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ABSTRACT The effects of Ca 2+ and Mg 2+ on exocytosis in Paramecium tetraurelia cells were 
examined with light microscopy, freeze fracture (FEM) and transmission electron microscopy 
(TEM) of thin-sectioned embedded cells. Picric acid-Ca2+-induced secretion in wild type (wt) 
cells was captured by "quick" fixation with OsO4, and TEM demonstrated membrane fusion 
occurring before trichocyst matrix (tmx) expansion. Cells stimulated with picric acid in the 
presence of high extracellular Mg 2+ showed very few sites of membrane fusion and no tmx 
expansion, suggesting that Ca 2÷ is required for both membrane fusion and tmx expansion. 
Further information was obtained by comparing secretory responses of wt cells with a 
temperature-sensitive secretory mutant, nd 9. These cells when grown at the permissive 
temperature (18°C) possess normal rosettes at the secretory site and secrete in response to 
picric acid-Ca 2+, but when grown at 27°C they lack rosettes and do not secrete (Beisson, J., 
M. Lefort-Tran, M. Pouphile, M. Rossignol, and B. Satir, 1976, J. Cell Biol., 69:126-143). 
Quantitation of picric acid-Ca2÷-induced secretion revealed that: (a) the number of tmx 
secreted by wt and nd 9 cells was independent of their cultural growth phase, (b) wt cells 
secreted the same number of tmx when grown either at 18 or 27°C, and (c) nd 9 18°C cells 
secreted the same number of tmx as wt 18 or 27°C cells. Wild type and nd 9 cells had the 
same frequencies of occupied and unoccupied secretory sites as determined by quantitative 
analysis of freeze-fracture replicas. After stimulation with divalent cation ionophore A23187 
and Ca 2+, wt cells showed a significant reduction in the frequency of occupied sites. FEM and 
TEM studies revealed that A23187-Ca 2+ induced tmx expansion and normal fusion of the 
plasma and trichocyst membranes in wt and nd 9 18°C cells, but induced tmx expansion 
without concomitant membrane fusion in nd 9 27°C cells. The lack of membrane fusion in 
nd 9 27°C cells suggests that the molecules represented by rosette particles are required 
specifically for membrane fusion. 

In many secretory systems Ca 2+ is required for stimulus- 
secretion coupling (6). An extracellular stimulus induces a 
series of molecular changes that result in Ca 2+ influx, fusion 
of the secretory organelle's membrane with the plasma mem- 
brane, and release of  the secretory content to the external 
environment. However, the exact role of  Ca 2÷ in bringing 
about the fusion of lipid bilayers has yet to be determined. 
The ciliated protozoan Paramecium tetraurelia offers many 
advantages for studying Ca2+-dependent exocytosis. The cor- 
tex of the cell consists of  rows of cortical units, which measure 

1 by 1.5/zm, each containing a potential site for exocytosis. 
The cell is ~ 150-~tm long and 50 um in diam, thus, there can 
be a large number of nearly simultaneous secretory events per 
cell. In addition, each site where exocytosis occurs can be 
easily identified in freeze-fracture electron microscopy (FEM). 

Freeze-fracture particle arrays marking the secretory site have 
been described for this and other cells (14, 22, 24, 26, 27, 34) 
and shown to be of  essential importance using secretory 
mutants of Paramecium and Tetrahymena cells (4, 18). 

The secretory organelle in Paramecium is the trichocyst, 
which contains a paracrystalline protein matrix. Upon fusion 
of plasma and trichocyst membranes, the trichocyst matrix 
expands and leaves the cell as a paracrystalline structure eight 
times its original length. Secretion is easily detected because 
the expanded trichocyst matrix is visible in the light micro- 
scope as a 20-40-um long needle. We shall use here the 
designation "trichocyst" solely for the cytoplasmic, mem- 
brane-bounded secretory vesicle and "trichocyst matrix" 
(tmx) for the secreted content. 

Secretion occurs very quickly in Paramecium, and therefore 
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it is difficult to dissect the release response into particular 
stages such as Ca 2+ influx, membrane fusion, and trichocyst 
matrix expansion. However, membrane fusion and tmx ex- 
pansion are events that can be monitored ultrastructurally 
and to eventually understand the molecular interactions that 
regulate secretion, it is necessary to first distinguish and 
characterize conditions that stimulate or inhibit membrane 
fusion and tmx expansion. 

Satir and Oberg (28) observed with light microscopy that 
M g  2+ inhibits secretion in Paramecium. The specific role of 
Mg 2+ in inhibiting secretion is not clear because isolated 
trichocyst matrices undergo expansion in vitro upon addition 
of Ca 2+ (5, 10). By substituting M g  2+ for  Ca  2+ and examining 
cells with transmission electron microscopy (TEM) and FEM, 
it can be tested whether M g  2+ inhibits secretion by inhibiting 
membrane fusion, tmx expansion, or both, thus allowing us 
to determine whether Ca 2+ is required for both membrane 
fusion and tmx expansion in vivo. 

Another approach to study the role of Ca 2+ in secretion in 
Paramecium is to compare the responses of a secretory mu- 
tant, nd 9, with wt cells using different secretagogues. This 
temperature sensitive (ts) secretory mutant secretes and dis- 
plays the usual secretory site particle array (rosette) when 
grown at 18"C (permissive temperature) but when grown at 
27"C (nonpermissive temperature), lacks rosettes and is incap- 
able of secretion (4). The response of this mutant to divalent 
cation ionophore and Ca 2+ vs. Mg 2÷ provides further clarifi- 
cation of the specific role(s) of Ca 2+ in membrane fusion and 
tmx expansion. In this paper, we show how these two ap- 
proaches (effect of Mg 2+ vs. Ca 2+ and use of a secretory 
mutant) permit a preliminary dissection of the two closely 
linked events, membrane fusion and tmx expansion, which 
may help in understanding the underlying molecular proc- 
esses. 

MATERIALS AND METHODS 
Cultures of P. tetraurelia were grown in bacterized (Enterobacter aerogenes) 
medium consisting of 0.25% Cerophyll and 0.05% Na2HPO4 (31). Wild type 
cells and a ts secretory mutant (nd 9) were cultured at either 18*C (permissive 
temperature) or 27"C (nonpermissive temperature). The temperature that fol- 
lows the abbreviation "wt" or "nd 9" designates the temperature at which the 
cells are grown. All experiments were performed at room temperature (22"C). 

Picric Acid-induced Secretion (Light Microscopy): Cellswere 
harvested in early log phase (500 cells/ml), mid-log phase (2,000 cells/ml), and 
stationary phase (5,000 cells/ml), filtered through cheesecloth to remove bac- 
teria, and spun at 1,000 rpm for 2 rain in an IEC clinical centrifuge (Interna- 
tional Equipment Co., Needham Heights, MA). Cells were then washed in 
buffer (5 mM Tris HCI, l mM KCI, 0.1 mM EDTA, pH 7.4) containing either 
5-15 mM CaCl2 or 5-15 mM MgCI2, and resuspended in this buffer at a 
concentration of ~ 10,000 cells/ml. 5 ~l of this cell suspension was placed on 
a glass slide and l0 ul of aqueous saturated picric acid (PA) added. In addition, 
wild type cells at stationary phase were tested directly in growth medium as a 
control for loss oftmx due to centrifugation and rinsing. 

The released tmx were counted on phase-contrast micrographs taken at 
several different focal levels for each cell. Expanded trichocyst matrices were 
traced on each micrograph and the tracings from one cell were superimposed 
to prevent counting the same tmx more than once. No less than 12 cells were 
included in each experimental group. 

lonophore-induced Secretion (Light Microscopy): Cells are 
harvested, washed, and concentrated as described above, and stimulated to 
secrete by the divalent cation ionopbore A23187 (Eli Lilly, Inc. or Calbiochem- 
Behring, Corp., American Hoechst Corp., La Jolla, CA) in the presence of 
either Ca 2÷ or Mg :÷. A l -raM stock solution was prepared by dissolving A23187 
in dimethyl sulfoxide (DMSO) (25); dilutions were made with Ca 2+ or Mg 2+ 
buffer. 5 gl of cell suspension was placed on a slide and l0 #l of 40 t~M A23187 
was added (final concentration of A23187 was 27 #M in 2.7% DMSO). This 
concentration was chosen to stop the cells from swimming, thus keeping the 
tmx within a small area surrounding the cell. Phase-contrast micrographs were 
used for quantitation of the number of released tmx as described. 

40 uM A23187 and Mg 2+, in contrast with PA or 40 #M A23187 and Ca :+, 
does not cause cells to stop swimming. Cells were fixed directly with 0,304 after 
2 min of exposure to A23187 and Mg 2+, and tmx were counted. Control cells 
exposed to DMSO (up to 4%) remained alive and swimming until fixation with 
OsO4. 

FEM: The frequency of particle arrays (rings, parentheses, and partial 
arrays) was determined for unstimulated wt 27"C and nd 9 18*C cells, which 
were rinsed in buffer containing l0 mM MgCI2 (to prevent secretion) and fixed 
with 2.5% glutaraldehyde. The frequency of the arrays was determined in wt 
27"C cells stimulated by ionophore (final concentration was 15 t~M A23187, 
1.5% DMSO as solvent) and 5 mM CaC12 for 3 rain before fixation with 2.5% 
glutaraldehyde. Mutant cells (nd 9 27"C) either in Ca  2+ buffer or exposed to 
A23187-Ca 2÷ were fixed as above. All cells were fixed with glutaraldehyde 
(2.5%) for 30 min, rinsed with buffer, transferred to 20% glycerol for at least 2 
h, and frozen in supercooled liquid nitrogen (-205°C) or liquid propane 
(-185"C). Samples were fractured in the double-replica device of the Balzers 
freeze fracture apparatus (BAF 301; Balzers, Hudson, NH) and platinum- 
carbon replicas were made. Electron micrographs were taken of plasma mem- 
brane fracture faces (at least five different cells for each experiment) and the 
frequencies of rings, parentheses, and partial arrays at the secretory sites were 
determined. 

TEM: Wild type cells in either Ca 2+ or Mg 2+ buffer were fixed with a 
mixture of PA and OsO4 for 20-30 s, rinsed with 2% glutaraldehyde, then fixed 
with 2% glutaraldehyde for 30-60 rain, followed by postfixation with 1% OsO4 
for 20-60 min. Cells exposed to 15 ~tM ionophore and 5 mM Ca 2+ were "quick" 
fixed with OsO4 for 20-30 s, followed by fixation with glutaraldehyde and 
postfixation with OsO4. DMSO (ionophore solvent) precipitated upon addition 
of OsO4; rinsing with glutaraldehyde removed the precipitate. Cells were ex- 
amined under both conditions. 

Samples were dehydrated in a series of increasing concentrations of ethanol 
(30-100%), stained en bloc with 2% uranyl acetate, and embedded in Epon. 
Blocks were thin sectioned with a Reichert microtome, stained with 1% uranyl 
acetate (aqueous) and lead citrate, and examined in either Siemens l01 or Jeol 
100-CX electron microscopes. 

RESULTS 

Quantita tion of Secretion 

Fig. 1 illustrates the secretory response of three different 
cell types (wt 27"C; nd 9 27°C, nonpermissive; nd 9 18°C, 
permissive) under three different conditions. Stimulation by 
saturated PA in the presence of 15 mM MgC12 induced release 
of very few tmx (Fig. l, a-c). However, in the presence of 15 
mM CaCI2, PA induced both wt 27"C and nd 9 18°C cells to 
release tmx (Fig. 1,d and f) ,  in contrast with nd 9 27°C cells, 
which released very few, if any tmx (Fig. 1 e). Addition of 
divalent cation ionophore A23187 in the presence of Ca 2÷ 
appears to cause all three cell types to release tmx (Fig. 1,g- 
i) as observed in a previous study (28). Comparison of the 
response is limited by this approach. The response was there- 
fore quantitated to elucidate: (a) differences between wt cells 
and secretory mutants, and (b) differences between PA and 
A23187 as secretagogues. 

Experiments were performed to determine (a) if the number 
oftmx released by Paramecium depends upon cultural growth 
phase, and (b) if secretion in wt cells is affected by the growth 
temperature (18 vs. 27"C). Table I shows that the number of 
tmx released by cells in different growth phases varies some- 
what, but the variations are not consistent. The mean number 
oftmx released per cell for each cell type ranges from 271 to 
280. Undisturbed wt cells tested directly from a culture flask 
release 393 +_ 25 (n = 12) tmx per cell when stimulated with 
PA. This suggests that ~30% of trichocysts available for 
secretion are lost during centrifugation and rinsing. 

Table I also shows that the number of tmx released by wt 
cells is independent of growth temperature and that the nd 9 
mutant grown at the permissive temperature releases as many 
tmx as wt cells grown at 18 or 27"C. Since the number of 
released tmx is independent of the growth phase, late log or 
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FIGURE 1 Secretory responses of wt and ts mutant cells are shown here in phase-contrast micrographs. The cell type is indicated 
at the head of each column and the conditions of stimulation to the left of each row. All three cell types in the presence of 15 
mM MgCI2 do not secrete in response to the standard secretagogue, saturated picric acid (PA) (a, b, c). When Ca 2÷ (15 mM) is 
substituted for Mg 2+, wt and nd 9 18°C (permissive) cells secrete in response to PA (d, f); nd 9 27*C (nonpermissive) cells do not 
secrete under identical conditions (e). The secretory product, expanded trichocyst matrices (tmx), appears as a halo of needles 
surrounding the cell. Ionophore A23187 (40 ~.M) in the presence of 15 mM CaCI2 induces the release of secretory product from 
all three cell types (g, h, i). Bar, 25/~m; x 380. 

early stationary phase cells were routinely used to obtain 
greater densities of  cells. In addition, wt cells grow much faster 
at 27°C, so mutant cells grown at 18 or 27"C were compared 
directly to wt 27"C cells. 

The observation that nd 9 27"C cells respond to A23187, 
but not to PA (Fig. lh vs. le) suggests that PA and A23187 
induce secretion via different mechanisms. The mutation in 
nd 9 cells interferes with one mechanism, but not the other. 
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The responses of  mutant and wt cells to the two secretagogues 
under different ionic conditions are compared in Table II. 

As shown by light microscopy (Fig. 1,g-i), A23187 in the 
presence of Ca 2÷ induced a significant secretory response in 
all three cell types, while the i0nophore solvent DMSO, in 
the presence of  Ca 2÷, did not induce significant secretion. 
Table II also confirms the previous report (28) that A23187- 
induced secretion was dependent upon extracellular Ca 2÷ 



TABLE I 

Secretion* as a Function of Growth Phase and Temperature 

Cultural  growth 500 cel ls /ml  2,000 cel ls /ml  5,000 cel ls/ml Average for all 

phase (early log) (mid-log) (stationary) growth phases 

w t  270C 262 -+ 20* 284 _+ 16' 301 _+ 26* 280 _+ 12' 
n = 16 s n = 12 n = 12 n = 4 0  

w t  18°C 303 _+ 21 '  229 _+ 19 298 _+ 28* 275 _+ 14' 

n =  12 n =  13 n =  12 n = 3 7  
nd 9 18°C 302 _+ 22* 264_+ 15' 235 _ 22 271 + 13'  

n = 1 8  n =  12 n =  13 n_+43  

"Stimulated with saturated PA in the presence of 15 mM CaCIz expressed as mean number of tmx per cell _ SEM. 
* These values are not significantly different. 
s n is the number of cells scored. 

TABLE II 

Secretion* as a Function of Secretagogue and Cation 

PA-Ca 2+ A23187*-Ca 2+ A23187-Mg 2+ DMSOS-Ca 2+ 

nd 9 27°C  0.2 _ 0.1 127 _+ 9 0.3 _ 0.2 1.2 + 0.6 

(nonpermissive) n = 12 n = 19 n = 35 n = 12 
nd 9 18°C 271 _+ 13 201 _ 18 6 . 7 +  1.9 5.4_+ 1.8 

(permissive) n = 43 n = 12 n = 15 n = 12 
wt 27°C 280_+ 12 235___ 18 3.6-+ 1.4 3 .0 -+0 .6  

n = 4 0  n = 1 2  n = 1 8  n = 1 4  

* Expressed as mean number of tmx per cell - SEM. 
* Final concentration: 27 #M A23187, 2.7% DMSO (solvent). 
s Final concentration: 2.7% DMSO. 

because no significant secretion occurred when Mg 2+ was 
substituted for Ca 2÷. However, A23187-Ca 2÷ induced signifi- 
cantly less (P<  0.05) secretion in wt 27"C and nd 9 18"C cells 
than did PA-Ca 2÷. These two cell types consistently secreted 
the same number oftmx under the same conditions. Although 
A23187-Ca 2÷ induced nd 9 27"C cells to release tmx (Fig. 1 h), 
the response was significantly less (P < 0.01) than the response 
ofnd 9 18°C or wt 27"C cells to A23187-Ca 2÷. Cells stimulated 
with A23187-Ca 2* were next examined with FEM in order to 
obtain more information about quantitative differences in 
their secretory response. 

Quantitation of Particle Arrays in Freeze Fracture 
Trichocysts docked in place under the cell membrane are 

represented in FEM by tings of intramembrane particles 
(IMP); unoccupied sites (no docked trichocysts) are recog- 
nized by parentheses of IMP (4). Fig. 2 shows the P fracture 
face of the plasma membrane of a wt cell, and demonstrates 
the tings and parentheses that are associated with occupied 
and unoccupied secretory sites, respectively. The 9-11 larger 
particles in the center of each ring constitute the rosette; nd 9 
27"C cells have rings, but incomplete or missing rosettes. Cells 
that have been stimulated to secrete are expected to show a 
decrease in the frequency of occupied sites (rings) and no 
immediate change in the frequency of unoccupied sites (pa- 
rentheses). 

Quantitation of particle arrays at the secretory site is sum- 
marized in Table III. Unstimulated wt and nd 9 cells grown 
at either temperature showed statistically the same frequency 
for each type of array, nd 9 27°C cells have 1-6 particles per 
rosette, while nd 9 18"C and wt cells have 9-11 particles, as 
shown earlier (4). A significant reduction in the frequency of 
rings was observed in wt cells stimulated with A23187 (15 
uM) and Ca 2+ (5 mM) for 3 min, indicating a decrease in the 
number of docked trichocysts after release of tmx. As ex- 

pected, the frequency of parentheses (representing unoccupied 
secretory sites) remained unaffected by stimulation of exocy- 
tosis, but the frequency of partial arrays, representing sites 
where exocytosis recently occurred (20), increased signifi- 
cantly. Therefore, the FEM results confirm and extend the 
quantitative light microscopic results with regard to wt 27"C 
cells. 

Glutaraldehyde and Ca 2+ induce secretion in wt but not in 
nd 9 27"C cells (21). FEM of wt and nd 9 18*C cells fixed in 
the presence of l0 mM Mg 2÷ to inhibit glutaraldehyde-in- 
duced secretion suggest that Mg 2÷ inhibits membrane fusion 
because the frequency of partial arrays is very low (Table III). 
The frequency of rings in Mg2+-inhibited cells was identical 
to the frequency of tings in the secretory mutant grown at the 
nonpermissive temperature. Assuming that all cells have the 
same number of cortical units, the quantitative differences in 
secretory response demonstrated in Table II cannot be due to 
differences in number of trichocysts available for secretion. 

Freeze-fracture replicas of nd 9 27"C cells stimulated with 
A23187-Ca 2+ appear quite different from those of wt or nd 9 
18*C cells. The frequencies of particle arrays could not be 
determined and the appearance of the plasma membrane will 
be discussed in a later section. TEM observations of secretion 
in wt and mutant cells, presented next, will elucidate these 
differences and provide further evidence of the specific inhib- 
itory effects of Mg 2+. 

Electron Microscopy of PA-induced Secretion 

Fig. 3 a shows a resting trichocyst tip (u) closely apposed to 
the plasma membrane (pro). The organelle is completely 
surrounded by a membrane (tin). A continuous system of 
alveolar sacs (subsurface cisterns, 29) lies under the plasma 
membrane penetrated by trichocysts and cilia. The trichocyst 
matrix is divided into body and tip, both consisting ofdensdy 
packed material with transverse striations of 7 nm (body) and 
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FIGURE 2 A portion of a freeze-fracture replica of a wt cell illustrates two distinct particle arrays found on the protoplasmic face 
of Paramecium plasma membranes. Both particle arrays, rings (circled), and parentheses designate secretory sites, but rings are 
characteristic of secretory sites with docked trichocysts, whereas parentheses mark unoccupied sites. This distinction permits 
quantitation of occupied and unoccupied sites in cells before and after secretion (see Table III). Rosettes of 9-11 large particles 
are located in the center of the rings. The secretory sites typically occur between cross-fractured cilia (ci) and each cilium is 
associated with an endocytic site (parasomal sac, ps). Bar, 0.5 t~m; x 40,960. 

TABLE III 
Frequency of Particle Arrays at the Trichocyst Docking Site 

Rings Parentheses Partial arrays Total sites 
% % % 

nd 9 27°C * (nonpermissive) 73 23 4 290 
nd 9 18"C* (permissive) 75 19 6 52 
wt 27°C * 78 15 7 189 
wt 27°C + A23187 and Ca 2÷ 4 20 64 s 79 

* Fixed in the presence of 10 mM CaCI2. 
* Fixed in the presence of 10 mM MgCI2. 
! 9% early fusion sites and 3% crossfractured tmx were found in addition to the particle arrays. 

15 nm (tip) periodicity (2, 13). The tip retains its 15-nm 
periodicity after expulsion from the cell, whereas the body 
has been observed in two states of  expansion (2, 9, 13). In 
unstimulated cells, the trichocyst body is observed in the 
condensed state (Stage I) as in Fig. 3 a. Fixation for electron 
microscopy may induce partial expansion to an electron- 
lucent state (Stage II), while the fully expanded state with 60- 
nm transverse striations (Stage III) is normally only observed 
outside the cell following secretion. 

Fusion of  the plasma and trichocyst membranes results in 

the formation ot ~ a narrow tubular connection between the 
extracellular environment and the content of  the trichocyst 
(12). Fig. 3,b-d show an example from a wt cell induced to 
secrete with picric acid and Ca 2+. In this case, membrane 
fusion occurred before tmx expansion. Fig. 3 b shows fusion 
(arrows) of  the plasma and trichocyst membranes, forming a 
tubular opening 22 nm in diameter. (The diameter of  a rosette 
is 75 nm.) Fig. 3c shows the fused membranes in a section 
serial to Fib. 3 b and the outer opening of  the tube is cut 
obliquely (arrow). Fig. 3 d is a low-power micrograph of this 
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FtGure 3 A trichocyst docked at the plasma membrane (pro) is shown in an unstimulated nd 9 18°C cell (a). Trichocysts interrupt 
the continuous alveolar sac system (alveolar membrane, am). The secretory organelle consists of a body (trichocyst body, tb) and 
tip (trichocyst tip, tt) and is surrounded by a membrane, (trichocyst membrane, tin). In a wt cell stimulated with PA and Ca 2+, 
quick fixation with OsO4 captures an early image of fusion of the trichocyst and plasma membranes (arrows, b). In a serial section, 
the tubular opening resulting from membrane fusion is cut obliquely (arrow, c); the diameter of the tube is ~22 nm. At low 
magnification it can be seen that the body of this trichocyst is in Stage l, and has not yet undergone expansion (arrow, d). In a 
later stage of exocytosis the fused membranes of the tubular opening are pushed further apart (arrowheads, e) by the exiting 
(now Stage II) trichocyst matrix. (a) Bar, 0.1 ~m; x 75,900; (b and c) Bar, 0.1 ~m; x 181,500; (d) Bar, 0.25/~m; x 32,000; (e) Bar, 
0.1 #m; x 88,000. 

trichocyst demonstrating that the body is still condensed 
(Stage I, arrow), which suggests that membrane fusion may 
occur before tmx expansion in vivo. Fig. 3 e shows a subse- 
quent stage of secretion in which the tube formed by the fused 
membranes has widened (arrowheads) as the trichocyst tip is 
forced outward by the expanding trichocyst body. 

Mg 2+ inhibition of PA-induced secretion (Fig. l ,a  and c) 
has been examined in greater detail with TEM. In general, 
cells fixed in the presence of Mg 2+ and PA show docked 
trichocysts in Stage I (condensed matrix) without fusion of 
plasma and trichocyst membranes. This suggests that Mg 2+ 

inhibits membrane fusion, in agreement with the FEM data 
just presented. Membrane fusion is observed only rarely under 
these conditions, but even then tmx expansion may be inhib- 
ited (Fig. 4). This is consistent with in vitro observations that 
high Mg 2+ does not promote expansion of isolated trichocyst 
matrices (5). These TEM observations lead us to suggest that 
in vivo Ca 2÷ has roles in both membrane fusion and tmx 
expansion because Mg 2+ does not substitute for Ca 2÷ in either 
process. In addition, the examples presented in Figs. 3 and 4 
lead us to suggest that tmx expansion is not a prerequisite for 
membrane fusion to occur. 
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are continuous (open arrow) at the exocytic opening and the 
trichocyst membrane is being internalized (arrowheads) as 
earlier demonstrated (12). For comparison, Fig. 5b shows 
internalization oftrichocyst membrane after PA-Ca 2÷ induced 
exocytosis. 

Quick fixation of cells during A23187-Ca 2÷ induced exo- 
cytosis yields a DMSO-OsO4 precipitate on the momentarily 
continuous plasma and trichocyst membranes (see Materials 
and Methods). This precipitate marks sites of exocytic events 
as in Fig. 5c (arrows). The absence of precipitate within the 
cytoplasm or alveolar sacs demonstrated the continued integ- 
rity of the plasma membrane during the exposure to A23187- 
Ca 2÷ and the subsequent release of tmx. 

If these sites of recent exocytosis could be found in mutant 
cells stimulated with A23187-Ca 2÷, then the released tmx 
observed with light microscopy were probably secreted via 
normal exocytosis (membrane fusion), nd 9 18*C cells do 
show sites of membrane fusion and recent exocytosis follow- 
ing exposure to A23187-Ca 2÷, whereas these sites are not 
found in nd 9 27"C cells. 

FIGURE 4 Wild type ceils in the presence of 10 mM Mg 2÷, quick 
fixed with OsO4 following PA stimulation, occasionally exhibit 
fusion of plasma membrane (pro) and trichocyst membrane (tm), 
but without expansion of the trichocyst matrix. Bar, 0.1 ~m; x 
168,000. 

Wild Type Cells Electron Microscopy of A23187- 
Ca2+-induced Secretion 

Ionophore A23187 (15 ~M) and Ca 2+ produced asynchro- 
nous discharge of tmx without killing the cells. Cells fixed 
shortly after exposure to A23187-Ca 2+ exhibited several stages 
of exocytosis. In contrast, PA or high concentrations of 
A23187 (40 #M) in the presence of Ca 2+ caused synchronous 
discharge of tmx and cell death. Fig. 5,a and c show two 
stages of normal exocytosis in wt cells exposed to 15 ~M 
A23187 and Ca 2÷. Fig. 5a shows a Stage III tmx captured as 
it is leaving the cell. The plasma and trichocyst membranes 

Mutant Cells Grown at the Nonpermissive 
Temperature 

A common observation of nd 9 27"C cells treated with 
A23187 (15 #M) and Ca 2÷ (5 mM), is shown in Fig. 6a. The 
body of this trichocyst (not shown) has expanded to Stage II 
and the entire trichocyst is pushing upward, extending the 
plasma membrane. Fusion of trichocyst and plasma mem- 
branes has not taken place, as shown by others (17). Light 
microscopy does not reveal this aspect of the tmx discharge 
and without fixation for electron microscopy this tmx would 
proceed to Stage III and extend much further out of the cell 
(Fig. lh). 

Freeze-fracture images of nd 9 27°C cells exposed to 
A23187-Ca 2+ differ considerably from those ofwt cells under 
the same conditions. Fig. 6b shows an expanded tmx attempt- 
ing to leave the cell. It stretches the cell membrane into a 
fingedike projection. The rest of the cell surface no longer 
presents the usual cortical organization and even cilia cannot 
easily be recognized, perhaps due to the plasma membrane 
being pulled up by the expanding tmx. 

Fig. 6c shows a rare observation of membrane fusion in an 
nd 9 27°C cell exposed to A23187-Ca 2÷. The plasma mem- 
brane has fused with the trichocyst membrane and the content 
of the trichocyst is beginning to move out of the cell. It is not 
surprising to find this image occasionally because this mutant 
is "leaky" and may secrete 1-5 tmx in response to PA-Ca 2+. 
However, TEM and FEM studies of A23187-Ca2+-induced 
secretion in nd 9 27°C cells suggest that in general these cells 
are incapable of membrane fusion at the secretory site, even 
when Ca 2÷ is made available intracellulady via A23187. 

DISCUSSION 

Dissection of the Roles  for Ca 2+ 

The diagram in Fig. 7 depicts some of the Ca2+-dependent 
events in trichocyst secretion and illustrates our beginning 
dissection of these events. Fig. 7a shows a docked trichocyst, 
as found in nd 9 and wt cells grown at 18°C and 27°C (see 
Fig. 3a). The trichocyst matrix is in Stage I and plasma and 
trichocyst membranes are not fused since exocytosis has not 
been triggered. 
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FIGURE 5 A fully expanded (Stage III) trichocyst matrix (tmx) is captured by quick fixation just as it is leaving the secretory site 
in a wt cell stimulated with 15/~M A23187 in the presence of Ca 2+ (a); alveolar sacs, air. The "ghost"of trichocyst membrane (tin) 
and trichocyst coat (tc) marks a site of recent exocytosis in a wt cell stimulated by PA (b); the trichocyst membrane is now 
separated from the plasma membrane (pro) and there are many filaments (/) and vesicles (arrowheads) associated with this site of 
membrane turnover. Wild type cells stimulated with A23187-Ca 2÷ may exhibit sites of trichocyst membrane coated with a DMSO- 
OsO4 precipitate (arrows, c) representing a region that was once continuous with the plasma membrane (pro). These sites were 
used to determine whether normal exocytosis occurred in mutant cells after exposure to A23187-Ca 2÷. (a) Bar, 0.5/~m; x 20,750. 
(b) Bar, 0.25 ~m; x 70,950. (c) Bar, 0.5 ~m; × 48,100. 
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FIGURE 6 Mutant cells grown at the nonpermissive temperature (lacking rosettes) stimulated with 15 #M A23187 and 5 mM 
Ca 2+ mainly exhibit trichocyst matrix expansion without membrane fusion as in (a) thin section and (b) freeze fracture. The matrix 
of the trichocyst in (a) has expanded to stage II (not shown) and the trichocyst tip (tt) is forcing its way out of the cell pushing up 
the plasma membrane (pro) without distorting the alveolar membrane (am). In FEM, a replica of the protoplasmic face (PF) of the 
plasma membrane shows an expanding trichocyst matrix pulling plasma membrane with it away from the cell (b). Fusion of 
plasma and trichocyst membranes (tin) is occasionally seen in nd 9 27°C cells stimulated with 15 ~.M A23187 and Ca 2+, and an 
example of this is shown in (c). (a) Bar, 0.25 #m; x 78,000. (b) Bar, 0.5 #m; x 28,000. (c) Bar, 0.1 #m; x 120,000. 

FIGURE 7 Ca2+-dependent events of trichocyst se- 
cretion are summarized in this diagram, which shows 
a dissection of the roles for Ca 2+. A trichocyst docked 
between the alveolar sacs (a/v) in an unstimulated cell 
does not exhibit fusion of plasma membrane (pro) and 
trichocyst membrane (tin) and the trichocyst matrix is 
in Stage I (a). PA-Ca 2÷ or A23187-Ca 2+ induces both 
membrane fusion and tmx expansion in wt and nd 9 
18°C cells which both possess assembled rosettes (b). 
In contrast, A23187-Ca 2÷ induces tmx expansion with- 
out membrane fusion in nd 9 cells grown at 27°C 
(lacking rosettes) (I 7). Wild type cells stimulated with 
PA in the presence of Mg 2÷ generally do not show 
membrane fusion, but when fusion does occur (via 
residual Ca 2+) Mg 2÷ fails to induce tmx expansion (d). 
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In Fig. 7b, membrane fusion and tmx expansion are de- 
picted simultaneously, as found in the case ofwt or nd 9 18"C 
cells stimulated with A23187-Ca 2+. The trichocyst body is 
shown in a partially expanded state consisting of Stages I-II- 
III, from the base towards the tip. In vivo the tmx may expand 
in this sequential manner and such images can be captured 
with fixation (9). 

Under the conditions in Fig. 7b it is not possible to separate 
the effects of Ca 2+ on membrane fusion vs. tmx expansion. 
However, we have succeeded in separating tmx expansion 
from membrane fusion as shown in Fig. 7,c and d using a 
secretory mutant and Mg 2+. When nd 9 27"C cells (rosette 
missing) are stimulated with A23187 and Ca 2+ (Fig. 7c), tmx 
expansion occurs because Ca 2+ reaches the trichocyst matrix, 
but membrane fusion does not take place. This event in the 
mutant cell has been called "pseudoexocytosis" (17). How- 
ever, this phenomenon is not unique to the mutant, but can 
be seen occasionally in wt cells. In wt cells it is likely that 
pseudoexocytosis occurs because Ca 2+ reaches the tmx before 
assembly of a complete rosette. 

Satir and Oberg (28) used A23187 to raise the intracellular 
Ca 2+ concentration in nd 9 27"C cells to determine if an 
increase of cytoplasmic Ca 2+ per se would cause exocytosis in 
mutant cells lacking assembled rosettes. Their light micro- 
scopic observations suggested that nd 9 27"C cells secrete in 
response to A23187 in a Ca2+-dependent manner, with no 
appreciable secretion in the presence of Mg 2+. They hypoth- 
esized that the rosettes normally act as Ca 2+ gates or channels 
regulating site-specific Ca 2÷ concentration. In the mutant 
lacking rosettes the addition of A23187 and Ca 2+ would then 
phenocopy the function of the rosette. 

In wt or nd 9 18*C cells, where docked trichocysts have 
complete rosettes, certain membrane events may be bypassed 
by A23187-Ca 2+ and true exocytosis will still result (Figs. 5 
and 7b). It is sufficient, therefore, to raise the intracellular 
Ca 2+ concentration in order to achieve both membrane fusion 
and tmx expansion when all components are normal. How- 
ever, in the case of nd 9 27"C cells, where docked trichocysts 
have incomplete rosettes (4), raising the intracellular (and 
intratrichocyst) Ca 2+ via A23187 is only sufficient to achieve 
tmx expansion, but not sufficient to achieve membrane fu- 
sion. A23187 floods the cell with Ca 2+ leading to premature 
expansion of trichocyst matrices without concomitant fusion 
of the plasma and trichocyst membranes. This suggests that 
the molecules represented by rosette panicles are necessary 
for membrane fusion. The possibility that rosettes also func- 
tion as Ca ~÷ gates cannot be ruled out by these results. 

Mg 2+ Inhibition of Secretion 
By incubating wt and nd 9 18"C cells in Mg 2÷, we are able 

to inhibit PA-induced secretion (Fig. 1,a and c) and elicit a 
response identical to the PA-Ca 2÷ response of nd 9 27"C cells 
(Fig. 1, e). Whether Mg 2+ is inhibiting membrane fusion, tmx 
expansion, or both cannot be determined from the light 
microscopic observation alone. 

Our TEM and FEM results suggest that Mg 2÷ inhibits PA- 
induced secretion at the level of membrane fusion. Wild type 
cells fixed in the presence of Mg 2÷ and PA generally do not 
show fusion of plasma and trichocyst membranes in TEM. 
Wild type and nd 9 18"C cells fixed with glutaraldehyde in 
the presence of 10 mM Mg 2÷ in FEM contain statistically the 
same frequency of "docked" trichocysts (estimated by rings, 
Table III) as nd 9 27"C cells, which we know are blocked in 

membrane fusion. When membrane fusion does occur with 
significant frequency (as in wt cells exposed to A23187-Ca 2÷, 
Table III) the frequency of rings is decreased significantly. 
This suggests that glutaraldehyde-induced trichocyst release is 
blocked by Mg 2÷ at the level of membrane fusion. Extracel- 
lular Mg 2÷ apparently inhibits secretion such that wt and nd 
9 18"C cells have the same frequency of rings in FEM as nd 
9 27"C cells. 

Ionophore A23187 transports Ca 2÷ or Mg 2÷ across lipid 
bilayers resulting in a net movement of ions down their 
concentration gradient (19). Since membrane fusion requires 
Ca 2÷ and normally precedes tmx expansion, the ability of 
Mg 2÷ to promote tmx expansion in vivo can be assayed by 
using A23187 to bypass the normal sequence of events. Mg 2÷ 
has been shown to inhibit A23187-induced secretion in 
Tetrahymena thermophila (32). Quantitatively, A23187-Mg 2÷ 
induces very little tmx expansion in contrast with A23187- 
Ca 2÷ in wt and nd 9 cells (Table II). In the presence of 10-15 
mM Mg 2÷, A23187 may be releasing Ca 2÷ from internal sites, 
allowing low levels of secretion to occur (1-10 tmx per cell) 
but clearly, flooding the cell (and trichocysts) with Mg 2÷ does 
not induce tmx expansion as does A23187-Ca 2÷. 

Thus, Mg 2÷ has provided another separation oftmx expan- 
sion and membrane fusion in Paramecium; that is, membrane 
fusion without trichocyst matrix expansion. This separation, 
diagrammed in Fig. 7d, was achieved by incubating wt cells 
in Mg 2÷ instead of Ca 2÷ and stimulating exocytosis with PA. 
Although extracellular Mg 2÷ generally inhibits both mem- 
brane fusion and tmx expansion, in a few instances membrane 
fusion is observed, but without concomitant tmx expansion. 
From this morphological dissection of secretion in Parame- 
cium we conclude that Mg 2÷ in vivo (a) inhibits membrane 
fusion and (b) inhibits trichocyst matrix expansion and there- 
fore Ca 2÷ has a role in both membrane fusion and tmx 
expansion in vivo. 

Quantitation of Secretion by LM 
Electron microscopic observations of the secretory re- 

sponses ofwt and mutant cells suggest possible interpretations 
of the observed quantitative light microscopic differences. 
Pseudoexocytosis may explain the lower number of tmx 
counted when nd 9 27"C cells are stimulated with A23187- 
Ca 2÷ as compared with nd 9 18"C cells (Table II). Reduced 
levels are also observed in wt and nd 9 18"C cells stimulated 
with A23187 vs. PA. This may be due to an inefficiency in 
the "bypass" mechanism of A23187, which floods the cell 
with Ca 2÷, vs. the normal mechanism of stimulating exocy- 
tosis, which is local and site specific. 

The numbers oftmx released by the three cell types at three 
different stages of culture growth in response to PA-Ca 2÷ are 
remarkably similar (Table I) and consistent with the obser- 
vation that phospholipids of bacterized P. tetraurelia do not 
change with culture age (1). Wohlfarth-Bottermann (33) 
found that Paramecium caudatum released ~300 tmx and 
only at much later stages of cultural growth (~  15 d) after 
repeated stimulation with electric shock did he find up to 
3,000 tmx released per cell. The maximum response observed 
in our PA assay was 393 tmx, which correlates well with 
electric shock-induced release for the same age culture of P. 
caudatum. 

An important finding is that nd 9 cells grown at 18"C 
(permissive temperature) release the same number of tmx as 
wt cells when stimulated with either PA or A23187 (Table II). 
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If nd 9 cells do have an altered gene product at 18"C, as 
suggested by Beisson et al. (3), then at this temperature it is 
working as efficiently as the normal gene product in wt cells. 
The observation that two cell types release significantly fewer 
tmx when stimulated by A23187-Ca 2÷ than when stimulated 
by PA-Ca 2+ demonstrates that quantitative differences in se- 
cretory response can be detected by our technique. 

Biochemical Role of Ca 2+ in Secretion 

The molecular mechanisms whereby Ca 2+ promotes mem- 
brane fusion and tmx expansion have not yet been elucidated. 
We are currently investigating the biochemical role of  Ca 2+ 
in stimulus-secretion coupling, and the ultrastructural data 
presented here are the basis for interpretation of our biochem- 
ical studies. A molecule that is likely to be involved is cal- 
modulin. Calmodulin, a 17,000-M~, Ca2+-dependent regula- 
tory protein, has been detected in P. tetraurelia (15). Calmo- 
dulin antagonists trifluoperazine (30) and W7 (9) inhibit PA- 
induced secretion in wt P. tetraurelia. One of the effects of  
trifluoperazine when studied in TEM is to prevent expansion 
of the trichocyst matrix (7) and this effect can be partially 
reversed by the addition of A23187-Ca 2+ (8, 9). Calmodulin 
has been isolated from expanded tmx (23) and therefore may 
be involved in Ca2+-dependent tmx expansion. 

Some of the conditions that stimulate or inhibit secretion, 
as described morphologically and quantitatively in this paper, 
have been examined with regard to protein phosphorylation 
and dephosphorylation (11). We have recently shown that 
PA-Ca 2+ induces wt cells to dephosphorylate a 65,000-M~ 
phosphoprotein. This dephosphorylation can be blocked by 
incubating cells in Mg 2+ instead of Ca 2÷ which, as shown here, 
inhibits both membrane fusion and tmx expansion. In addi- 
tion, the ts secretion of nd 9 cells is correlated with ts dephos- 
phorylation of the 65,000-Mr phosphoprotein in response to 
PA-Ca 2÷. Further ultrastructural and biochemical studies 
should enable clarification of the roles of Ca 2+, rosettes, and 
the 65,000-Mr phosphoprotein in secretion in Paramecium. 

The data in this paper are from a thesis by D. M. Gilligan to be 
submitted in partial fulfillment for the degree of Doctor of Philosophy 
at the Sue Golding Graduate Division of Medical Sciences, Albert 
Einstein College of Medicine, Yeshiva University, New York. 
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