 
evident more occipitally (mean: 1,468 fast spindles at Oz, see 
Figure 3, A for an averaged fast spindle at this location). The 
overlap between occipital fast spindles (at Oz) and other elec-
trodes was low and declined uniformly with distance from Oz. 
This suggests that occipital spindle events are primarily local 
phenomena (Figure 3, A). Importantly, we found that fast spindle 
amplitude correlated with behavioral performance in a locally 
specific manner (reaction time difference between random and 
sequence blocks during Test; r = 0.632, FDR-corrected p =  .034 
at a pre-defined cluster of occipital electrodes highlighted in 
Figure 3, C). This correlation was topographically specific to the 
occipital region (Z-test comparing z-transformed correlation co-
efficients of the cluster of occipital electrodes with the sample 

Figure 2. Reaction time differences between random and sequence blocks during Test. When considering all trials (A), participants showed a significant difference 

between random and sequence blocks after the retention period, when considering both Sleep and Wake groups together. However, we failed to find a significant dif-

ference between groups. A more fine-grained analysis on predictable orientation trials (B) (i.e. the fourth stimulus after a triplet of equal orientations) showed that 

participants had a greater difference for random vs. sequence blocks after sleep compared with wakefulness. In addition, only after sleep but not after wakefulness was 

there a significant difference between random and sequence blocks. However, when focusing on unpredictable orientation trials (C), there was no longer a significant 

difference between groups. Boxplots and individual data points are shown. **p < .01; *p < .05; n.s., not significant. N = 16 and 17 for Sleep and Wake groups, respectively.
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distribution of all electrodes, z  =  3.83, Cohen’s d  =  1.45, FDR-
corrected p < .001). We did not find such correlations for fast 
spindle count (r = 0.337 FDR-corrected, p = .269); or fast spindle 
density (fast spindles per 30-s epochs; r = 0.403, FDR-corrected 
p = .195).

Similar results were observed for slow spindles (~9–12 Hz; 
r = .634, FDR-corrected p = .034 for slow spindle amplitude at the 
cluster of occipital electrodes; see Figure 4), even though their 
number was much lower (mean count: 769 at Oz), as well as for 
power density in the fast and slow spindle band (r = 0.588, FDR-
corrected p = .034 and r = 0.596, FDR-corrected p = .034 for fast 
and slow spindle power density, respectively, at the cluster of 

occipital electrodes; see Figure 3, C and Figure 4, C), suggesting 
that spindles do not necessarily act only within their dominant 
loci [45].

These correlations were specific for the Test session and 
were not observed during Training (r ≤ 0.14, p ≥ .615 at occipital 
electrodes), although the difference between correlations during 
Training vs. Test only reached significance for power density 
in the slow spindle band (Steiger’s Z test, z  =  2.16, Cohen’s 
d = 0.54, p = .031) and remained a trend for slow spindle ampli-
tude (z = 1.83, Cohen’s d = 0.46, p = .068). Taken together, these 
data suggest highly specific occipital sleep spindle-dependent 
processing of spatial sequence information, possibly due to 

Figure 3. Fast sleep spindles during the experimental night correlate with performance improvement 2 days later. (A) Upper panel displays an average fast spindle 

(black line) at electrode Oz across all participants ± SD (gray shading). Lower panel shows the percentage of overlap between occipital fast spindles (at Oz) and other 

electrodes. (B) Fast spindle count (left), amplitude (middle) and power density (right) are all highest at posterior electrodes. (C) Positive correlation between fast spindle 

amplitude (upper panel) or power density in the fast spindle band (lower panel) and behavioral performance after sleep (reaction time for random minus sequence 

blocks during Test) was highest at occipital electrodes, as shown in correlation topographies (left), histograms of z-transformed correlation coefficients (comparison of 

the distribution of occipital electrodes in gray vs. all electrodes in white; middle), and scatterplots for occipital electrodes (right). Black dots in scalp maps of (B, C) cor-

respond to C3, Cz, and C4 (horizontally) and Fz, Cz, Pz, and Oz (vertically), respectively; gray squares in scalp maps of (C) correspond to the pool of occipital electrodes 

used for analyses (i.e. Oz and surrounding electrodes). The figure shows FDR-corrected p-values. N = 16.
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experience-dependent neural plasticity involved in memory 
consolidation during non-REM sleep.

Sleep modulates attention-related N1 and N2 
components of the ERP

Event-related potential components were identified based on 
data from the Training session. Analysis of data from the Test 
session then focused on N1, N2, and P3, all of which have pre-
viously been linked to sequence learning [54–58, 60, 88–91]. To 
account for known asymmetries in visual evoked responses 
[92–95], ERP components were extracted separately for the 

lower and upper parts of the visual field (i.e. ERPs for stimuli 
presented in the lower and upper parts of the screen were ex-
tracted and analyzed separately). Their comparison revealed 
effects of sleep to concentrate on the lower visual field, as indi-
cated by significant interactions between Visual field, Block type, 
and Sleep/wake for N1 (F(1,25) = 8.98, η2p = 0.26, p = .006) and N2 
(F(1,25) = 5.52, η2p = 0.18, p = .027), and a corresponding trend for 
the P3 (F(1,25) = 3.64, η2p = 0.13, p = .068).

The ERPs from the lower visual field showed more nega-
tive N1 and N2 amplitudes for random compared to sequence 
blocks after sleep vs. wakefulness (Sleep/wake × Block type, 
F(1,25)  =  6.16, η2p = 0.20, p  =  .020 and F(1,25)  =  4.95, η2p = 0.17, 

Figure 4. Slow sleep spindles during the experimental night correlate with performance improvement two days later. (A) Upper panel displays an average slow spindle 

(black line) at electrode Oz across all participants ± SD (gray shading). Lower panel shows the percentage of overlap between occipital slow spindles (at Oz) and other 

electrodes. (B) Slow spindle count (left), amplitude (middle) and power density (right) are all highest at frontal electrodes. (C) Positive correlation between slow spindle 

amplitude (upper panel) or power density in the slow spindle band (lower panel) and behavioral performance after sleep (reaction time for random minus sequence 

blocks during Test) was highest at occipital electrodes, as shown in correlation topographies (left), histograms of z-transformed correlation coefficients (comparison of 

the distribution of occipital electrodes in gray vs. all electrodes in white; middle), and scatterplots for occipital electrodes (right). Black dots in scalp maps of (B, C) cor-

respond to C3, Cz, and C4 (horizontally) and Fz, Cz, Pz, and Oz (vertically), respectively; gray squares in scalp maps of (C) correspond to the pool of occipital electrodes 

used for analyses (i.e. Oz and surrounding electrodes). The figure shows FDR-corrected p-values. N = 16.
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p = .035, for N1 and N2, respectively; Figure 5). Follow-up compari-
sons within groups indicated significant differences between 
random and sequence blocks for both components after sleep 
(main effect of Block type, N1: F(1,12) = 5.38, η2p = 0.31, p = .039; 
N2: F(1,12) = 5.80, η2p = 0.33, p =  .33), but not after wakefulness 
(N1: F(1,13) = 0.72, p = .411; N2: F(1,13) = 0.45, p = .516). Strikingly, 
the P3 component was more pronounced for sequence than 
random blocks after sleep but, conversely, more pronounced in 
random than sequence blocks in the Wake group (Sleep/wake × 
Block type, F(1,25) = 8.23, η2p = 0.25, p = .008). Within the groups, 

these opposing dynamics approached significance (sleep: 
F(1,12) = 4.67, η2p = 0.28,p =  .052; Wake: F(1,13) = 3.46, η2p = 0.21, 
p = .086). To account for possible confounding effects of locking 
stimulus colors to spatial locations in sequence blocks, supple-
mentary analyses were restricted to those trials of the random 
blocks where color and location were matched in the same way 
as in the sequence blocks. These analyses revealed very similar 
results (see Control analyses).

N1 and N2 components further showed an increased nega-
tivity for random compared to sequence blocks after sleep 

Figure 5. Event-related potentials. Grand averages for random and sequence blocks pooled over peak electrodes of the N1 component (A), the N2 component (B) and 

the P3 component (C), for Sleep and Wake group during Test, respectively. Red dots on scalp map show pooled electrodes per component; black dots correspond to C3, 

Cz, and C4 (horizontally) and Fz, Cz, Pz and Oz (vertically), respectively. Inserts next to the scalp maps show mean differences (± SEM; in µV) over shaded areas in (A-C) 

for random minus sequence blocks, for all three components and Sleep (black bars) and Wake groups (white bars), respectively. *p < .05, **p < .01. N = 13 and 14 for Sleep 

and Wake groups, respectively.
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compared to wakefulness in additional baseline-corrected ana-
lyses (Sleep/wake x Block type interaction, N1: F(1,25) = 4.87, 
η2p = 0.16, p  =  .037; N2: F(1,25)  =  5.85, η2p = 0.19, p  =  .023). For 
the P3, on the other hand, the Sleep group showed a trend 
towards increased amplitudes in sequence vs. random blocks 
in comparison with the Wake group (F(1,25) = 3.31, η2p = 0.12, 
p  =  .081). In post-hoc tests, the significant interactions for 
the N1 and N2 appeared to be mostly driven by the increased 
negativity for random blocks after sleep compared to wakeful-
ness (N1: t(25) = 1.80, Cohen’s d = 0.69, p = .084; N2: t(25) = 2.33, 
Cohen’s d = 0.90, p = .029; all others, p ≥ .345). We did not find 
any correlation between ERP components and sleep spindles 
(|r| ≤ 0.457, p ≥ .117 for amplitude, power density, count, and 
density, of fast and slow spindles, respectively, at the cluster 
of occipital electrodes).

Control analyses

Training performance
Results during Test were not affected by training perform-
ance: participants in both groups were successfully trained 
on the sequence, as indicated by significantly reduced median 
reaction times over the course of the Training session (main 
effect of Block, F(7,217) = 28.47, η2p = 0.48, p < .001; linear con-
trast, F(1,31)  =  94.62, η2p = 0.75, p < .001; quadratic contrast, 
F(1,31)  =  17.35, η2p = 0.36, p < .001; analysis across sequence 
blocks; Figure 6). There were no significant differences between 
Sleep and Wake groups in terms of general task learning (ana-
lysis across sequence blocks: Sleep/wake × Block, F(7,217) = 0.58, 
p  =  .650; Sleep/wake, F(1,31)  =  0.77, p  =  .386) or in terms of 
sequence-specific learning (analysis including the mean of the 
medians of all sequence and random blocks: Sleep/wake × Block 
type, F(1,31) = 2.71, p = .110; Sleep/wake, F(1,31) = 0.41, p = .525). 
In order to equate the number of trials being compared be-
tween conditions, we additionally calculated analyses based on 
three directly neighboring sequence blocks yielding equivalent 
results (for sequence blocks # 3, 5, and 7: Sleep/wake, p = .638; 
Sleep/wake × Block type, p = .557; for sequence blocks # 5, 7, and 
9: Sleep/wake, p = .509; Sleep/wake × Block type, p = .119).

Assessment of explicit sequence knowledge
After testing performance on the sequence learning task, par-
ticipants were asked increasingly specific questions regarding 

their knowledge of any regularity, including a paper-and-pencil 
free recall test. Then, they were informed about the presence of 
an eight-location sequence in the task, and were further tested 
on their sequence knowledge in three computerized explicit-
ness tests: (1) a free recall task, (2) a triplet-recognition task, and 
(3) a triplet-completion task (for details, see Table 1).

None of the participants indicated any knowledge about the 
spatio-temporal structure of the task, and there were no sig-
nificant differences between Sleep and Wake groups on any of 
the explicitness tests (all p ≥ .248). Interestingly, however, when 
summing individual rank scores across all tests, rank sums cor-
related positively with sequence performance (random minus 
sequence blocks) at the Test session after sleep (Spearman’s 
ρ = .612, p = .012), but not after wakefulness (Spearman’s ρ = .214, 
p =  .409). Although the differences in coefficients between the 
Sleep and Wake groups remained non-significant (all p > 0.2), 
these findings suggest that Sleep participants may have gained 
a rudimentary explicit knowledge that supported task perform-
ance with regard to the discrimination of sequence vs. random 
blocks. Nevertheless, these data offer only tentative evidence 
that sleep may transform implicit to explicit knowledge [30, 96] 
in the present task.

As to the rule in the motor task (namely, that the same 
orientation of a grating never occurred more than three times 
in a row, seven participants in the Sleep group and five par-
ticipants in the Wake group gained full explicit knowledge. 
These ratios did not differ between groups (Fisher’s exact test, 
p = .481). Importantly, it seems unlikely that explicit knowledge 
of the orientation rule can explain implicit learning of the lo-
cation sequence, as our main analyses were conducted on all 
trials, irrespective of whether stimulus orientation was predict-
able or not. Moreover, both spindle-behavior correlations and 
ERP analyses yielded similar results when they were restricted 
to unpredictable orientation trials (p ≤ .009 for spindle-behavior 
correlations; p ≤ .048 for N1 and P3 ERP analyses; the N2 effect 
failed to reach significance: p = .105).

Figure 6. Reaction times during Training. Participants were successfully trained 

on the sequence as seen by a steady decrease of reaction times over the course 

of the training blocks. See main text for details. Mean ± SEM are shown. ***p < 

.001. N = 16 and 17 for Sleep and Wake groups, respectively.

Table 1. Explicitness tasks

Sleep group Wake group

Paper-and-pencil free recall task 28.91 ± 3.17 27.94 ± 4.36
Computerized free recall task  

(conservative)
28.91 ± 2.73 24.26 ± 2.83

Computerized free recall task (liberal) 43.75 ± 1.80 40.81 ± 2.69
Triplet-recognition task (d’) 0.21 ± 0.23 0.35 ± 0.21
Triplet-completion task (hits) 25.00 ± 3.02 25.00 ± 2.46

Mean ± SEM are shown. In the paper-and-pencil free recall task partici-

pants were asked to explicitly reconstruct the 8-item sequence on a piece of 

paper; the value reflects the percentage of correct continuous items. In the 

computer-based free recall task, participants were asked to reconstruct the 

location sequence twice with eight inputs each; here, “conservative” and “lib-

eral” denote analysis of the percentage of correct continuous items from the 

first button press or from any given button press, respectively. In the triplet-

recognition task, participants watched sequences of three stimuli that were 

either part of the trained longer sequence (correct) or not (foils; eight triplets 

each) and were asked for each sequence if they found it familiar or not; due 

to its recognition test characteristic, d’ was used as the dependent variable. In 

the triplet-completion task, participants were asked to watch sequences of two 

stimuli (all of which were correct) and then to generate the following stimulus 

location. All possible triplets were completed twice (16 triplets in total); here, 

the percentage of correct choices is shown. In both triplet-recognition and 

triplet-completion tasks, participants were additionally asked to indicate for 

each response their confidence on a 4-point scale. N = 16 and 17 for Sleep and 

Wake groups, respectively.
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Robustness check of occipital spindle correlations
To test for robustness of the occipital spindle correlation results, 
we compared the z-transformed distribution of correlations in 
the occipital cluster with the distribution of all other 84 clusters 
outside of the occipital region of interest that have a similar size 
(7 ± 1 electrode) and spatial arrangement (one central electrode 
and surrounding electrodes that lie within the same radius as 
in the occipital cluster). We found highly similar results to those 
reported for occipital vs. all electrodes in the main section (see 
above) for fast spindle amplitude (95% CI of the mean difference 
between occipital and all other clusters, Δz95%-CI  =  [0.20, 0.25]), 
fast spindle power density (Δz95%-CI  =  [0.33, 0.37]), slow spindle 
amplitude (Δz95%-CI = [0.24, 0.33]), and slow spindle power density 
(Δz95%-CI = [0.33, 0.39]).

Event-related potentials: location/color-matching trials
Whereas in random blocks, stimulus color was balanced for 
all four stimulus locations, in sequence blocks, stimulus color 
was invariantly bound to specific locations (e.g. stimuli at the 
left upper location were always yellow). To control for possible 
confounding effects resulting from color-location locking, we 
re-analyzed ERP data based on location/color-matching trials 
for both sequence and random blocks where only the ¼ of the 
trials from random blocks were used that matched in location 
and color with that in the sequence blocks. Results are qualita-
tively equivalent to those reported in the main text: ERPs from 
the lower visual field showed a greater separation between se-
quence and random blocks for N1 (mean difference of random 
minus sequence blocks, Sleep: −0.46  µV; Wake: 0.25  µV), N2 
(Sleep: −0.42 µV; Wake: −0.01 µV) and P3 (Sleep: −0.35 µV; Wake: 
0.13 µV) ERP components for Sleep compared with Wake parti-
cipants. However, these differences were only a trend for the N1 
component (Sleep/wake × Block type, N1: F(1,25) = 3.86, η2p = 0.13, 
p = .061) and not significant for both the N2 and P3 components 
(N2: F(1,25) = 1.48, p = .236; P3: F(1,25) = 2.02, p = .168), probably 
due to the lack of statistical power given the small number of 
trials in this analysis.

Actigraphy and sleep journals
To assess if participants had normal sleep/wake cycles, they 
were asked to keep a sleep journal (asking for bedtimes and 
sleep quality) for the seven nights preceding the experiment. 
Moreover, to assess if and how participants slept during the two 
recovery nights, we collected actigraphy data and had the parti-
cipants keep an additional sleep journal (see Table 2 for details).

There was no significant difference between Sleep and Wake 
groups for sleep irregularity the seven nights before participating 
in the study (i.e. nights with more than 1  h deviation from 
normal bed time (t(28) = 0.35, p = .728 [97]). Moreover, Sleep and 
Wake participants did not differ the night before the experiment 
in terms of their time in bed (TiB) (t(28) = 1.07, p = .293). This is 
crucial since the night before the experiment can be considered 
critical for cognitive performance the day after.

All participants showed normal sleep patterns during the 
first and second recovery nights, respectively. However, sleep ef-
ficiency was higher for the Wake group compared to the Sleep 
group in the first recovery night, reflecting the sleep rebound 
after deprivation in the Wake group (t(30) = 2.41, Cohen’s d = 0.87, 
p =  .026). In contrast, there were no significant differences be-
tween Sleep and Wake groups on any of these measures in the 

second recovery night (i.e. the night before the Test session, p 
≥ .179). Subjective sleep questionnaire data largely confirmed 
these results.

Eye tracking
To control for eye movements, we collected eye tracker data 
throughout the measurements. However, we were unable to 
achieve a level of data quality sufficient for proper eye tracking 
analysis in most participants, probably due to lighting condi-
tions in combination with suboptimal hardware. For the subset 
of participants with good calibration results (Training, n = 9; Test, 
n = 8), we found that the proportion of fixations falling within a 
5° diameter around the fixation cross during stimulus presen-
tation was (mean ± SEM) 49 ± 12% during Training and 71 ± 9% 
during Test, with only 0.7 ± 0.1% and 0.2 ± 0.1% direct stimulus 
fixation (i.e. fixations falling within the surface of the respective 
stimulus location). Nevertheless, these incomplete data do not 
allow us to assess whether and to what extent oculomotor 
learning [19, 59] may explain the results observed.

No association between the interval from adaptation to 
experimental night and sleep parameters
Participants had their experimental night planned between 
three to 10 days following the adaptation session. However, due 
to organizational constraints, this interval was shorter for two 
participants (two days) and longer for one participant (18 days), 
with a mean ± SD of 5.75 ± 3.96 days. Importantly, there were 
no significant associations between the interval from the 

Table 2. Actigraphy and sleep journals

Sleep group Wake group

Irregular nights (out of 7) prior to  
first experimental session

1.43 ± 0.40 1.63 ± 0.39

TiB of night before first  
experimental session (min)

497.86 ± 12.67 517.81 ± 13.42

First recovery night
 TiB (min) 595.88 ± 31.37 601.49 ± 28.74
 Sleep period (min) 512.62 ± 32.75 572.87 ± 29.71
 WASO (min) 30.88 ± 5.66 26.68 ± 4.24
 Sleep efficiency (%) 81.16 ± 3.52 90.52 ± 1.64*
Second recovery night
 TiB (min) 557.17 ± 47.89 540.18 ± 27.97
 Sleep period (min) 470.55 ± 25.62 509.43 ± 29.18
 WASO (min) 37.63 ± 10.30 41.54 ± 11.27
 Sleep efficiency (%) 81.32 ± 3.79 87.00 ± 1.96

Mean ± SEM are shown. Participants were asked to press a marker on an 

Actiwatch when getting to bed in the evening and getting up in the morning. In 

the sleep journals, participants should further indicate the time they switched 

off the lights, the time when they fell asleep, how often and how long they 

were awake during the night, as well as the time when they got up. Time in 

bed (TiB) was calculated as the time between lights off and getting up; sleep 

period was calculated as the time between falling asleep and waking up; wake 

after sleep onset (WASO) was calculated as the time being awake after falling 

asleep; and sleep efficiency was calculated as the percentage of sleep during 

bed time (i.e. sleep period/TiB × 100). For raw data analysis of the actigraphy 

data, we used a standard algorithm as implemented in Respironics Actiware 5 

(RRID:SCR_016440), with a medium threshold for the estimation of wake phases 

(40 activity counts/epoch for epoch lengths of 15 s), and a detection algorithm 

of sleep intervals based on min of inactivity (10 min of inactivity were set as 

threshold for the estimation of start and end phases of a sleep interval). N = 16 

and 17 for Sleep and Wake groups, respectively. *p < .05; significant differences 

between the Sleep group and the Wake group.
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adaptation to the experimental nights and percentage or the 
time spent in SWS or rapid-eye-movement (REM) sleep (r ≥ −0.20, 
p ≥ .460) or any of the spindle parameters (i.e. amplitude, power 
density, count, and density for fast and slow spindles, respect-
ively; |r| ≤ 0.248, p ≥ .355). Total sleep time correlated positively 
with this interval (r = 0.50, p = .049), suggesting that longer inter-
vals between the adaptation and the experimental session leads 
to even longer sleep durations. However, when excluding the 
outlier participant with an 18-day interval, this correlation was 
no longer significant (r = 0.24, p = .386).

Control tests
During the adaptation session before the main experiment, par-
ticipants were screened using several tests: a visual acuity test 
(Freiburg Vision Test, [FrACT] [98], RRID:SCR_016439), an ocular 
dominance test (based on the Dolman method [99, 100]), an 
online color vision test (http://www.color-blindness.com/color-
arrangement-test/), a standard handedness test (Edinburgh 
Handedness Inventory [101]), a chronotype test (Morningness-
Eveningness Questionnaire Self-Assessment Version [MEQ-SA] 
[102]), and a standard vigilance test [103].

In addition, before Training and Test, all participants per-
formed a vigilance task and a subjective sleepiness questionnaire 
(Stanford Sleepiness Scale, SSS [77]). They further performed tests 
of their visuo-spatial memory span and supra span (adopted 
from Corsi [104] and implemented in The Psychology Experiment 
Building Language (RRID:SCR_014794)), as well as their chronotype 
[102]. There were no significant differences between Sleep and 
Wake groups on any measure (all p ≥ .419; Table 3).

Discussion
The present study suggests that sleep supports the extraction of 
regularities from implicitly learned visual stimulus sequences. 
Behaviorally, this sleep benefit was evident only for predictable 
stimuli of the explicit motor task (i.e. when three stimuli with the 
same grating orientation were followed by a stimulus with the 
other grating orientation). Crucially, behavioral improvements 
after sleep were predicted by occipital sleep spindles during 
non-REM sleep. In addition, participants who slept during the 
night after training showed a modulation of early visual evoked 
N1 and N2 components for random vs. sequence stimuli. The 

P3 after sleep tended to be increased to stimuli presented in se-
quence as compared to randomly presented stimuli, whereas in 
the Wake group, the post-training P3 was higher to random than 
sequence blocks. Taken together, these results are in accordance 
with the notion that sleep extracts spatio-temporal regularities 
from previously encoded information via spindle-mediated lo-
calized reactivation of sensory cortices. The enhanced repre-
sentation of such regularities would then reduce the amount of 
attention required to process similar sequences in the future. 
Our results extend a growing body of evidence suggesting that 
sleep is critically involved in generating holistic representa-
tions, that is, internal models of critical environmental features, 
thereby allowing for predictions of future events and adaptive 
behaviors [3–6, 8, 9, 34, 105, 106].

Behaviorally, we found shorter reaction times for sequence 
compared with random blocks. Notably, this effect differed be-
tween Sleep and Wake groups when grating orientation and the 
associated motor response were predictable. Compared with 
unpredictable orientation trials, processing of these predictable 
orientation trials likely requires less attention [58, 60, 107–109]. 
This would allow for additional attentional resources to be de-
voted to implicit aspects of the task, thereby unmasking sleep 
benefits on location-sequence learning. In this interpretation, 
the motor task impairs sequence learning, similar to dual-task 
conditions investigated in many SRTT studies (for a review, see 
[66]). Alternatively, our protocol may be described in terms of 
multidimensional learning [110], as the location sequence uses 
the same modality as the motor task and contains reliable in-
formation for performing the latter. In this context, our results 
are in agreement with previous work [91] indicating reaction 
time differences only for task-relevant motor, but not for task-
irrelevant perceptual deviants in a sequence learning task.

The role of sleep in consolidating sequence learning has 
long remained unclear (for reviews, see [32, 33]). Sleep effects 
have most consistently been demonstrated for perceptual se-
quence learning [17, 67–69] (but see [70]). Our findings support 
this view and help clarify this discussion by suggesting that the 
behavioral expression of sleep-dependent perceptual sequence 
learning is coupled to participants’ explicit motor task. However, 
we note that implicit learning of the location sequence may re-
flect a combination of perceptual and oculomotor learning [19, 
59], as we cannot exclude a role of eye movements in the current 
dataset.

High-density EEG data obtained during sleep revealed that 
overnight behavioral improvements in the Sleep group were 
predicted by sleep-spindle activity in a topographically specific 
manner. Current models suggest that sleep spindles contribute 
to the reprocessing of discrete memory traces in local networks 
[11, 111] and thus play a key role in active systems consolida-
tion during sleep [38, 39, 112–114]. Correlations between spindle 
activity and memory consolidation are well established in dif-
ferent learning paradigms [38, 115, 116], with robust evidence 
in the motor domain (e.g. [29, 40–42]), but effects on perception 
being less clear. Most studies have focused on explicit learning 
on various declarative tasks [43, 44, 46], whereas investigations 
of perceptual learning have been rare [45]. Our results extend 
this literature by showing that topographically specific spindle 
activity contributes to consolidation of implicitly learned visual 
sequences. Activity in early visual areas is known to change in 
response to visual-perceptual learning [93, 117–119], and espe-
cially during sleep after learning [120, 121]. It has recently been 

Table 3. Control tests

Sleep group Wake group

Adaptation Vigilance 443.88 ± 11.86 437.76 ± 8.12
Training SSS 3.08 ± 0.17 3.15 ± 0.21
 Vigilance 448.56 ± 9.45 449.44 ± 8.16
Test SSS 2.63 ± 0.21 2.56 ± 0.24
 Vigilance 441.41 ± 9.67 443.53 ± 9.83
 Chronotype 2.88 ± 0.09 2.94 ± 0.10
 Corsi (block span) 6.50 ± 0.33 6.12 ± 0.33
 Corsi (supra span) 3.25 ± 0.58 2.71 ± 0.60

Mean ± SEM are shown. Vigilance is measured as reaction time (ms). 

Chronotype is measured based on the MEQ and ranges from 1 (definitely 

evening type) to 5 (definitely morning type). The Corsi block span is a measure 

for the number of visual items that can be remembered in sequence; the supra 

span test examines the number of repetitions needed until a sequence of 

visual items is learned implicitly. SSS, Stanford Sleepiness Scale (7-point-scale 

on sleepiness). N = 16 and 17 for Sleep and Wake groups, respectively.

http://www.color-blindness.com/color-arrangement-test/
http://www.color-blindness.com/color-arrangement-test/
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shown that such changes may depend on spindle-based inter-
actions between thalamus and cortex, particularly during sleep 
[122, 123]. We propose that in our protocol, higher tiers of the 
visual system implicitly encode transition probabilities across 
distant locations. The networks involved would then be reacti-
vated during sleep, with increased synchrony in cortico-cortical 
and cortico-thalamic networks [123] supporting consolidation 
of the regularities encoded during wakefulness. These consid-
erations extend current models of stimulus-induced sequence 
replay in the primary visual cortex [124]. Future investigations 
will need to address the relative contribution of perceptual and 
oculomotor [125, 126] learning to this spindle-based mechanism 
of visual memory consolidation. In a similar vein, additional 
studies are needed to clarify whether the spindles detected over 
occipital areas originate from visual or parietal cortices [127].

Following the retention interval, we observed more negative 
N1 and N2 amplitudes for random compared to sequence blocks 
specifically in the sleep group. It is well established that stimuli 
of high compared to low predictability elicit smaller amplitudes 
for both the N1 [58] and the N2 [54–57, 60, 88, 90, 91, 128]. This 
effect has been linked to attentional processing, with reduced 
amplitudes reflecting reduced spatial attention allocated to pre-
dictable stimuli (e.g. [58–60]). Against this backdrop, the observed 
effects of post-training sleep on N1 and N2 components most 
likely reflect a shift in the allocation of attentional resources.

For the P3 component, we observed opposing dynamics, with 
stimuli embedded in predictable sequences eliciting higher P3 
amplitudes than random stimuli in the Sleep group, but lower 
P3 amplitudes to sequential than random stimuli in the Wake 
group. Effects of sequence learning on P3 have been reported 
in numerous studies [55–57, 60, 90, 128], in accordance with the 
component’s role in stimulus-driven memory processing (for re-
views, see [53, 129]). The increased P3 to sequential stimuli pre-
sented in the Sleep group is in accordance with the notion that 
sleep enhanced the internal representation of the memorized 
sequence.

These ERP effects were only present when stimuli were shown 
in the lower visual field. Retinotopic asymmetries in visual pro-
cessing are frequently observed in humans [92–94, 130–132] and 
other species [95, 133]. They are commonly attributed to aniso-
tropic sensitivity profiles starting at the level of the retina and 
extending to higher visual cortices [134–137]. Such anisotropies 
are particularly pronounced in the spatial-frequency domain 
[138–140]. Importantly, results from complementary studies in 
our lab have revealed significantly reduced upper visual field 
responses to textures containing spatial frequencies similar to 
the stimuli used here [141], as well as unmasking of attentional 
modulations of upper visual field responses by individually 
adapting spatial frequency content (Herde et  al., in prepar-
ation). Against this backdrop, the present results suggest a dis-
tinctly reduced sensitivity of the upper visual field to attentional 
modulation.

Our results are in general agreement with studies finding 
sleep effects on memory consolidation when compared to ei-
ther daytime or nighttime wakefulness [11]. However, while 
circadian differences during encoding and retrieval may con-
found results when comparing nighttime sleep to daytime 
wakefulness [142–145], sleep deprivation disrupts the normal 
function of nighttime sleep and is associated with severe cog-
nitive deficits [146, 147]. In the present study, young and healthy 
participants recovered from the deprivation procedure during 

two nights of sleep at home, after which normal cognitive func-
tioning is thought to be fully restored [148]. Moreover, previous 
studies using comparable sleep deprivation procedures in hu-
mans have shown that the increase in stress hormone levels 
which might affect consolidation during the nocturnal vigil (e.g. 
cortisol and norepinephrine) is numerically small and remains 
far below the levels typical for responses to stressful stimuli (e.g. 
[149–152]). Thus, we are convinced that our protocol selectively 
affected consolidation without impairing encoding or retrieval. 
This allows us to draw robust conclusions about the functional 
role of sleep in consolidating visual sequence learning.

In conclusion, our findings support the notion that sleep 
underpins the construction of internal models of implicitly 
learned visual sequences. Behaviorally, this effect only emerged 
for stimuli that were predictable with regard to the explicit 
motor task, thus absorbing less attention. The improved extrac-
tion of spatio-temporal regularities was linked to sleep spindles 
occurring over the occipital cortex during post-training sleep, in 
accordance with the notion of sleep-dependent neural reacti-
vation enhancing the representation of the implicitly learned 
sequence. Sleep also modulated amplitudes of the N1, N2, and 
P3 components of the visual evoked response in a manner con-
sistent with improved sequence knowledge, and increased allo-
cation of attention to unpredictable stimuli. Future studies will 
need to determine whether these effects depend on perceptual 
learning, oculomotor learning, or a combination of both.
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