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Abstract

Wolbachia are endosymbionts found in many insects with the potential to sup-

press vectorborne diseases, particularly through interfering with pathogen trans-

mission. Wolbachia strains are highly variable in their effects on hosts, raising the

issue of which attributes should be selected to ensure that the best strains are

developed for disease control. This depends on their ability to suppress viral

transmission, invade host populations, persist without loss of viral suppression

and not interfere with other control strategies. The potential to achieve these

objectives is likely to involve evolutionary constraints; viral suppression may be

limited by the ability of infections to spread due to deleterious host fitness effects.

However, there are exceptions to these patterns in both natural infections and in

novel associations generated following interspecific transfer, suggesting that path-

ogen blockage, deleterious fitness effects and changes to reproductive biology

might be at least partly decoupled to achieve ideal infection attributes. The stabil-

ity of introduced Wolbachia and its effects on viral transmission remain unclear,

but rapid evolutionary changes seem unlikely. Although deliberate transfers of

Wolbachia across species remain particularly challenging, the availability of

strains with desirable attributes should be expanded, taking advantage of the

diversity available across thousands of strains in natural populations.

Introduction

There is currently a high level of interest in using Wolba-

chia to indirectly suppress the incidence of vectorborne

human diseases such as malaria, dengue fever or filariasis

(McGraw and O’Neill 2013; Sinkins 2013; Bourtzis et al.

2014), or plant diseases caused by mosaic viruses and

other disease agents (Box 1). Wolbachia are endosymbi-

otic bacteria living in all orders of insects and in other

invertebrates. They are often promoted as a ‘natural’ way

of manipulating insect hosts, in contrast to other

approaches for manipulating vector biology, particularly

through genetic modification, that are often regarded

with suspicion because they involve novel constructs that

are not present in the environment with the potential to

spread to other nonvector species. While Wolbachia are

already widespread in the environment, they are

restricted to living exclusively within host cells and

spread by changing the biology of their host species

(O’Neill et al. 1997).

Wolbachia can be used in a variety of ways for disease

suppression, by decreasing the size of a vector population

through (i) the release of Wolbachia-infected males that are

incompatible with females (O’Connor et al. 2012) or (ii)

the invasion of aWolbachia strain that produces deleterious

fitness effects particularly under seasonally variable envi-

ronments (Ra�si�c et al. 2014a), and particularly by (iii)

decreasing the ability of the vector population to transmit

diseases through the invasion of a Wolbachia strain that

interferes directly with transmission (Teixeira et al. 2008;

Kambris et al. 2009; Moreira et al. 2009; Walker et al.

2011). The third option is considered particularly promis-

ing because it may not require ongoing management by

health authorities; once a Wolbachia strain blocking disease

transmission has invaded a target vector population by

altering host reproduction, the Wolbachia strain should

stay at a high frequency in that population without further

releases being required (Hoffmann et al. 2011). It is also

important to note that the three strategies are not mutually

exclusive but rather complementary.
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Despite the promise held by Wolbachia-based disease

suppression programmes particularly for viral diseases

spread by mosquito vectors (Box 1), there are still substan-

tial challenges in their widespread deployment. In particu-

lar, strains of Wolbachia for release need to be carefully

selected and evaluated to ensure long-term viability of the

strategy in the face of ongoing evolutionary changes, and to

meet any regulatory and community concerns. In this

study, we focus on these issues, using information that has

been collected on insects naturally infected with Wolbachia

and on artificial introductions ofWolbachia into new hosts.

We consider the development of strains and host back-

grounds that combine desirable attributes for disease sup-

pression with those required for rapid invasion into target

vector populations, as well as the likely long-term evolu-

tionary stability of effects generated by Wolbachia in these

populations. Much of the information we discuss comes

from research in Drosophila species where Wolbachia infec-

tions have been investigated within an evolutionary and

ecological context since the early 80s, and where a large

number of infections have been transferred across species

to investigate the interaction and evolution of host and

Wolbachia genomes.

Diversity of Wolbachia and their effects

There is an enormous diversity of Wolbachia strains in nat-

ure. DNA sequence data have been used to demonstrate the

presence of multiple Wolbachia variants within the same

individual host, the presence of variation among Wolbachia

sequences collected from different conspecific individuals,

and molecular changes in the same Wolbachia infection

when it is transferred to different host species. Most molec-

ular comparisons have focussed on describing variation in

Wolbachia infections across related species to characterize

patterns of horizontal and vertical transmission of infec-

tions across time (e.g. Bing et al. 2014; Morrow et al.

2014), using sets of conserved primers for a series of genes

such as the MLST set (Baldo et al. 2006). Many studies

have used primer sets to demonstrate variation in Wolba-

chia strains within the same host. An example of a species

carrying a complex of infections is the tsetse fly, where 37

different Wolbachia variants have been identified (Symula

et al. 2013). Numerous Wolbachia strains have also been

identified in mosquitoes of the Culex pipiens species com-

plex (Atyame et al. 2011; Morningstar et al. 2012) where

they (rather than the nuclear background) largely control

patterns of cytoplasmic incompatibility (Duron et al.

2006). Variability among Wolbachia within the same host

could arise through recombination and mutation (Klasson

et al. 2009; Atyame et al. 2011), and a new Wolbachia

strain could spread if it has a selective advantage and/or

generates patterns of cytoplasmic incompatibility or other

changes to host reproduction that favour its spread. Hori-

zontal transmission of Wolbachia across hosts such as med-

iated through a parasitoid could also result in the

introduction of a new Wolbachia strain into a host popula-

tion. Once new Wolbachia strains arise, they can displace

existing strains at a rapid rate, as indicated by the replace-

ment of wAu by wRi in Australian populations of Drosoph-

ila simulans (Kriesner et al. 2013), but these types of

replacements are thought to occur very rarely (Richardson

et al. 2012).

Box 1: List of species in which Wolbachia have been
considered from an applied perspective

Human disease vectors

Mosquitoes Target pathogens

Aedes

aegypti

Viruses: dengue, yellow fever, chikungunia, zika,

West Nile

Nematodes: filarial, mermithid

Aedes

albopictus

Viruses: dengue, chikungunia, Eastern equine

encephalitis,

La Crosse, West Nile, Japanese encephalitis

Nematodes: filarial

Aedes

polynesiensis

Viruses: zika, dengue, Ross River

Nematodes: filarial

Culex pipiens

species complex

Viruses: West Nile, Eastern equine encephalitis,

Venezuelan equine encephalitis,

Japanese encephalitis, St. Louis encephalitis,

Ross River, Murray Valley encephalitis, Rift valley

Nematodes: filarial

Anopheles

stephensi

Malaria parasites

Plant disease vectors

Planthoppers Target pathogens

Laodelphax

striatellus

Viruses: barley yellow striate mosaic, Northern cereal

mosaic, maize rough dwarf,

rice stripe tenuivirus, rice black-streaked dwarf,

wheat chlorotic streak

Nilaparvata

lugens

Viruses: rice ragged, grassy stunt

Pests

Moths Hosts

Ephestia kuehniella Grains, flour

Ostrinia scapulalis Beans

Cadra cautella Grains, dried fruits

Fruit flies Hosts

Ceratitis capitata Fruits

Rhagoletis cerasi Fruits

Bactrocera oleae Olive fruits
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The majority of Wolbachia stains have undescribed

effects, having been detected in organisms via molecular

tools (Hilgenboecker et al. 2008; Ahmed et al. 2013) and

not further studied experimentally. Many of these strains

may well have little impact on their host, but nevertheless

persist because of a high fidelity of vertical transmission

from mothers to offspring. Such infections with no appar-

ent phenotypic effects on hosts have been described in Dro-

sophila species (e.g. Hoffmann et al. 1996). Other

Wolbachia strains are likely to have dramatic effects on

their host; the most widespread of these effects is cytoplas-

mic incompatibility, where Wolbachia presence leads to the

death of embryos and sometimes immature offspring when

infected fathers mate with uninfected mothers (or mothers

carrying a different Wolbachia strain). There are also Wol-

bachia infections that cause the death of male offspring

only (male killers) and others that lead to parthenogenetic

reproduction in haplodiploid organisms or feminization of

male offspring (reviewed in O’Neill et al. 1997). Even when

Wolbachia appear to have no phenotypic effects on their

host’s reproduction, they might nevertheless have other

effects that only become evident once appropriate host

challenges are provided; for instance, the viral blocking

activity of Wolbachia strains only became apparent once

infected Drosophila strains were challenged with RNA

viruses (Teixeira et al. 2008; Hedges et al. 2008, Osborne

et al. 2009).

Wolbachia effects exerted on hosts typically fall along a

continuum; for instance, cytoplasmic incompatibility can

range from complete (all offspring die) as in the case of

many Wolbachia infections from mosquitoes (e.g. Rasgon

and Scott 2003), to relatively weak (a small proportion of

offspring die) as in the case of particular Drosophila

infections (e.g. Reynolds et al. 2003). Moreover, the

effects of Wolbachia on hosts can change markedly

depending on environmental conditions and the age of

the insect. Factors, such as the presence of natural antibi-

otics (Clancy and Hoffmann 1998; Lu et al. 2012), tem-

perature extremes (Mouton et al. 2007; Bordenstein and

Bordenstein 2011), the age of the male and female

(Unckless et al. 2009; Tortosa et al. 2010) and interac-

tions among these factors (Mouton et al. 2007; Borden-

stein and Bordenstein 2011), can all influence the density

of Wolbachia in host tissues and host effects such as cyto-

plasmic incompatibility.

Wolbachia density often varies substantially among indi-

viduals under field conditions (e.g. Ahantarig et al. 2008).

This variation could potentially influence the transmission,

fitness effects and expression of cytoplasmic incompatibil-

ity, which has been characterized in detail in Drosophila

populations where variability in cytoplasmic incompatibil-

ity is high (e.g. Turelli and Hoffmann 1995) and in Culex

populations where the variability is low (Rasgon and Scott

2003). However, it is not clear whether the variability

reflects Wolbachia/host genomic variation or environmen-

tally induced variation that might only have a temporary

effect on density and host phenotypes. For instance, when

the wHa infection in D. simulans was tested in multiple

host lines derived from the field, variation in the ovarian

density of the Wolbachia infection among host lines was

maintained for several generations, but was eventually lost

(Correa and Ballard 2012). Therefore, while experimental

studies might indicate a clear correlation between Wolba-

chia density and cytoplasmic incompatibility/deleterious

effects (e.g. Clancy and Hoffmann 1998), it is not clear

whether density variation is necessarily linked to variation

in the Wolbachia genome. Recently, a group of Wolbachia

genes associated with density variation (the Octomom

region) has been identified in the wMelPop strain of

D. melanogaster (Chrostek and Teixeira 2015) and might

provide candidates for affecting density in field samples.

Unpredictable phenotypic effects in new hosts

A substantial number of Wolbachia strains have now been

transferred through microinjection across species bound-

aries, particularly in the genus Drosophila, but also across

genera within and among insect orders (Table 1, Appendix

S1). Successful Wolbachia transfers can be challenging,

although those involving Drosophila species have been

undertaken for some time and have become fairly routine

(e.g. Poinsot et al. 1998; Charlat et al. 2002). Cross-infec-

tion experiments where Wolbachia are artificially trans-

ferred from one species to another have demonstrated

(particularly in Drosophila) that host effects associated with

a particular Wolbachia strain can persist or be modified

after transfer to a new host (e.g. Ikeda et al. 2003; Osborne

et al. 2012; Veneti et al. 2012).

The marked changes in cytoplasmic incompatibility and

other reproductive effects, as well as host fitness effects, are

typified by the wAu infection and lack of fitness effects in

its native host but life shortening following transfer to

D. melanogaster (Chrostek et al. 2014), and the absence of

male killing when Wolbachia from Drosophila innubila are

transferred to D. melanogaster and D. simulans (Veneti

et al. 2012). As another example, wCauA causes cytoplas-

mic incompatibility in its native host, Cadra cautella (Sasa-

ki and Ishikawa 1999), but when transferred to Ephestia

kuehniella, it causes male killing (Sasaki et al. 2002) (see

Appendix S1). There are also several other instances where

shifts in cytoplasmic incompatibility occur whenWolbachia

from one host are transferred to a different species within

the same genus (e.g. Boyle et al. 1993), and clearly, viral

interference will also depend on host effects as reflected by

the limited blockage provided by wAlbB in its native

Ae. albopictus host compared to strong blockage when this
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infection is transferred to Ae. aegypti (Bian et al. 2010) and

other examples (Table 1, Appendix S1).

Desirable attributes of Wolbachia strains for
disease suppression

With many thousands of Wolbachia strains existing in nat-

ure and interacting with host genomes and local environ-

ments in different ways, Wolbachia could be used in a

variety of ways for disease control strategies aimed at sup-

pressing vector populations and directly interfering with

disease transmission. Some important transfers of Wolba-

chia to disease vectors have now been achieved, including

transfers of Wolbachia from Drosophila to Aedes mosqui-

toes for the production of vectors that exhibit shortened

lifespan (McMeniman et al. 2009) and suppression of RNA

viruses and other disease agents (Kambris et al. 2009;

Moreira et al. 2009; Walker et al. 2011). In addition, there

have been successful transfers of Wolbachia from Aedes alb-

opictus to Aedes aegypti to achieve virus suppression (Xi

et al. 2005; Bian et al. 2010). These transfers capture a tiny

fraction of the vast diversity of Wolbachia strains available

in natural populations of insects related to mosquitoes. Yet,

they are already raising questions about how Wolbachia

strains and host backgrounds might be developed for dis-

ease suppression.

Different strain attributes are required by the three

strategies that use Wolbachia to reduce disease transmis-

sion. The simplest requirement is for population suppres-

sion via male release where the main attribute is for

released males to exhibit strong cytoplasmic incompati-

bility when they mate with field females. Released males

also need to be competitive with males from natural pop-

ulations. Competitive ability could be reduced if Wolba-

chia in the release strain directly reduces male

competitive fitness and/or if the host nuclear background

of the release strain has a detrimental effect on male field

competitiveness. At least for Ae.aegypti carrying the wMel

or wMelPop infection, there is no evidence that Wolba-

chia directly reduces male competitive fitness (Segoli

et al. 2014), while Ae. polynesiensis carrying Wolbachia

are also competitive in field releases (O’Connor et al.

2012). Detrimental host nuclear effects might develop if

the release strain evolves and becomes adapted to condi-

tions used for artificial rearing. This can be circumvented

through backcrossing the release strain to field-sourced

material prior to releases taking place, although it may

then be more difficult to rear the strain under the artifi-

cial conditions if adaptation has taken place. Male com-

petitiveness also needs to be high for successful

Wolbachia strategies involving invasion (that utilize dele-

terious fitness effects and viral interference) because

strong cytoplasmic incompatibility is required to drive

the infection into a target population. In addition, several

other attributes will be required for invasion-based

strategies.

Ease of invasion into field populations

To produce disease suppression by interfering with patho-

gen transmission or expressing deleterious fitness effects,

Wolbachia strains need to invade and reach high frequen-

cies in focal populations. In Wolbachia strains that have so

far been introduced into Ae. aegypti populations, cytoplas-

mic incompatibility has been complete or nearly complete

with uninfected target populations (Xi et al. 2005; McMen-

iman et al. 2009; Walker et al. 2011; Yeap et al. 2011),

facilitating invasions. As long as there are no substantial

deleterious effects of the Wolbachia on the hosts and as

long as the infection is transmitted with a relatively high

fidelity, invasion should be possible under strong cytoplas-

mic incompatibility. However, if a focal population is

already infected with a Wolbachia strain that shows bidirec-

tional incompatibility with the release strain, invasion

becomes more difficult. Under bidirectional incompatibil-

ity between two Wolbachia strains with equivalent deleteri-

ous effects on a host, the infection frequency of an

introduced strain has to exceed 50% to achieve invasion

(Hoffmann and Turelli 1997).This situation applies to the

wMel infection introduced into Ae. albopictus (Table 1)

which is bidirectionally incompatible with the naturally

occurring Wolbachia of this species (Blagrove et al. 2012).

Invasion will also depend on other fitness attributes such as

the ability of females carrying the Wolbachia strain to feed

and locate breeding sites and the ability of larvae with the

Wolbachia strain to compete against other conspecific lar-

vae and other species.

Reduced pathogen transmission

For effective suppression of vectorborne diseases (strategy

(iii) from above), Wolbachia strains will need to directly

interfere with pathogen transmission in vector species. In

Aedes mosquitoes, this has often been assessed in labora-

tory-based assays where blood is mixed with virus cultures

to mimic titres that might be found in infected humans

(Moreira et al. 2009). However, it is ideally assessed by

feeding mosquitoes directly on blood from infected

humans and assessing pathogens in tissue through which

transmission occurs, such as the salivary glands and saliva

of mosquitoes (Ferguson et al. 2015).

The ability of Wolbachia to block viruses and other

microbes will depend on the nature of the viruses and

the Wolbachia strains. In Drosophila, it appears that some

types of viruses (DNA viruses in particular) are not

affected by the presence of Wolbachia in host cells,
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whereas RNA viruses appear to be inhibited (Teixeira

et al. 2008). The extent of inhibition varies dramatically

between Wolbachia strains, such that some strains cause a

dramatic reduction of the viral load in the host, whereas

others have little impact (Table 1). In Aedes mosquitoes

where stable Wolbachia infections have been established,

the potential for Wolbachia to block different dengue

virus serotypes and other RNA viruses seems to be high

(Table 1, Appendix S1). The wMelPop infection appears

to be highly efficacious in blocking different dengue sero-

types as well as other arboviruses, at least in laboratory-

based assays (Moreira et al. 2009; van den Hurk et al.

2012). For other Wolbachia infections, particularly wMel

and wAlbB, blockage against dengue serotypes also

appears robust (Bian et al. 2010; Frentiu et al. 2014), but

somewhat weaker than provided by wMelPop (Walker

et al. 2011). Recent data for wMel feeding on blood from

infected human patients also point to strong blockage of

dengue in saliva but show some differences among sero-

types (Ferguson et al. 2015).

Stable effects on hosts

Once a high frequency of infection is reached through

releases and subsequent invasion driven by cytoplasmic

incompatibility and other effects, Wolbachia effects on

hosts and on viral transmission need to be stable, even if

there are evolutionary changes in the virus and/or changes

in the host’s nuclear genome and Wolbachia genome. Data

on the stability of Wolbachia effects following deliberate

introductions are only just starting to emerge (Frentiu

et al. 2014; Hoffmann et al. 2014a), but there is some rele-

vant information from natural Wolbachia infections in

other systems and particularly in Drosophila (Chrostek

et al. 2013). Strategies that utilize the deleterious host

effects associated with Wolbachia infections (strategy ii

from above) also require that such effects remain stable

even when there might be strong selection in the host gen-

ome to counter them.

Evolutionary changes in the host genome

Evolution of host genomes in response to Wolbachia is cer-

tainly possible and is dramatically illustrated by the changes

that nullify male killing by a natural Wolbachia infection in

the butterfly Hypolimnas bolina (Hornett et al. 2006).

Other relevant sources of evidence for such changes include

experimental populations and longitudinal studies of natu-

ral populations.

Phenotypic changes in the expression of Wolbachia

effects due to changes in the host nuclear genome have

been documented in experimental host populations

maintained both with and without deliberate selection

pressures. These include evidence for nuclear-based atten-

uation of wMelPop effects on longevity in D. melanogas-

ter hosts (Carrington et al. 2009) and in the novel host

D. simulans (Carrington et al. 2010). When the wMelPop

infection was transferred from D. melanogaster to D. sim-

ulans, it initially caused large fitness effects such as reduc-

ing fecundity and decreasing longevity as in its native

host (McGraw et al. 2002). However, these effects attenu-

ated quickly (Reynolds et al. 2003), such that wMelPop-

infected D. simulans eventually exhibited an increase in

longevity in some genetic backgrounds (Carrington et al.

2010). In Ae. aegypti mosquitoes, host genome changes

can cause a decrease in deleterious effects of the intro-

duced wMelPop on egg viability (A. Callahan and A. A.

Hoffmann, unpublished data). The impact of host

nuclear genomic backgrounds on virus blocking by Wol-

bachia has not yet been systematically investigated within

either Drosophila or mosquito species. However, because

the upregulation of immune response genes seems to be

restricted to recently transferred infections in mosquitoes

rather than native infections, an eventual decrease in

blockage might be expected, given the likely high cost of

constitutive immune gene expression.

The deliberate release of Wolbachia infections into nat-

ural mosquito populations provides an opportunity to

test for host nuclear responses in natural populations

across a period of a few years. In particular, the release

of wMel into uninfected Ae. aegypti populations in 2011

in two areas around Cairns, Australia (Hoffmann et al.

2011), provided an opportunity to monitor changes in

both the viral interference effect and deleterious host

effect across a three-year time span. These comparisons

have indicated that dengue interference was not altered

within this period (Frentiu et al. 2014) and neither were

fitness effects of Wolbachia on its host (Hoffmann et al.

2014a). Because there is ongoing gene flow into these

populations as inferred from infection frequencies and a

lack of maternal leakage (Hoffmann 2014b), changes in

the nuclear genome due to Wolbachia are only expected

if selection is relatively strong.

Although the host genome can have a substantial effect

on the expression of cytoplasmic incompatibility, deleteri-

ous effects and viral interference, it is not yet clear

whether there will be rapid changes in the host genome

that might affect the success of Wolbachia releases aimed

at disease suppression. The most rapid host changes are

expected in response to any deleterious effects induced

by Wolbachia, whereas selection for altered effects of Wol-

bachia on viral interference should be weak unless the

virus has a particularly large impact on host fitness (in

which case selection would favour ongoing interference

by Wolbachia). The host genome is therefore most likely

to influence the success of a suppression strategy based
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on the expression of deleterious effects following inva-

sion.

Evolutionary changes in the Wolbachia genome

Evidence for possible changes in the Wolbachia genome

comes from analysis of changes in laboratory and natural

populations. In addition, the phenotypic effects associated

with particular Wolbachia strains that are maintained fol-

lowing interspecific transfers (as in the case of the wMelPop

infection following transfer from D. melanogaster to

D. simulans and Ae. aegypti – Table 1) also point to effects

on hosts mediated by the Wolbachia genome rather than

the host genome.

It is still difficult to predict whether genomic changes in

Wolbachia will be rapid enough to be detectable in experi-

mental populations. For the virulent wMelPop infection,

there have only been minor genomic changes since its

introduction from D. melanogaster into the new host

Ae. aegypti (Woolfit et al. 2013). On the other hand, in lab-

oratory D. melanogaster populations, Octomom copy

number seems to be able to evolve rapidly to alter the den-

sity of wMelPop (Chrostek and Teixeira 2015). There is

also evidence from comparisons of conspecific populations

of D. melanogaster that interactions between wMel Wolba-

chia and host genomes can evolve fairly rapidly (Olsen

et al. 2001; Fry et al. 2004). The wRi infection of D. simu-

lans is another such example (Weeks et al. 2007). The dele-

terious effects of this infection on female reproduction

were first characterized in the late 1980s (Hoffmann et al.

1990). Twenty years on, such effects were no longer evi-

dent, and some infected females even showed a fecundity

advantage over uninfected hosts, largely attributable to

changes in wRi or another maternally inherited factor

(Weeks et al. 2007).

These findings suggest that while there is ample evidence

for variation in the Wolbachia genome resulting in multiple

strains of Wolbachia occurring in the same host and/or

conspecific individuals carrying different Wolbachia strains,

it is not clear whether there will be rapid changes in Wolba-

chia strains being released for disease suppression. As in the

case of host genome changes, any changes will most likely

lead to Wolbachia strains that exert a reduced deleterious

effect on their host, which might only indirectly influence

viral interference.

Evolutionary changes in the viral genome

While viruses evolve rapidly, changes in the virus genome

in response to Wolbachia are largely unpredictable due to a

lack of relevant background information and clarity around

selective factors involved (Bull and Turelli 2013). Selection

on viral resistance to the blocking effects of Wolbachia

might be expected, particularly given that there are differ-

ences in the extent to which dengue serotypes are blocked

by Wolbachia (Frentiu et al. 2014; Ferguson et al. 2015).

However, only some types of interactions between Wolba-

chia and viruses (such as direct competition between

viruses and Wolbachia) are expected to lead to evolutionary

changes (Bull and Turelli 2013). Moreover, viral evolution-

ary dynamics are affected by a number of factors uncon-

nected to Wolbachia that drive viral strain replacements

(Vu et al. 2010; Lambrechts et al. 2012). Wolbachia and/or

host genomes could also evolve in response to any changes

in the virus, particularly if these affect the fitness of the vec-

tor host, although (at least in the case of dengue) viral

effects on hosts remain unclear (Maciel-de-Freitas et al.

2011).

Other effects ofWolbachia

Even though Wolbachia can decrease transmission of

many viral infections, its effects on others remain uncer-

tain. A comparison of Wolbachia-infected and cured

D. melanogaster strains and Culex quinquefasciatus strains

suggested that Wolbachia might block West Nile virus

(Glaser and Meola 2010). However, most Culex quinque-

fasciatus populations appear naturally infected with Wol-

bachia but are still capable of transmitting West Nile

(Micieli and Glaser 2014). This may reflect the fact that

Wolbachia densities in natural infections are too low to

have much impact on transmission of this virus. On the

other hand, in a recent study where Wolbachia from

another mosquito were injected into Culex dorsalis

females, the titre of West Nile virus increased (Dodson

et al. 2014), although this may have been an effect of

the infection process; the effect of Wolbachia on West

Nile needs to be investigated in a host mosquito species

carrying a stably introduced Wolbachia infection. In Spo-

doptera moths, Wolbachia may also increase susceptibil-

ity to a virus (Graham et al. 2012); infection by

nucleopolydrovirus was associated with moths carrying

different strains of Wolbachia, and laboratory tests with

one of the Wolbachia strains (likely a male killer) indi-

cated much higher mortality levels following the viral

infection. Because nucleopolydrovirus is being explored

as a potential biopesticide, this result might point to a

potentially novel application of Wolbachia releases for

pest control.

It is not yet clear whether Wolbachia-based strategies will

be effective against microbes other than viruses. Wolbachia

introduced into the major malaria vector Anopheles step-

hensi protects against Plasmodium to some extent (Bian

et al. 2013b), although perhaps insufficiently to provide

much impact on disease transmission (Killeen et al. 2013).

Moreover, it has been suggested that the presence of
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Wolbachia may even enhance the incidence of malaria

pathogens to some extent (Z�el�e et al. 2014) although this

requires further validation. In Drosophila, Wolbachia infec-

tions appear to have few consistent effects on bacterial

infections (Wong et al. 2011), while in mosquitoes, it has

been suggested that any effects on bacteria will depend on

whether the immune system is upregulated following

Wolbachia transfer (Ye et al. 2013).

Another issue relevant to disease transmission is the

potential interaction between Wolbachia and pesticide sus-

ceptibility. For Ae. aegypti mosquitoes that are artificially

infected with Wolbachia, the infection does not affect sus-

ceptibility to commonly used insecticides (Endersby and

Hoffmann 2013). However, in Culex pipiens naturally

infected with Wolbachia, there was rapid evolutionary

increase ofWolbachia density in an insecticide-resistant line

(Echaubard et al. 2010), suggesting a dynamic interaction

between the Wolbachia and/or host genomes evolving

under insecticide exposure.

Because most Wolbachia-transfected lines originate from

few or just one female (Xi et al. 2005; McMeniman et al.

2009), Wolbachia invasions can cause a dramatic reduction

of mitochondrial haplotype diversity within and among

populations (H. L. Yeap and A. A. Hoffmann, unpublished

data; Armbruster et al. 2003). There is a growing body of

evidence linking the mitochondrial polymorphisms with

differences in metabolic rate and some fitness components

in Drosophila (e.g. Ballard et al. 2007; Kurbalija Novi�ci�c

et al. 2015), suggesting that mitochondrial diversity in nat-

ural populations is maintained by natural selection. Mito-

chondrial variation might play an important role in the

epistatic interaction between the mitochondrial and

nuclear genomes in determining insect metabolic rate

under varying environmental conditions (Arnqvist et al.

2010). It is therefore possible that the loss of mitochondrial

diversity following Wolbachia invasion could affect the per-

formance of infected populations.

Finally, the various Wolbachia effects on host fitness

could change the size and age distribution of the mosquito

larval community in containers (Mains et al. 2013). These

effects in turn might influence interspecific interactions,

particularly under high-density larval conditions when fit-

ness differences between Wolbachia-infected strains and

uninfected strains can become accentuated (Ross et al.

2014). These ecological effects of Wolbachia need to be

evaluated following invasions into natural communities

and could have a substantial effect on disease transmission

if vector populations become suppressed due to the detri-

mental effects of Wolbachia infection. The most dramatic

example involves the wMelPop infection of Ae. aegypti,

which reduces the viability of eggs when held in a dried

state (Yeap et al. 2011). During a dry season, this effect

could result in the complete collapse of an isolated popula-

tion until there is a reinvasion from another source (Ra�si�c

et al. 2014a). Population cage experiments indicate that

collapse is likely in populations that are completely Wolba-

chia-infected (S. Ritchie unpublished data).

A pathogen interference/spread trade-off?

It is possible that Wolbachia infections that provide the

strongest blockage of pathogen transmission might not

spread easily into populations (Fig. 1). This possibility

arises because a high density of Wolbachia in hosts may

increase viral blockage but decrease host fitness (Chrostek

et al. 2013; Sinkins 2013; Martinez et al. 2014), and such a

trade-off could have driven past cycles of Wolbachia strain

replacements in natural populations. For instance, the

wMel-CS strain in D. melanogaster which causes strong

virus blockage (Table 1) may have been replaced with the

wMel strain which causes weaker blockage but does not

decrease longevity to the same extent in this host (Chrostek

et al. 2013). Relevant information to explore the notion

of such a trade-off comes from (i) comparisons of viral
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Figure 1 The first two principal components explaining 80.6% of total

variation among Wolbachia strains in natural and transinfected hosts

for the levels of: cytoplasmic incompatibility/male killing, maternal

transmission, fitness costs and blockage of RNA viruses. Empty symbols

denote natural Wolbachia infections, and filled symbols denote transin-

fections. Each infection attribute is ordered as: 0 (no effect), 1 (low), 2

(medium/partial) or 3 (high/full effect). Fitness cost has an additional

value of �1 for infection effects that are somewhat beneficial. Twenty-

one data points summarize values extracted from Table 1. Overall

effects in natural hosts seem different from those in transinfected hosts,

and the effects are also virus-dependent. Colinearity between fitness

cost and viral blockage suggest that there is a possible trade-off

between these effects, such that strains with strong viral protection

might be difficult to spread due to higher deleterious effects on the

host. Exceptions to these patterns, however, indicate that it may be

possible to achieve a desirable combination of infection attributes, but

more strains need to be tested.
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suppression, host fitness and Wolbachia density between

infected hosts, (ii) inferences from natural populations and

(iii) mechanistic understanding of the common basis of

viral interference.

Viral suppression vs host fitness andWolbachia density

Several authors have contrasted viral blockage (measured

as survival/longevity following pathogen infection) in

Wolbachia strains from Drosophila with effects on host

fitness (mostly measured as longevity in the absence of

the infection) and on cytoplasmic incompatibility

(Table 1). These comparisons involve a relatively limited

number of Wolbachia infections and a comparison of

natural and introduced Wolbachia strains which may

have different dynamics (Table 1, Fig. 1). In D. simulans,

where the largest number of comparisons have been

made involving 19 strains, survival following RNA viral

infection is positively correlated with Wolbachia tissue

density, although there are strains with relatively high

Wolbachia densities that have a limited impact on sur-

vival (Martinez et al. 2014). Any association between del-

eterious Wolbachia effects and viral blockage may also

not be particularly strong. In a comparison of five Wol-

bachia strains including one from a non-native host

(D. melanogaster), the wAu infection caused the strongest

blockage and had the highest density across tissues (Os-

borne et al. 2009, 2012), yet this strain does not cause

detectable cytoplasmic incompatibility or have deleterious

fitness effects, and is also transmitted at a high fidelity

under field conditions (Hoffmann et al. 1996).

The wMelPop infection was transferred from D. mela-

nogaster to Ae. aegypti to generate a strain that has a

reduced longevity and thereby a reduced propensity to

transmit diseases requiring a long incubation period

through older females (McMeniman et al. 2009). In subse-

quent experiments, this strain was shown to have very

strong blockage of viral replication and disease transmis-

sion in laboratory assays (Moreira et al. 2009). However,

the wMelPop infection also causes substantial fitness costs,

not just to longevity but also for egg viability, particularly

when eggs are in a quiescent stage (McMeniman and O’Ne-

ill 2010; Yeap et al. 2011). The wMelPop infection also has

deleterious effects on larval development under crowded

conditions (Ross et al. 2014) and on some adult traits (e.g.

Turley et al. 2009). In contrast, the wMel infection causes

somewhat weaker blockage of dengue and other viruses

than wMelPop, but has fewer deleterious effects as well as

having a lower titre in adults (Walker et al. 2011; Hoff-

mann et al. 2014a).

The wMel infection was also transferred to Ae. albopic-

tus where it causes strong blockage of chikungunya virus

and dengue in laboratory assays, but has no apparent

effects on longevity, hatch rates or other laboratory fit-

ness parameters, despite generating strong cytoplasmic

incompatibility (Blagrove et al. 2012, 2013). The wAlbB

infection that blocks the transmission of dengue viruses

in Ae.aegypti (Xi et al. 2005; Bian et al. 2010) has delete-

rious fitness effects on its host including a decrease in

the viability of quiescent eggs and a reduction in longev-

ity, although these deleterious effects are weaker com-

pared to those exerted by wMelPop (J. Axford,

unpublished data). When the native wPolA infection in

Ae. polynesiensis was replaced with wAlbB from Ae. albo-

pictus, there was an increase in Wolbachia density and

evidence of dengue blocking in this species (Bian et al.

2013a), although it is not yet clear whether this trans-

ferred strain also produced deleterious fitness effects

(Table 1).

Wolbachia density represents a complex phenotype, typi-

cally measured in three contexts: (i) whole body density,

usually measured in newly eclosed adults; (ii) tissue specific

density, focussing on heads, abdomens, ovaries, testes, sali-

vary glands and so on; and (iii) age-specific (and life stage-

specific) density, which can indicate whether Wolbachia

continue to replicate when hosts have reached maturity or

enter a quiescent phase. Changes in whole body density

through exposure to low levels of antibiotics (usually tetra-

cycline) typically reduce cytoplasmic incompatibility

induced by Wolbachia, as demonstrated in the case of

D. simulans (Clancy and Hoffmann 1998) and Nasonia

wasps (Breeuwer and Werren 1993), and also reduce viral

interference as shown for wAu in D. simulans (Osborne

et al. 2012). These experimental data support the notion

that differences in Wolbachia density can be linked to the

expression of host effects and support the notion of a

blocking/spread trade-off, particularly given that strain var-

iation in Wolbachia density has a positive relationship to

blockage in D. simulans as noted above (Martinez et al.

2014). However, the expression of strong cytoplasmic

incompatibility in the Drosophila paulistorum species com-

plex involves very low Wolbachia titres that can only be

detected although nonconventional molecular methods

(Miller et al. 2010), whereas high-density infections of

other Drosophila species such as wAu (Osborne et al. 2012)

have no detectable effects on cytoplasmic incompatibility

or host fitness (Hoffmann et al. 1996). The effects of some

infections can therefore be unconnected to their overall

densities in hosts.

The tissue distribution of strains may influence pathogen

blocking and host effects. For instance, the wRi and wHa

infections in D. simulans are restricted mostly to gonadal

tissues (Binnington and Hoffmann 1989; Correa and Bal-

lard 2014), have mild deleterious effects (Hoffmann et al.

1990; Turelli and Hoffmann 1995) and cause mid- to low-

level viral blockage (Osborne et al. 2009). On the other
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hand, the wAu and wMelPop infections may block patho-

gens effectively because they are found in a variety of tis-

sues (Min and Benzer 1997; Osborne et al. 2012). In

mosquitoes, Wolbachia presence in a variety of tissues

through which a virus needs to pass to be transmitted may

be crucial for generating strong transmission blockage; for

instance, wMelPop which causes strong blockage is found

in many tissues including the salivary glands of Ae. aegypti

(Moreira et al. 2009). This feature seems particularly

important for dengue viruses, where a density-dependent

cellular relationship between Wolbachia and viral load has

been reported (Lu et al. 2012).

Some Wolbachia infections attain higher densities at

eclosion and replicate at a higher rate than others when

hosts reach adulthood (Chrostek and Teixeira 2015),

resulting in very high densities throughout the body as

hosts age. While this high density might result in strong

pathogen blockage, it could also eventually kill the host and

limit the potential of such infections to spread. The

reduced longevity of D. melanogaster infected by the wMel-

Pop strain is thought to be due to ongoing replication and

increasing density of this virus (Min and Benzer 1997), as

is the reduction in longevity and increased mortality of qui-

escent eggs in Ae. aegypti artificially infected by wMelPop

(McMeniman and O’Neill 2010; Yeap et al. 2011). Contin-

ued Wolbachia replication may also contribute to hybrid

sterility in crosses between D. paulistorum semi-species

(Miller et al. 2010).

The distribution of Wolbachia within hosts is expected to

be altered due to evolutionary changes in the host and Wol-

bachia. The distribution of Wolbachia densities across tis-

sues in long-standing infections is expected to become

more variable if there is no evolution towards obligate rela-

tionship with the host (Correa and Ballard 2014). Strong

cytoplasmic incompatibility with infected sperm should

favour accurate transmission of an infection across genera-

tions, resulting in strong tissue tropism. However, for old

infections where cytoplasmic incompatibility is weak (e.g.

wMa in D. simulans), Wolbachia density in tissues is

expected to be variable because selection pressures for

accurate transmission are weak (Correa and Ballard 2014).

Such evolutionary changes are expected to weaken any

blocking/spread trade-off.

These examples provide some support for a possible rela-

tionship between viral blockage, deleterious host effects

and Wolbachia density, but too few strains have so far been

examined. Moreover, the Drosophila data suggest that it is

possible to identify infected lines demonstrating strong

blockage, strong cytoplasmic incompatibility and no appar-

ent fitness effects on the host. However, it is not yet clear

whether such lines can be developed from novel combina-

tions of hosts and infections generated through artificial

transfers of Wolbachia.

Inferences from changes in natural populations

Although the potential benefits that hosts gain from patho-

gen blocking have so far only been demonstrated in labora-

tory tests (Chrostek et al. 2013), it seems likely that similar

benefits will occur under field conditions. Recently, the

wAu infection in D. simulans which causes strong viral

blockage but no detectable cytoplasmic incompatibility

(Hoffmann et al. 1996) has nevertheless been shown to

increase rapidly in natural populations (Kriesner et al.

2013), suggesting that the infection provides a fitness

advantage to its host which may include viral blocking.

Another example is the wMel infection of D. melanogaster,

which exhibits a stable cline in eastern Australia suggestive

of selection (Hoffmann et al. 1994), but causes only partial

cytoplasmic incompatibility in matings with young males

(Reynolds et al. 2003). Given that this infection shows

incomplete maternal transmission, it is hard to explain its

persistence in D. melanogaster populations without assum-

ing some sort of fitness benefit (Hoffmann et al. 1994).

However, we still lack field data testing for a direct associa-

tion between Wolbachia infection and natural viral load. If

field strains exist that provide a fitness advantage under a

high viral load but have few other effects on hosts, these

would indicate that a blocking/spread trade-off can be

avoided.

Mechanistic understanding of viral interference/host

effects – immune priming and other effects

If the mechanisms involved in viral blockage, cytoplasmic

incompatibility, and host fitness effects were understood, it

might help in predicting likely interactions among Wolba-

chia effects. Viral blocking by Wolbachia seems to involve a

number of subcomponents (Rances et al. 2013; Sinkins

2013). Part of the blockage may come from the upregula-

tion of the immune system, as suggested by the increased

expression of some immune response genes following

recent Wolbachia transfers in mosquitoes (Kambris et al.

2009; Lu et al. 2012). However, cross-species transfers of

Wolbachia do not necessarily lead to immune priming, as

in the case of the experimental wAu infection of D. mela-

nogaster (Chrostek et al. 2014). Other mechanisms have

also been implicated, such as competition for resources

such as cholesterol, interactions involving various metabo-

lites, and the expression of microRNAs (Caragata et al.

2013; Zhang et al. 2013). Blockage mechanisms may be

partly related to changes in the tissue distribution and den-

sity of Wolbachia particularly following transfer to a new

host. For instance, native Wolbachia infections of Ae. albo-

pictus have a relatively low density; the natural wAlbB

infection of Ae. albopictus seems to cause some suppression

of dengue and chikungunya viruses in its native host
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(Mousson et al. 2012). However, following transfer from

Ae. albopictus into Ae. aegypti, the same infection develops

a much higher density and blocking effect (Lu et al. 2012).

Overall, these different lines of evidence point to a com-

plicated pattern of interaction between pathogen blockage,

deleterious fitness effects and cytoplasmic incompatibility.

Host effects are not necessarily tightly linked mechanisti-

cally or through density, and a trade-off between blockage

and spread might exist when host effects are predominantly

related to density, but might in other cases be circum-

vented (Fig. 1). The Drosophila data indicate that strains

such as wAu with strong blockage, no deleterious effects,

high densities and no cytoplasmic incompatibility exist in

populations alongside strains such as wHa that cause strong

cytoplasmic incompatibility, but no blockage or large dele-

terious effects. A range of infections with different combi-

nations of attributes occur in natural populations,

including strains that might exhibit relatively strong block-

age while also being able to easily spread in the absence of

over replication after eclosion, and a high density in repro-

ductive tissues to ensure strong cytoplasmic incompatibil-

ity and high maternal transmission. Unfortunately, the

same combination of attributes might not be maintained

after such a strain is transferred to a target vector host. For

example, the wMel infection causes weak cytoplasmic

incompatibility in its native Drosophila host but complete

cytoplasmic incompatibility once transferred to Ae. aegypti,

which has been essential for its successful spread (Hoff-

mann et al. 2011). Similarly, the wAu infection has no

detectable fitness effect in its native host D. simulans, but

causes a sharp reduction in lifespan and exhibits exponen-

tial growth when transferred to D. melanogaster (Chrostek

et al. 2014). Therefore, intra- and intergeneric transfers

across host species have unexpected consequences that may

affect the suitability of strains for disease suppression.

Other deployment issues

Host population ecology

The successful invasion ofWolbachia infections will depend

on the ecology of the host population. For example, if

wMelPop is released into a host mosquito population

where breeding sites lead to rapid egg hatch and where lar-

vae develop under low densities, Wolbachia is more likely

to invade. This is because the wMelPop infection does not

strongly affect host viability and development time under

low-density conditions and in the absence of dry condi-

tions (McMeniman and O’Neill 2010; Yeap et al. 2011).

On the other hand, there are development time and viabil-

ity costs when wMelPop-infected mosquitoes are reared at

a high density in competition with uninfected larvae (Ross

et al. 2014). High-density conditions coupled with an

extended period of dry season will raise costs and the

threshold Wolbachia frequency required for a wMelPop

invasion (Hancock et al. 2011; Yeap et al. 2014).

Areas of high mosquito density could be identified

through factors such as housing characteristics, distribution

of breeding containers and so on if this information is

available from past surveys. Such information can be used

to inform local invasion rates (Hoffmann et al. 2014b) and

potential pockets where uninfected mosquitoes might per-

sist and require additional treatment. Local knowledge of

the ecology of mosquito populations should be used to

inform release strategies; for instance, breeding containers

that fill only occasionally after rain may need to be treated

to remove sources of uninfected mosquitoes.

Release programmes also need to take into account

expected movement patterns of mosquitoes and variation

in host density across the region. Information on natural

movement patterns from mark-release experiments or

genetic analyses of local populations (e.g. Harrington et al.

2005; Olanratmanee et al. 2013) can provide a picture of

likely movement patterns. By characterizing thousands of

SNP markers, a much higher level of resolution of popula-

tion structure can be obtained, and the movement of

related individuals across a region can also be followed

(Ra�si�c et al. 2014b).

Wolbachia invasion into an isolated uninfected popula-

tion of a target host only occurs if Wolbachia frequencies

consistently exceed a particular frequency set by the size of

the deleterious effects of Wolbachia on its host, levels of

cytoplasmic incompatibility and to a lesser extent by the

fidelity of maternal transmission (Hoffmann and Turelli

1997; Turelli 2010). If deleterious host effects associated

with Wolbachia infections are too large, Wolbachia invasion

into target host populations becomes difficult and high

infection frequencies might not be sustained even if inva-

sion succeeds. Invasion and persistence become increas-

ingly unlikely if there is ongoing immigration of uninfected

individuals into a relatively small release area (Barton and

Turelli 2011) and if there are fitness effects of Wolbachia

that decrease the size of the target population, making rein-

vasion by uninfected mosquitoes more likely (Ra�si�c et al.

2014a).

A benefit of releasing infections with at least some delete-

rious fitness effects is that infections are expected to remain

contained within an area rather than spreading rampantly

(Barton and Turelli 2011; Hancock and Godfray 2012).

This prediction is consistent with field experience from

wMel releases around Cairns, Australia, where wMel did

not spread outside areas where they were released even

though Wolbachia were occasionally detected in other areas

(Hoffmann et al. 2011, 2014b). Spread only occurs rela-

tively slowly through a continuous residential area and is

likely to be stopped by barriers to movement and high-den-

sity areas occupied by uninfected mosquitoes (Barton and
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Turelli 2011; Hancock and Godfray 2012; Hoffmann et al.

2014b). Spread is much easier to achieve when a large area

with a high host density has been invaded and the sur-

rounding area has a low density; an increase in host density

outside the invaded zone can stop Wolbachia spread, par-

ticularly if the invasion point is high (Barton and Turelli

2011), as in the case of wMelPop (Yeap et al. 2011). More-

over, invasions might then fail to persist with a moderate

influx of migrants into a population (Hancock et al. 2011).

Although the host fitness costs associated with Wolbachia

infections could be used to suppress and even eradicate

mosquito hosts in some isolated areas (Ra�si�c et al. 2014a),

they provide challenges for the infection spreading in large

and continuously distributed mosquito populations. So far,

attempts to spread the high cost wMelPop infection into

relatively isolated natural populations in Vietnam and

northern Australia have failed, despite high release rates

and some success in getting the infection to a high fre-

quency (T. H. Nguyen, unpublished data). The wMelPop

infection did successfully invade semi-field population

cages, but only when release rates were high and sustained

for many weeks (Walker et al. 2011). Several strategies

could assist in spreading infections with high deleterious

effects, such as through the suppression of host populations

across all life stages just prior to release (Hoffmann 2014),

through the release of male-biased sex ratios (Hancock

et al. 2011) or through the use of pesticide resistance genes

and application of pesticides during the release process

(Hoffmann and Turelli 2013). These strategies should assist

in introducing such infections into relatively isolated popu-

lations, but the infection is unlikely to spread further out-

side these areas (Barton and Turelli 2011).

Community acceptance

Although the likely benefits and costs of Wolbachia-based

strategies for disease suppression can be identified to some

extent, the final strategy and strain adopted will also

depend on community acceptance and regulatory approval.

A challenge for Wolbachia releases aimed at invasion and

replacement is that there will be a period of time when

mosquito numbers are increased above background levels

to ensure that the Wolbachia infection exceeds an invasion

threshold. As long as there are no fitness costs associated

with the infection, Wolbachia is expected to spread from a

very low starting frequency (close to 0%) depending on

stochastic factors, with a slow rate of spread initially (Jan-

sen et al. 2008). This type of spread has been observed in

natural infections of D. simulans where resident popula-

tions number in the millions (Kriesner et al. 2013). How-

ever, with a threshold frequency of around 20–30%, the

wMel invasion into uninfected Ae. aegypti required releases

across 10 weeks, at which time adult numbers increased by

a factor of 1.5–2 (Hoffmann et al. 2011; Ritchie et al.

2013). The period of time and relative increase in mosquito

numbers required will be greater if infections are costly,

and/or if the release material has a relatively low fitness.

While a 1.5–2 fold increase in mosquito numbers might

seem trivial, particularly when only one mosquito species is

being targeted in release areas where several species are

likely to co-occur, implementation of such a strategy can

be challenging. In most countries where dengue is endemic

and attributable to Ae. aegypti mosquitoes which breed

around houses, communities are encouraged to decrease

the availability of breeding sites, removing containers that

might hold standing water, treating containers with chemi-

cals, and perhaps fogging an entire area with pesticides.

Such combined programmes can be effective in reducing

mosquito densities (Erlanger et al. 2008), but often there is

little impact on mosquito populations due to factors such

as cryptic breeding sites that cannot be easily targeted (Hei-

ntze et al. 2007; Eisen et al. 2009). These strategies can also

generate additional problems such as the evolution of pesti-

cide resistance in hosts (Maciel-de-Freitas et al. 2014). Fur-

thermore, there is often a poor correlation between

measures of mosquito numbers and disease incidence

(Bowman et al. 2014), making it difficult to justify such

campaigns. Nevertheless, while education and engagement

campaigns can help increase acceptance of Wolbachia

releases (McNaughton and Huong 2014), communities

may be reluctant to participate in Wolbachia release pro-

grammes and regulatory authorities may be reluctant to

approve strategies where there is a deliberate increase in

mosquito numbers over a period of time.

This issue becomes particularly important where the

Wolbachia strains being introduced have high invasion

thresholds and therefore require high release numbers

across an extended period of time. For instance, wMelPop

failed to invade isolated field populations despite releases

across several months where frequencies exceeded 70%

(T. H. Nguyen, unpublished data). Even when this infec-

tion invaded semi-field cages, it required more than

80 days before the infection reached fixation in one cage,

despite a starting infection frequency of 65% (Walker et al.

2011). In contrast, infections such as wMel seem to invade

quite readily, at least based on experience in Australia.

One of the advantages of Wolbachia releases is that they

are not necessarily incompatible with other control pro-

grammes. For instance, during the 2011 release of wMel

around Cairns, Australia, pesticides were applied by the

health authorities to a residential block within the release

site where a dengue case had been reported, and this did

not inadvertently affect the local rate of increase of Wolba-

chia (Hoffmann et al. 2011). In this case, both the resident

uninfected population of Ae. aegypti and the released mos-

quitoes did not contain appreciable levels of insecticide
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resistance. In contrast, in many communities where there

has been widespread application of pyrethroids and other

insecticides over some time, resistance levels in uninfected

Ae. aegypti are expected to be high (Ranson et al. 2009). In

such cases, insecticide application during the release could

lead to a preferential removal of the infected released mos-

quitoes. However, it should be possible to minimize this

issue by backcrossing infected release stock to the local

genetic background of a target population with high insec-

ticide resistance.

Finally, when there are community concerns about

release numbers increasing above background levels, sup-

pression of mosquitoes prior to starting releases could help

to alleviate community concerns, as well as speeding up

Wolbachia invasions by increasing the frequency of Wolba-

chia, and by producing vacant breeding sites for infected

released females. In addition, it may be possible to release

large numbers of nonbiting infected male mosquitoes to

facilitate invasions when these males generate cytoplasmic

incompatibility with uninfected mosquitoes (Hancock

et al. 2011). Pesticide applications could also assist inva-

sions if the release material carries a higher level of resis-

tance than the resident population (Hoffmann and Turelli

2013). Although there is little risk that resistance alleles will

spread to the uninfected resident populations as long as

cytoplasmic incompatibility is complete and maternal

transmission is high, this strategy is unlikely to be

approved by regulators except in limited circumstances, for

instance, where relevant genes are already present in a

target population.

Conclusions

Selecting a suitable strain of Wolbachia for release is not a

straightforward process, and involves a balance between

minimizing fitness costs while maximizing cytoplasmic

incompatibility and blockage of disease agents, as well as

considering community and regulatory issues. It is not yet

clear to what extent desirable strain qualities can be com-

bined or whether there are trade-offs that limit the options

available. It seems essential to create and test a number of

Wolbachia infections for releases, despite the challenges

associated with this exercise that require thousands of

microinjections to achieve success (McMeniman et al.

2009; Bian et al. 2013b). Nevertheless, there are many natu-

ral Wolbachia strains available within Diptera for potential

introduction into disease vectors. Once a suitable strain has

been identified, it will be necessary to monitor the long-

term stability of the desirable effects because there may be

further evolutionary changes in the host, Wolbachia and

pathogen genomes that could modify Wolbachia effects,

even though current data suggest they are relatively stable.
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