
sensors

Article

Convolutional Neural Networks-Based Object
Detection Algorithm by Jointing Semantic
Segmentation for Images

Baohua Qiang 1, Ruidong Chen 1 , Mingliang Zhou 2,3,* , Yuanchao Pang 1 , Yijie Zhai 1 and
Minghao Yang 1

1 Guangxi Colleges and Universities Key Laboratory of Intelligent Processing of Computer Image and
Graphics, Guilin University of Electronic Technology, Guilin 541004, China; qiangbh@guet.edu.cn (B.Q.);
pgezcrb@163.com (R.C.); pangyc1011@163.com (Y.P.); 18737309531@163.com (Y.Z.);
mhyang@nlpr.ia.ac.cn (M.Y.)

2 School of Computer Science, Chongqing University, 174 Shazheng Street, Shapingba District,
Chongqing 400044, China

3 State Key Laboratory of Internet of Things for Smart City, Faculty of Science and Technology, University of
Macau, Macau, China

* Correspondence: mingliangzhou@cqu.edu.cn

Received: 6 August 2020; Accepted: 2 September 2020; Published: 7 September 2020
����������
�������

Abstract: In recent years, increasing image data comes from various sensors, and object detection
plays a vital role in image understanding. For object detection in complex scenes, more detailed
information in the image should be obtained to improve the accuracy of detection task. In this paper,
we propose an object detection algorithm by jointing semantic segmentation (SSOD) for images.
First, we construct a feature extraction network that integrates the hourglass structure network
with the attention mechanism layer to extract and fuse multi-scale features to generate high-level
features with rich semantic information. Second, the semantic segmentation task is used as an
auxiliary task to allow the algorithm to perform multi-task learning. Finally, multi-scale features
are used to predict the location and category of the object. The experimental results show that our
algorithm substantially enhances object detection performance and consistently outperforms other
three comparison algorithms, and the detection speed can reach real-time, which can be used for
real-time detection.

Keywords: object detection; semantic segmentation; attention mechanism; hourglass network; sensor

1. Introduction

With the development of the Internet of Things [1], more and more image data are collected
by various image sensors or video sensors. Before using image data for more complex computer
vision tasks, we need to know what objects are in the image and where they are located. Therefore,
object detection [2] has always been a hot research direction in the field of computer vision, and its
purpose is to locate and classify objects in images or videos. Object detection has been widely used in
many fields, including intelligent traffic [3] and human pose estimation [4].

Traditional algorithms solve the detection problem for images by finding foreground and
background from the picture and then manually extracting foreground features for classification.
The algorithm of extracting the foreground can be divided into static and dynamic according to the state
of the object. The static object detection algorithm for images usually uses the background subtraction
algorithm [5,6]. The foreground is the part where the pixel value varies greatly. The dynamic object
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detection algorithm usually adopts the frame difference [7,8] algorithm to subtract two adjacent frames.
The area where the pixel value changes drastically is the area where the object appears.

The feature extraction algorithm combined with the classifier is used by the traditional object
detection algorithm to classify the detected foreground. Viola and Jones [9] proposed the Haar feature
combined with Adaboost object detection algorithm of human faces. Dalal et al. [10] proposed the
human detection model of histograms of oriented gradients (HOG) combined with support vector
machines (SVM), which had high detection accuracy but long detection time. Felzenszwalb et al. [2]
proposed deformable parts model (DPM) with HOG feature modified, which greatly improved
algorithm performance.

In recent years, many algorithms have been proposed to address the problem of object detection.
The object detection algorithms based on deep learning can be divided into two-stage detection
algorithms and one-stage detection algorithms. The two-stage algorithm is to first generate a region
proposal [11], and then target the boundary box and category prediction of the region proposal.
Girshick et al. [7] proposed the classic regions with convolutional neural networks (CNN) features
(R-CNN) to achieve excellent object detection accuracy by using a deep ConvNet to classify object
proposals, but it is very time-consuming. To solve this problem, Girshick et al. [12,13] proposed the
upgraded version of R-CNN, Faster R-CNN, which innovatively used the region proposal network
(RPN) to directly classify the region proposal in the convolutional neural network, and achieved the
end-to-end goal of the whole detection framework. He et al. [14] proposed Mask R-CNN on the basis
of Faster R-CNN, which added a branch for semantic segmentation tasks, and used detection tasks and
segmentation tasks to extract image features to improve the accuracy of detection. He et al. [15] proposed
spatial pyramid pooling networks (SPPNet) to generate fixed-length representations. Kong et al. [16]
proposed HyperNet, which combines the generation of candidate regions with the detection task
to produce fewer candidate regions while ensuring a higher recall rate. Cai and Vasconcelos [17]
proposed Cascade R-CNN to address the problem of overfitting and quality mismatch.

The one-stage detection algorithms do not need to select region proposals, but use the regression
to directly calculate the positioning box and object category, which further reduce the running time.
Redmon et al. [18] proposed the you only look once (YOLO) algorithm to meet the requirements of
real-time detection, but the detection accuracy of small objects is not high. Liu et al. [19] proposed
the single shot multibox detector (SSD) algorithm to predict the object from multiple feature maps,
which largely solved the problem of small object detection. Lin et al. [20] proposed RetinaNet mainly
to solve the extremely imbalanced problem of one-stage algorithm positive and negative samples and
difficult and easy samples. Zhang et al. [21] proposed the RefineDet method, which absorbed the
advantages of the two-stage algorithm, so that the one-stage detection algorithm can also have the
accuracy of the two-stage algorithm. Liu et al. [22] proposed RFBNet to use cavity convolution to
improve the receptive field. Shen et al. [23] proposed deeply supervised object detector (DSOD) to
restart training neural networks for detection tasks, and also introduced the idea of DenseNet [24],
which greatly reduced the number of parameters. Law and Deng [25] proposed Cornernet to detect
an object bounding box as a pair of keypoints using a single convolution neural network. To further
improve on Cornernet, Duan et al. [26] proposed CenterNet to detect each object as a triplet of keypoints.
Tian et al. [27] proposed fully convolutional one-stage object detector (FCOS) to solve object detection
in a per-pixel prediction fashion.

Although the above methods focus on object detection, those methods still have the following
shortcomings:

• Object detection not only needs to maintain a high detection accuracy, but also has certain
requirements for detection speed. However, most of the existing algorithms have slow detection
speeds and cannot keep up with the playback speed of the video stream, which may cause the
detection of important frames to be missed.

• Overlap and occlusions in the image may cause false detection.
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• Objects often appear in complex backgrounds, which will cause interference and make
detection difficult.

To address the above problems, we propose an object detection algorithm combined with semantic
segmentation [28,29]. The contributions of this study are as follows:

• We inherit the idea of one-stage target detection algorithm, and the entire model adopts the
network structure in the form of full convolution to ensure the detection speed is fast enough.

• We use the hourglass structure to generate multi-scale features with high-level semantic
information, which enables the algorithm to detect small-scale objects more effectively, and we use
semantic segmentation as an auxiliary task for object detection to extract more detailed features
with pixel-level semantic segmentation to better detect partially occluded objects.

• We use the attention mechanism to make the model pay more attention to the object, reduce the
influence of the image background without causing model degradation.

• The experimental results show that our algorithm substantially enhances object detection
performance and consistently outperforms other comparison algorithms, and the detection
speed can reach real-time, which can be used for real-time detection.

The remainder of this paper is organized as follows. The proposed algorithm is illustrated in
Section 2. The experiment results are presented in Section 3. Finally, Section 4 draws conclusions.

2. Materials and Methods

2.1. Framework

As shown in Figure 1, our algorithm consists of three parts. First, we use an hourglass structure
to generate feature mapping for the preliminary feature generated by ResNet-50 [30] to generate
advanced features with rich semantic information. Second, we use the semantic segmentation task
as an auxiliary task to make the model multi-task learning. Finally, we use the multi-scale features
generated by the hourglass structure to predict the location and category of the image object.
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2.2. Feature Extraction

The images undergo preliminary feature extraction through ResNet-50, and the generated feature
map passes through an hourglass structure. The subsampled structure of the hourglass structure is
used to extract multi-scale features, and the up-sampling structure is used to integrate multi-scale



Sensors 2020, 20, 5080 4 of 14

features to generate advanced features with rich semantic information. The fully convolutional network
structure is used for the whole model to ensure that the detection speed is fast enough. The hourglass
structure contains the last three residual blocks of ResNet-50. In order to reduce the model training
time, pre-training parameters of ResNet-50 are loaded in this paper for training, so the structure of
ResNet-50 is not changed.

In order to facilitate the training of the model, each block of the hourglass structure uses residual
connections. In the up-sampling part of the hourglass structure, the input size and output size in the
intra-box are the same, and the residual structure shown in Figure 2a is used. When the input size and
output size are the same in the inter-box, the residual structure shown in Figure 2a is used; otherwise,
the residual structure shown in Figure 2b is used. It achieves the effect of subsampled by setting
the sliding step of convolution in the convolutional layer as 2, and at the same time, image feature
extraction is completed.
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Each block in the up-sampling structure of the hourglass structure has a connection structure in
the middle. The detailed construction is shown in Figure 3.
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The advantage of using feature map stacking in up-sampling is combined with the high-level and
low-level features, so that the generated feature map can have high-level semantic information even
when the size of the generated feature map is large. The connection structure is also a residual structure,
and the shortcut connections make the network easier to train. The structure has two advantages. First,
because of the identity mapping, the attention mechanism [31,32] layer of each up-sampling block is
not simply superimposed, which will not lead to the reduction of internal features. Second, because of
the nature of the residual structure itself, learning the weights in the attention mechanism layer will
not bring additional difficulties to model training and will not cause model degradation. The detailed
parameters of the hourglass structure behind the ResNet-50 structure are shown in Table 1.

Table 1. Detailed parameters of hourglass structure.

Network Layer Kernel Parameter Repeat Output

Input 10× 10× 2048

Block1

 1× 1, 1024
3× 3, 1024
1× 1, 1024

 2 5× 5× 1024

Block2

 1× 1, 1024
3× 3, 1024
1× 1, 1024

 4 3× 3× 1024

Block3

 1× 1, 512
3× 3, 512
1× 1, 512

 1 3× 3× 512

Block4

 1× 1, 512
3× 3, 512
1× 1, 512

 1 5× 5× 512

Block5

 1× 1, 512
3× 3, 512
1× 1, 512

 1 10× 10× 512

Block6

 1× 1, 512
3× 3, 512
1× 1, 512

 1 19× 19× 512

Block7

 1× 1, 512
3× 3, 512
1× 1, 512

 1 38× 38× 512

2.3. Semantic Segmentation Branch

The multi-scale features generated by the hourglass structure are input into the semantic
segmentation branch, and the segmentation mask is predicted by fusing the features of each scale to
complete the semantic segmentation task.

Feature maps of different sizes are first subjected to a convolution of size 1× 1, then the nearest
neighbor interpolation method is used to enlarge the feature map to the size of the last layer. Finally,
the feature maps are generated through convolution kernels to predict the segmentation mask.

In the last part of the semantic segmentation branch, an attention mechanism layer is added
to make it easier for the semantic segmentation task to focus on the image object. The complete
convolution structure is adopted by the semantic segmentation branch, which ensures the overall
running speed of the model. The loss function of the semantic segmentation branch is defined
as follows:

Lseg
(
X, C;θseg

)
= −

1
|B| ·H ·W

Wseg

∑
k∈|C|

∑
i∈P

log
[
So f tmax

(
ai

k

)]
, (1)

where |B| is the batch size of an iterative image, H and W are the number of pixels of the image X
height and width respectively, P is the set of pixels in the whole image, ai

k denotes the mark score of
the i pixel in the image for category k by the current model. C denotes the total number of categories
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under the task. θseg denotes the parameters of the semantic segmentation branch. Wseg denotes the
weight and offset of the semantic segmentation branch.

2.4. Prediction Part

The multi-scale features are used to predict the location and category of the image object. The main
idea is that each layer of features generated by the hourglass structure is individually predicted, and the
features are input into two 3× 3 convolutional layers with different numbers of convolution kernels.
The two generated feature maps are one for classification and one for the location of the regression
detection box. Finally, the non-maximum suppression (NMS) [10,33] algorithm is used to remove the
redundant region proposal.

The loss function is composed of positioning error (Lloc(x, l, g)) and classification error (Lcon f (x, c)).
The loss function is the average value of the weighted sum of the classification and regression errors
of each region proposal. The average value is used to ensure that the gradient is not too large in the
training process. The loss function of the prediction part is defined as follows:

L
(
x, c, l, g;θpre

)
=

1
N

Wpre
(
Lcon f

(
x, c;θpre

)
+ αLloc

(
x, l, g;θpre

))
, (2)

where N is the number of matched detection boxes, α is a settable parameter, and α is set to 1. θpre

denotes the parameters of the prediction part. Wpre denotes the weight and offset of the prediction part.
The positioning error is smooth L1 loss [12], which is used to describe the positioning gap

between the detection box (l =
(
lx, ly, lw, lh

)
) and the callout box (g =

(
gx, gy, gw, gh

)
). These boxes are

represented by a four-tuple, which are the x and y coordinates of the center point of the box, and the
width and height of the box. The positioning error is defined as follows:

Lloc
(
x, l, g;θpre

)
=

∑
i, j,u∈{x,y,w,h}

xk
i jsmoothL1

(
lui − gu

j

)
, (3)

smoothL1(x) =
{

0.5x2 i f |x| < 1
|x| − 0.5 otherwise

, (4)

where xk
i j denotes whether the algorithm detection frame i and the real frame j match for category k. If

it matches, the value of xk
i j is 1, else the value of xk

i j is 0.
The classification loss is defined as follows:

Lcon f
(
x, c;θpre

)
= −

∑
i, j

xk
i j log(ĉk

i ) −
∑

i

log
(
ĉk

i

)
, (5)

where xk
i j denotes whether the algorithm detection box i and the real box j match for the category k,

ĉk
i denotes the predicted probability of the i-th detection box corresponding to category k, which is

expressed in the form of SoftMax [34].
The loss function is the addition of the loss function of the prediction module and the semantic

segmentation branch, which is defined as follows:

Lloss = L
(
x, c, l, g;θpre

)
+ Lseg

(
X, C;θseg

)
. (6)

2.5. Summary of the Proposed Algorithm

Our method is summarized in Algorithm 1. In the training stage, first, the images are batch-input
into the model. Second, the gradient function is used to minimize the loss function to train the neural
network. Finally, the model with the highest object detection accuracy is selected according to the
validation set. Note that both [5] and this paper are one-stage learning methods; however, the emphasis
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of each approach is entirely different. First, the shallow features are used in [5] to predict the object,
but the hourglass structure is used by our method to integrate deep features and shallow features.
Second, the method in [5] cannot fully capture more detailed information of the image, but our method
can obtain more semantic information using the semantic segmentation task and attention mechanism.

Algorithm 1 Entire process of the proposed algorithm

1: Initialization: Parameters Wseg of the semantic segmentation branch;
Parameters Wpre of the prediction part;
mini-batch size batch_size = 32.

2: update until convergence:
3: for k step do
4: Randomly sample batch_size points to construct a mini-batch.
5: For each sampled point in the mini-batch, calculate Equations (1), (2), and (5) using forward propagation.
6: Calculate the derivatives ∇Wseg and ∇Wpre by Adam algorithm [35].
7: Update the parameters Wseg and Wpre using backpropagation.
8: end for

3. Experiment

3.1. Experimental Setting

In our experiments, we used the Intel Xeon E5-2603 v2 (dual CPU), NVIDIA 1080Ti GPU, 32GB
memory, and Ubuntu x64 operating system. We selected the open source TensorFlow framework,
Python 3.5 as the development environment and PyCharm2017.1.2 as the development tool.

We used two well-labeled benchmark datasets for object detection: Pascal VOC 2012 dataset [36]
and Microsoft COCO (MS COCO) dataset [37], which came from image sensors. Pascal VOC 2012
dataset consists of 11,540 images of 20 categories. We randomly selected 5717 images as the training
set and 5823 images as the test set. MS COCO dataset involves 91 categories, but only 80 categories are
used in detection tasks. We also perform experiments on the 80 categories MS COCO dataset marked
by Microsoft. We train using the 80k train images, and test on the 40k test images.

To verify the effectiveness of the algorithm for images, the algorithm in this paper is compared
with SSD [19], Faster R-CNN [13], and Mask R-CNN [14]. SSD is a one-stage detection algorithm.
Faster R-CNN and Mask R-CNN are two-stage detection algorithms.

IOU (intersection over union) [36] is used to evaluate the positioning accuracy effect. In object
detection tasks using images, common evaluation indices include average precision (AP) [14] and
mean average precision (mAP) [38]. AP represents the average precision, which is the average value of
the highest precision rate under different recall rates. mAP is the mean value of AP under all categories.
By default, in this paper, when the IOU between the detection box and the real box is greater than 0.5,
it is determined that the algorithm has located the object.

We report the standard MS COCO indices [14,39], including AP (averaged over IOU thresholds),
APIoU=0.50, APIoU=0.75 and APsmall, APmedium, APlarge.

For the same test video stream, the number of frames per second processed under the same
experimental conditions is used as the detection speed evaluation standard, which is abbreviated as
fps [40]. It includes the image reading process and object detection process. We use the detection speed
to evaluate the processing efficiency of the real-time detection algorithm for images.

3.2. Comparison of State-of-the-Art Algorithms

Table 2 shows the mAP values of the proposed method and other three-comparison methods on
the Pascal VOC 2012 dataset. Comparing Mask R-CNN with the proposed method, the average mAP
value of the Pascal VOC 2012 dataset increased from 74.9 to 79.4%. By analyzing the detection accuracy
of each category in the dataset, it can be found that the detection accuracy of objects on the street have
been greatly improved.
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Table 2. Comparison of our method and other state-of-the-art methods in terms of mAP values (%) on
the Pascal VOC 2012 dataset. The best accuracy is shown in boldface.

Number Category Faster R-CNN (%) SSD (%) Mask R-CNN (%) SSOD (ours) (%)

1 aeroplane 84.9 85.6 86.5 84.3

2 bicycle 79.8 80.1 83.9 87.8

3 bird 74.3 70.5 77.6 79.4

4 boat 53.9 57.6 58.8 73.2

5 bottle 49.8 46.2 63.7 54.5

6 bus 77.5 79.4 80.4 84.3

7 car 75.9 76.1 78.2 86.1

8 cat 88.5 89.2 87.6 87.1

9 chair 45.6 53.0 56.0 60.8

10 cow 77.1 77.0 80.1 85.0

11 dining table 55.3 60.8 63.2 80.2

12 dog 86.9 87.0 88.0 86.6

13 horse 81.7 83.1 84.4 88.1

14 motorbike 80.9 82.3 85.7 84.5

15 person 79.6 79.4 79.9 79.8

16 potted plant 40.1 45.9 46.3 56.2

17 sheep 72.6 75.9 74.4 81.1

18 sofa 60.9 69.5 66.8 80.8

19 train 81.2 81.9 81.3 87.5

20 tv/monitor 61.5 67.5 75.0 80.6

- mAP 70.4 72.4 74.9 79.4

Figure 4 shows the mAP values of the proposed method and the other three methods on the
MS COCO dataset. In the experiment, the proposed method showed extremely strong detection
performance, which is better than the best performance of Mask R-CNN. In addition, the AP value of
the large object is improved higher, and the model is more suitable for detecting the large object like
the traditional one-stage algorithm. Experimental results show that this algorithm can also get good
detection accuracy for complex environment of image.

3.3. Speed and Performance

Table 3 shows the mAP values (%) and detection speed (fps) of the proposed algorithm and the
three comparison algorithms in terms of the Pascal VOC 2012 dataset. The detection speed of the SSOD
algorithm is higher than that of the Faster R-CNN algorithm and Mask R-CNN algorithm, but the
detection speed is lower than the SSD algorithm due to the complex model structure. The SSOD
algorithm can achieve real-time detection speed, and the mAP of the algorithm is the highest among
the comparison algorithms, which can be used for real-time detection of image sensors.
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Table 3. Comparison of our algorithm and other state-of-the-art algorithms in terms of mAP values
(%) and detection speed (fps) on the Pascal VOC 2012 dataset. The best accuracy or detection speed is
shown in boldface.

Algorithm SSD Faster R-CNN Mask R-CNN SSOD

mAP (%) 72.4 70.4 74.9 79.4

detection speed (fps) 46 5 5 24Sensors 2020, 20, x FOR PEER REVIEW 9 of 15 
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3.4. Further Analysis

3.4.1. Comparison of the Variant Algorithms

We evaluate some variants of SSOD, i.e., SSOD-att-seg, SSOD-att. SSOD-att is based on semantic
segmentation without attention mechanism. SSOD-att-seg represents a fast object detection algorithm
based on hourglass network without semantic segmentation and attention mechanism. For fair
comparison, the two variants remain the same configuration and hyperparameters as SSOD.

Table 4 shows the mAP results of the SSOD algorithm and other two variants of the SSOD
algorithm. The best accuracy is shown in boldface. We can find that SSOD can achieve higher accuracy
than SSOD-att and SSOD-att-seg. Compared with the SSOD-att algorithm, the mAP value of the SSOD
algorithm is improved by 0.7%, and compared with the SSOD-att-seg algorithm by 3%. However,
the overall detection accuracy of the SSOD-att-seg algorithm is higher than the three comparison
algorithms (SSD, Faster R-CNN, and Mask R-CNN).

By analyzing the detection accuracy of each type of object in the SSOD-att-seg algorithm, it can be
found that the detection accuracy of SSOD-att-seg for the object with large positions in the picture,
such as boats, sofas, and trains, is greatly improved, indicating that the SSOD-att-seg algorithm can
better detect the big object in the picture. Compared with Mask R-CNN, SSOD-att-seg has no advantage
in recognition accuracy of some small objects, because the one-stage detection model has a disadvantage
in detecting small objects compared with the two-stage model. However, the SSOD-att-seg algorithm
has an improved average accuracy compared with the SSD which is the same one-stage algorithm.
Figure 5 shows the comparison of the detection effect between the SSOD-att-seg algorithm and SSD
algorithm. In the figure, the detection confidence of SSOD-att-seg is higher and there are fewer
undetected objects, which indicates that the idea of SSOD-att-seg using the hourglass structure to
generate multi-scale features can effectively improve the detection accuracy of small objects in images.
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Table 4. Comparison of our algorithm and two variants in terms of mAP values (%) on the Pascal VOC
2012 dataset. The best accuracy is shown in boldface.

Number Category SSOD-att-seg (%) SSOD-att (%) SSOD (%)

1 aeroplane 88.4 90.1 84.3

2 bicycle 83.1 82.7 87.8

3 bird 75.5 85.2 79.4

4 boat 62.5 74.0 73.2

5 bottle 46.9 48.3 54.5

6 bus 82.5 90.4 84.3

7 car 79.3 75.2 86.1

8 cat 92.4 87.9 87.1

9 chair 59.2 51.5 60.8

10 cow 81.3 81.4 85.0

11 dining table 65.9 75.8 80.2

12 dog 90.1 87.3 86.6

13 horse 84.5 82.8 88.1

14 motorbike 86.8 92.0 84.5

15 person 82.5 84.2 79.8

16 potted plant 51.5 58.0 56.2

17 sheep 80.9 83.2 81.1

18 sofa 75.7 71.1 80.8

19 train 85.8 88.2 87.5

20 tv/monitor 72.1 84.9 80.6

- mAP 76.4 78.7 79.4
Sensors 2020, 20, x FOR PEER REVIEW 11 of 15 

 

 
Figure 5. Comparison of detection effects between the SSOD-att-seg algorithm and SSD algorithm. 
The arrows indicate the objects detected by the SSOD-att-seg algorithm but missed by the SSD 
algorithm. 

By analyzing the detection accuracy of each category of the SSOD-att algorithm, it can be found 
that the detection accuracy of the SSOD-att algorithm is greatly improved for boats, potted plants, 
aeroplanes, and other objects that are easy to be partially blocked in pictures. Figure 6 shows the 
comparison of the detection results of the SSOD-att algorithm and SSOD-att-seg algorithm. 

 
Figure 6. Comparison of detection effect between the SSOD-att-seg algorithm and SSOD-att 
algorithm. The arrows indicate the objects detected by the SSOD-att algorithm but missed by the 
SSOD-att-seg algorithm. 

The detection confidence of SSOD-att is higher and there are fewer undetected objects. 
Experiments have proved that the improved model using the multi-task learning idea can better 
detect the partially occluded objects in the images, and can be used for detection in some scenes with 
dense objects. 

By observing the pictures detected by the algorithm, it is also found that the SSOD-att algorithm 
is not accurate enough to detect objects, which is caused by the complex background at home, and 
the complex background may cause the false detection of the algorithm. Figure 7 shows the 
comparison of the detection results of the SSOD algorithm and the SSOD-att algorithm. The detection 
confidence of SSOD is higher and there are fewer undetected objects. The experiments proved that 

Figure 5. Comparison of detection effects between the SSOD-att-seg algorithm and SSD algorithm.
The arrows indicate the objects detected by the SSOD-att-seg algorithm but missed by the SSD algorithm.

By analyzing the detection accuracy of each category of the SSOD-att algorithm, it can be found
that the detection accuracy of the SSOD-att algorithm is greatly improved for boats, potted plants,
aeroplanes, and other objects that are easy to be partially blocked in pictures. Figure 6 shows the
comparison of the detection results of the SSOD-att algorithm and SSOD-att-seg algorithm.
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algorithm. The arrows indicate the objects detected by the SSOD-att algorithm but missed by
the SSOD-att-seg algorithm.

The detection confidence of SSOD-att is higher and there are fewer undetected objects. Experiments
have proved that the improved model using the multi-task learning idea can better detect the partially
occluded objects in the images, and can be used for detection in some scenes with dense objects.

By observing the pictures detected by the algorithm, it is also found that the SSOD-att algorithm
is not accurate enough to detect objects, which is caused by the complex background at home, and the
complex background may cause the false detection of the algorithm. Figure 7 shows the comparison of
the detection results of the SSOD algorithm and the SSOD-att algorithm. The detection confidence
of SSOD is higher and there are fewer undetected objects. The experiments proved that the SSOD
algorithm can well alleviate the false detection problem caused by the interference of the cluttered
background in the images.
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3.4.2. Speed and Performance

Table 5 shows the average accuracy and speed of the SSOD-att-seg algorithm, SSOD-att algorithm,
and SSOD algorithm on the Pascal VOC 2012 dataset. The detection speed of the SSOD-att-seg
algorithm, SSOD-att algorithm, and SSOD algorithm is higher than the Faster R-CNN algorithm
and Mask R-CNN algorithm. However, due to the complex model structure, the detection speed of
the SSOD-att-seg algorithm, SSOD-att algorithm, and SSOD algorithm is lower than that of the SSD
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algorithm. SSOD-att-seg, SSOD-att, and SSOD algorithms can achieve real-time in detection speed.
The SSOD algorithm is the highest average accuracy rate among the three comparison algorithms,
and can be used for real-time detection of image sensors.

Table 5. Comparison of our algorithm and two variants in terms of mAP values (%) and detection
speed (fps) on the Pascal VOC 2012 dataset. The best accuracy or detection speed is shown in boldface.

Algorithm SSOD-att-seg SSOD-att SSOD

mAP (%) 76.4 78.7 79.4

detection speed (fps) 25 24 24

4. Conclusions

In this paper, we proposed an object detection algorithm combined with semantic segmentation
for images. The algorithm in this paper uses the hourglass structure to regenerate multi-scale features,
and the feature mapping used to predict small targets also has rich abstract features. Semantic
segmentation is introduced as an auxiliary task of object detection. Semantic segmentation and target
detection are performed in parallel to optimize the model together. Extensive experimental results
show that the performance of the object detection algorithm in this paper has been significantly
improved, and the detection speed can reach real-time. Comparing state-of-the-art Mask R-CNN
with the SSOD method, the average mAP value increased by 4.5% on the Pascal VOC 2012 dataset.
Comparing state-of-the-art Mask R-CNN with the SSOD method, the 5 AP indices value has significant
improvement on the MS COCO dataset, especially helpful for medium and large objects, improving
APs by 3.7% and 6.5% respectively. The detection speed of SSOD is 24 frames per second, which can
be used for real-time detection. The training time of the proposed method is about 22 h. Note that
data-parallel training algorithms cannot be considered for images in our paper, which will be our
future work.
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