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The human retroviruses HIV-1 and HTLV-1/HTLV-2 share similar routes of transmission
but cause significantly different diseases. In this review we have outlined the immune
mediated mechanisms by which HTLVs affect HIV-1 disease in co-infected hosts. During
co-infection with HIV-1, HTLV-2 modulates the cellular microenvironment favoring its own
viability and inhibiting HIV-1 progression. This is achieved when the HTLV-2 proviral load
is higher than that of HIV-1, and thanks to the ability of HTLV-2 to: (i) up-regulate viral
suppressive CCL3L1 chemokine expression; (ii) overcome HIV-1 capacity to activate the
JAK/STAT pathway; (iii) reduce the activation of T and NK cells; (iv) modulate the host
miRNA profiles. These alterations of immune functions have been mainly attributed to the
effects of the HTLV-2 regulatory proteinTax and suggest that HTLV-2 exerts a protective role
against HIV-1 infection. Contrary to HIV-1/HTLV-2, the effect of HIV-1/HTLV-1 co-infection
on immunological and pathological conditions is still controversial. There is evidence that
indicates a worsening of HIV-1 infection, while other evidence does not show clinically
relevant effects in HIV-positive people. Possible differences on innate immune mechanisms
and a particularly impact on NK cells are becoming evident. The differences between the
two HIV-1/HTLV-1 and HIV-1/HTLV-2 co-infections are highlighted and further discussed.
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INTRODUCTION
Microbes that infect the same host may positively influence
each other’s replication, or fight for supremacy (Margolis, 2003;
Kannangara et al., 2005). In recent years, different data have
demonstrated that a microbe, in order to favor its own replication,
can attenuate or support the infection of other infecting agents by
altering the host immune system (Lisco et al., 2009). The role of
human T lymphotropic viruses type 1 and type 2 (HTLV-1 and
HTLV-2) as determinants of HIV-1 disease during co-infection
has been widely studied, but is still a matter of speculation.

Since HTLV-1, HTLV-2, and HIV-1 have common modes of
transmission, it is not surprising that co-infection is a frequent
condition especially among people with high risk behaviors, as
needle sharing and unprotected sexual contact. Though human
retroviruses have worldwide distribution (Goubau et al., 1992;
Vrielink and Reesink, 2004; Proietti et al., 2005), dually infected
subjects have been mainly diagnosed in large metropolitan area
or in endemic regions (Briggs et al., 1995; Dezzutti et al., 1998;
Araujo et al., 2002; Morimoto et al., 2005; Magri et al., 2012, 2013).
Because HTLV screening is not routinely performed in many coun-
tries and is not always recommended by physicians to outpatients,
the seroprevalence of co-infection is underestimated (Beilke, 2012;
Pinto et al., 2012).

HTLV-1, HTLV-2, and HIV-1 share similar genomic organiza-
tion and tropism for immune cells, in particular CD4+ and CD8+

T cells. However, the finality of their viral cycle is different. In
infected patients, HIV-1 is generally present as a virion (either
cell-associated or cell-free) and the provirus is detected clearly
in a minority of cells (Josefsson et al., 2011), whereas HTLVs are
prevalently integrated in their target cells and the propagation of
infection occurs by clonal expansion of infected cells (Bangham,
2003).

To understand whether HTLVs may accelerate or atten-
uate HIV-1 progression, several studies have interpreted
HIV-1-associated clinical outcomes, taking into account labo-
ratory records as CD4 mean cell count and HIV-1 viral load.
However, conflicting data have emerged on both HTLV-1 and
HTLV-2 interactions with HIV-1 and the debate is still open.
The lack of uniformity of used criteria may explain this discrep-
ancy, including differences in sampling, variations in outcome
surveillance, with other parameters, such as HTLVs and HIV-1
seroconversion time and sex, not always defined. Furthermore,
some authors believe that matching patients by immune markers
is not a good strategy (Beilke et al., 2004). When not well-defined,
also anti-HIV-1 therapy, considering its effect on immunologic
host factors and potentially on replication of co-invading agents,
could make the comparison of data coming from different studies
difficult.

Concerning HTLV-1/HIV-1 co-infection, a more rapid HIV-1
disease progression and a lower mean survival time in co-infected
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individuals compared to HIV-1-mono-infected patients (Brites
et al., 2001) was seen. Additionally, an increased risk to
develop tropical spastic paraparesis/HTLV associated myelopathy
(TSP/HAM) and other neurodegenerative conditions was found
in dually infected subjects (Tulius Silva et al., 2009). Also, a recent
work reported a higher mortality and shortened survival rate in
HTLV-1/HIV-1-co-infected children compared to HIV-1-mono-
infected patients irrespective of baseline CD4 cell count (Pedroso
et al., 2011).

On the contrary, other researchers observed a delayed HIV-1
disease progression in HTLV-1-co-infected patients when com-
pared to HIV-1-mono-infected individuals (Shibata et al., 1989;
Page et al., 1990; Chavance et al., 1995; Beilke et al., 2004). In
according to these findings, a higher survival rate was reported
for HIV-1/HTLV-1-co-infected subjects (Brites et al., 2001, 2005).

It is noteworthy that the impact of HIV-1 on HTLV-1 replica-
tion was also investigated. Seroepidemiologic studies showed that
HIV-1 positive subjects are more susceptible to HTLV-1 infec-
tion, and vice versa (Harrison et al., 1997). Moreover, the HIV-1
Rev protein was found to enhance HTLV-1 gene expression, by
interacting with 5’-RU5 region of the HTLV-1 genome (Kubota
et al., 1998). A later study, in which the quantification of HTLV-1
and HIV-1 DNA load was determined, suggested that HIV-1 co-
infection does not affect HTLV-1 proviral load in peripheral blood
compartments (Cesaire et al., 2001).

Similarly to HTLV-1/HIV-1, contrasting results were also
reported for HTLV-2/HIV-1 co-infection. However, it is now
generally accepted that HTLV-2 exerts a negative effect on HIV-
1 replication. In fact, several authors have associated HTLV-2
co-infection with a better outcome for HIV-1 positive individ-
uals (Beilke et al., 2004; Casoli et al., 2007). Earlier studies did
not observe this effect and ascribed the lack of significant asso-
ciations between co-infection and progression to AIDS or death
to the absence of clear evidence of HTLV-2 as pathogenic agent
(Visconti et al., 1993; Hershow et al., 1996).

HTLVs interfere with HIV infection by mechanisms that appear
to be complex and multilayered. More specifically, HTLVs can act
on HIV-1 expression directly at molecular levels or indirectly by
modulating the expression of immune host factors. This in turn
can be induced by HTLVs directly or through cellular activation.

Thus, the intimate relationship between the HIV-1 life cycle
and the activation state of cells supporting viral replication results
in a dynamic interaction between co-infecting agents and HIV-1
replication in dually infected individuals.

HTLV-1 differs from HTLV-2 in regulating cellular activation
of target cells. More specifically, HTLV-1-infected subjects present
a prevalence of highly activated cells, while HTLV-2-infected indi-
viduals hold up a lower cellular activation status (Nagai et al., 2001;
Bovolenta et al., 2002a; Goon et al., 2004). These divergent condi-
tions may contribute to explain the different impact of the two
types of HTLV on HIV-1 infection. In particular, for HTLV-2 it
was observed that HIV-1/HTLV-2-co-infected patients showed a
reduced HIV-1 replication presumably due to lower levels of T cell
activation (Bassani et al., 2007).

In this review, we report and discuss recently published
data on host immunomodulating factors involved in retroviral
interference, and in that regard we also point at other cellular and

molecular components that may be considered potentially good
candidates.

CYTOKINES/CHEMOKINES
The role of the cytokine/chemokine network as strategic weapon
in germ warfare has been extensively discussed (Margolis, 2003).
Infecting agents benefit from their ability to drive immune reac-
tions mediated by cytokines and chemokines. This favorable
condition for a microbe could be adverse or advantageous for
a co-pathogen.

Thus, the perturbation of the immune system, including host
cytokine synthesis, induced by HTLV-1 and HTLV-2 infections
(Hollsberg, 1999) could have positive or negative impacts on
HIV-1 replication. Such immune activation is mainly modulated
by HTLV-1 and HTLV-2 Tax proteins (Tax-1 and Tax-2).

Regarding HTLV-1/HIV-1 co-infection, it was reported that
Tax-1 up-regulates HIV-1 expression (Bohnlein et al., 1989) by
activating the transcriptional factor NF-κB that recognizes two
binding sites in the U3 region of the HIV-1 LTR (Leung and
Nabel, 1988). In addition, Tax-1 enhances the expression of sev-
eral cellular proteins, including transcription factors and cytokines
as IL-2, tumor necrosis factor α (TNF-α), and others (Baner-
jee et al., 2007; Boxus et al., 2008). More specifically, some of
these cytokines as TNF-α or IL-1β are capable of triggering HIV-1
transcription through a NF-κB-dependent mechanism (Siebenlist
et al., 1994). Tax-1 is also responsible for the induction of cytokine
receptor expression (Franchini and Streicher, 1995). This state
of activation was frequently observed among co-infected subjects
who showed a sharp drop in CD4 cell count and rapid progres-
sion of HIV-1 disease (Bartholomew et al., 1987; Page et al., 1990;
Pagliuca et al., 1990; Gotuzzo et al., 1992; Schechter et al., 1994;
Fantry et al., 1995).

However, other studies describe detrimental effects on HIV-1
infections (Harrison et al., 1997; Beilke et al., 2004, 2007). Recently,
Abrahao et al. (2012) observed a higher production of IL-2 and
IFN-γ in HIV-1/HTLV-1-co-infected individuals than in HIV-1
or HTLV-1-mono-infected individuals. Moreover, while IL-6 and
IL-10 levels were similar in all infected groups, IL-4 production
was lower in HTLV-1-mono-infected individuals. These findings
support the notion that high levels of Th-1 cytokines in co-infected
patients provide adverse conditions for HIV-1 infection, suggest-
ing a predominant role of HTLV-1 over HIV-1. This hypothesis
is supported by the evidence that IL-2 suppresses HIV-1 replica-
tion in some HTLV-1-infected cell lines by inducing APOBEC3G
expression (Oguariri et al., 2013).

For what concerns HTLV-2, it was reported that PBMCs derived
from HTLV-2 seropositive individuals undergo spontaneous pro-
liferation in short-term cultures in association with the secretion
of several cytokines, including TNF-α, IL-5, IL-6, and IFN-γ
(Dezzutti et al., 1998).

By studying the cytokine pattern in HTLV-2/HIV-1-co-infected
subjects, we determined that HTLV-2 drives immune activa-
tion to implement the secretion of cytokines as GM-CSF and
IFN-γ (Pilotti et al., 2007), which are capable to induce a “pro-
tective” Th1 response against HIV-1 (Creery et al., 2004), since a
dominant Th2 profile seems to favor HIV-1 progression (O’Garra,
1998).
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Other important immune correlates able to facilitate or sup-
press HIV-1 infection are the chemokines and their cellular recep-
tors. In vivo, HIV-1 prevalently targets immune cells expressing the
surface receptor CD4 that mediates virus binding and membrane
fusion together with chemokine co-receptors (CCR5 and CXCR4;
Kowalski et al., 1987; Lasky et al., 1987). Thus, changes in con-
formation status or surface availability of these molecules may, in
turn, modify HIV-1 disease progression. Beside genetic modifica-
tions, the co-receptors expression is mainly affected by the binding
of natural ligands. In particular three CCR5 binding chemokines,
CCL3, CCL4, and CCL5, act as major HIV-1-suppressive
factors.

Because three chemokines are released by both cultured T
cells and primary CD8+ T cells in response to HTLV infection
(Scarlatti et al., 1997), it was supposed that their up-regulation
could explain HIV-1 inhibition observed during co-infection. The
fact that HTLV-1-specific CD8+ cytotoxic T lymphocyte (CTL)
clones derived from patients with HAM/TSP are actively produc-
ing CCL3 and CCL4 chemokines (Cocchi et al., 1995), reinforces
the hypothesis that HTLV-1 can influence HIV-1 replication via
chemokine expression and release.

As HTLV-2-infected cells become activated, they sponta-
neously proliferate and produce high levels of various cytokines
and chemokines (Casoli et al., 1998, 2000; Lewis et al., 2000;
Bovolenta et al., 2002b; Bassani et al., 2007). We observed that
up-regulation of CCR5-binding chemokine expression occurs
in cultured PBMCs from HTLV-2/HIV-1-co-infected individuals
in comparison to HIV-1-single-infected individuals. In partic-
ular, we demonstrated that CCL3 secretion is responsible for
anti-HIV-1 activity in PBMC cultures from co-infected sub-
jects (Casoli et al., 2000). Lewis et al. (2000) associated the
spontaneous synthesis of CCR5 binding chemokines to the abil-
ity of HTLV-2 regulatory proteins to transactivate CCL4 and
CCL5 gene promoters. Also, we found that an isoform of
CCL3, namely CCL3L1, which is considered the most potent
anti-R5 HIV-1 chemokine (Visconti et al., 1993), was preferen-
tially induced by HTLV-2 (Pilotti et al., 2007). Up-regulation
of this chemokine leads to CCR5 down-modulation and subse-
quent receptor internalization (Townson et al., 2002). Although
other groups have shown that the HIV-1 susceptibility is asso-
ciated with CCL3L1 gene dose, which is variable among indi-
viduals, we demonstrated that HIV-1 inhibition occurred in
HTLV-2-co-infected subjects was independent by CCL3L1 copy
number, and that enhanced CCL3L1 expression was presum-
ably stimulated by Tax-2 protein at the transcriptional level
(Pilotti et al., 2007). High levels of GM-CSF and IFN-γ secreted
by PBMCs from HTLV-2-infected individuals were found to
contribute to HIV-1 interference via CCR5 down-modulation
(Pilotti et al., 2007).

Two recent works confirmed the pivotal role of Tax proteins
in inducing CC-chemokine synthesis. The first paper reported
that both recombinant Tax-1 and Tax-2 induce high levels of
CC-chemokines which in turn cause CCR5 down-regulation in
cultured PBMCs (Barrios et al., 2011), and the second article
demonstrated that Tax-2 transactivates CC-chemokines produc-
tion in cultured monocyte-derived macrophages (Balistrieri et al.,
2013).

JAK/STAT SIGNALING
HTLV-1 and HTLV-2 can efficiently transform human T cells
in vitro but significantly differ in pathogenicity. The Janus
kinase (JAK)/signal transducer/activator of transcription (STAT)
signaling pathway (JAK/STAT) is constitutively activated in
HTLV-1-transformed cells. This may occur by autocrine stim-
ulation of IL-2, IL-9, and IL-15 cytokines, and IL-2 and IL-15
receptor expression, as a result of Tax-induced NF-κB expres-
sion, which in turn stimulate lymphocyte proliferation (Migone
et al., 1995; Mariner et al., 2001; Chen et al., 2008). HTLV-1
Tax protein is crucial for viral replication and for initiating
malignant transformation and is able to inhibit host antivi-
ral signaling via NF-κB-dependent induction of suppressor of
cytokine signaling protein 1 (SOCS1) to evade innate immunity
(Charoenthongtrakul et al., 2011). In T cells transformed in vitro
by HTLV-1, the JAK/STAT activation correlates with the transition
from an IL-2 dependent to an IL-2 independent phase of growth
(Migone et al., 1995; Xu et al., 1995). In contrast to HTLV-1, the
activation status of the JAK/STAT pathway is not constitutively
activated in HTLV-2-transformed T cells. However, this pathway
could be induced upon IL-2 treatment of the cells. Similarly, the
constitutive activation of STAT1, STAT3, and STAT5, as well as the
phosphorylation status of JAK kinases (JAK3 and JAK1), observed
in HTLV-1-transformed T cell lines, was not detected in HTLV-2-
transformed T cells (Mulloy et al., 1998). However, we showed that
the ability of human CD34+ IL-3 dependent TF-1 cell line to pro-
liferate after HTLV-2 exposure in conditions of IL-3 deprivation
is following the production of the GM-CSF and IFN-γ, through
the activation of the JAK/STAT pathway (Bovolenta et al., 2002b).
Previously, it was demonstrated that a signature of PBMC freshly
derived from HIV-1 infected individuals represents the constitu-
tive activation of a C-terminal truncated STAT5 (STAT5�) and
STAT1 (Bovolenta et al., 1999).

When analyzing the levels of STATs in HTLV-2 mono-infected
and HTLV-2/HIV-1-dually-infected individuals, we observed that
these factors are not activated in PBMCs of HTLV-2-mono-
infected unless they are cultured in vitro, in the absence of any
mitogenic stimuli, for at least 8 h (Bovolenta et al., 2002a). The
emergence of STAT activation, mainly of STAT1, appears to be
related to the secretion of IFN-γ. Of note, this is a characteristic
feature of both HTLV-2 and HIV-1-mono-infected individuals.
Surprisingly, HTLV-2/HIV-1 co-infection resulted in a low/absent
STAT activation in vivo, thus correlating with a diminished secre-
tion of IFN-γ in ex vivo cultivated PBMCs (Bovolenta et al.,
2002a). These findings indicate that HTLV-2 and HIV-1 infec-
tion can prime T lymphocytes for STAT1 activation, but they
also highlight that an interference is exerted by HTLV-2 on
HIV-1-induced STAT1 activation. These results clearly suggest
that HTLV-2 may interfere with HIV-1 infection at multiple lev-
els. The observation that PBMCs obtained from both HIV-1- and
HTLV-2-infected individuals activate STAT1 as a consequence of
the spontaneous release of IFN-γ is supported by previous find-
ings indicating an up-regulation of this cytokine following either
HIV-1 or HTLV-2 infection (Dezzutti et al., 1998; Levine et al.,
2002). An enhanced transcription of IFN-γ is also induced by
the HTLV-2 Tax trans-activator (Nimer et al., 1989; Brown et al.,
1991). A large body of evidence points to an increased level of
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either IFN-γ or its correlates (such as neopterin or IP-10) in the
plasma/serum of HIV-1-infected individuals (Poli et al., 1994),
explaining the low but detectable constitutive STAT1 activation
observed in HIV-1-infected. This correlation was not seen in
HTLV-2-infected individuals (Bovolenta et al., 1999). Therefore, T
cells from both HIV-1- and HTLV-2-infected individuals share a
constitutive priming for IFN-γ secretion and, consequently, for
STAT1 activation; in contrast, only HIV-1 infection is charac-
terized by activation of STAT5� in vivo (Bovolenta et al., 1999).
Because these factors are absent in both HTLV-2 mono-infected
and HTLV-2/HIV-1 co-infected individuals, this would reflect the
higher pathogenic potential of HIV-1 with respect to HTLV-2,
but also highlights a dominant position of HTLV-2 over HIV-1
in terms of maintaining T cells in a primed but not completely
STAT5� activated state. Since there is evidence that HTLV-2/HIV-
1 co-infection is frequently associated with a state of long-term
non-progression (LTNP) of HIV-1 disease (Giacomo et al., 1995;
Magnani et al., 1995), HTLV-2 infection, and co-infection with
HIV-1, represent an important model to better understand
the interaction between human exogenous retroviruses and the
immune system. IFN-γ-related priming for STAT1 activation may
be an alarming signal that biases the immune response toward a
Th1-model of containment of HTLV-2 infection, overcome by a
peculiar STAT5� activation in HIV-1-infected individuals. Con-
cerning the role of JAK/STAT in HTLV-1/HIV-1 co-infection no
results have yet been reported.

NATURAL KILLER CELL ACTIVITY
Evidence has been accumulating on the specific targeting of innate
immune defenses, and in particular of natural killer (NK) cells,
by chronically replicating viruses (Marras et al., 2011). Successful
weakening of NK cell response represents a critical step for virus
persistence, since NK cells are involved in patrolling peripheral
tissues for immediate defense against virus or tumor aggression as
well as in cross-talking with critical components of innate immu-
nity, including monocytes and dendritic cells, leading to relevant
downstream impact on the shaping of adaptive immune responses
(Vivier et al., 2011).

Natural killer cells main cytolytic and cytokine productive
function is tightly controlled by a wide array of activating NK
cell receptors which alone, or in combination with Toll-like- o
cytokine- receptors, are responsible for triggering the NK cell
functional program (Vivier et al., 2011). Inhibitory NK cells recep-
tors (i.e., KIRs, NKG2A/CD94, CD85j, IRP60, SIGLEC-7), which
are mainly, but not exclusively, HLA class I-specific, provide a
negative regulatory signal that is able to override any trigger-
ing receptor signaling in the presence of the appropriate cognate
receptor. Thus, proper NK cell function may occur only in the
presence of activating receptor triggering, with reduced or absent
overriding control by inhibirtory receptors sensing the respective
ligands on target cells. For example, in the absence of MHC class
I expression induced by virus down-modulation, the induction in
the infected cells of ligands (e.g., MIC-A, MIC-B, ULBPs, Nectin-
2, PVR, etc.) recognized by activating NK cell receptors would
result in NK cell activation, cytokine/chemokine production, and
cytotoxic activity. Several viruses and mycobacteria exploit altered
expression of natural/cytotoxicity receptors in NK cells such as

HIV-1 (De Maria et al., 2003), influenza (Arnon et al., 2001; Man-
delboim et al., 2001; Gazit et al., 2006), HCV (Bozzano et al., 2011),
mycobacterium tuberculosis, and Calmette–Guerin (Vankayala-
pati et al., 2002, 2004; Bozzano et al., 2009; Marras et al., 2012;
reviewed in Bozzano et al., 2012 and in Marras et al., 2011), or
skew the NK cell peripheral repertoire inducing expansion of
NKG2C+ NK cell subsets as is the case for CMV infection (Guma
et al., 2004, 2006a,b; Della Chiesa et al., 2011). Similar interference
with inhibitory receptor expression (e.g., NKG2A, KIRs) may be
induced by acute infection, or exploited through KIR:HLA class
I haplotype interaction, as for example is observed during infec-
tion with CMV (Muntasell et al., 2013), HCV (Khakoo et al., 2004;
Knapp et al., 2010; Vidal-Castineira et al., 2010), or Chikungunya
virus (Petitdemange et al., 2011).

Very little is known on NK cell phenotype and function during
HTLV infection, in particular when HTLV-2 is considered.

Characterization of NK cell triggering and inhibitory receptors
has been so far poorly addressed to understand the differences
underlying HTLV-1 and HTLV-2 diseases.

Early reports on the definition of NK cell recep-
tors point towards a decreased NK cell activity against
HTLV-1-infected MT-2 cell lines (Fujihara et al., 1991;
Zheng and Zucker-Franklin, 1992). Lysis of cell lines infected with
HTLV-1 by in vitro activated NK cells was subsequently shown
to occur and to depend on viral gene expression, that may be
absent in some adult T cell leukemia (ATL) lines (Stewart et al.,
1996). HTLV-1 antigen-driven proliferation may result in a ATL
form, as shown in mice transgenic for Tax-1 (Grossman et al.,
1995) and in humans with expansions in hypofunctional NK cells
(Loughran et al., 1997). The proportion of circulating mature NK
cells (CD56+ CD16+) is decreased in patients with TSP/HAM
(Wu et al., 2000; Brito-Melo et al., 2002; Ndhlovu et al., 2009) and
other innate immune cells (NKT) are decreased during TSP/HAM
as well. In addition, more recent evidence suggests that NK cells
may be targeted and induced to expand by HTLV-1 through a viral
load-associated but Tax-independent mechanism (Norris et al.,
2010).

Overall, there is need for further insight into NK cell phe-
notype and function during HTLV-1/-2 infection. More precise
characterization of possible changes or modulation of triggering
and inhibitory receptor expression on NK cells during chronic
infection would help to better understand the mechanism(s) that
are exploited by HTLV-1 to divert innate immune responses and
downstream CD4+ and CD8+ T cell function. In particular, it is
possible that different NK cell regulation induces clinical diver-
gence spanning from the lack of symptoms to TSP/HAM and
transformation to ATL, similar to what was observed for HCV
infected patients clearing infection (Khakoo et al., 2004; Alter
et al., 2011) or for HIV-infected patients who control virus repli-
cation (Elite Controllers) or without disease progression in LTNPs
(Marras et al., 2013). In addition, in view of the compelling evi-
dence of a remarkable NK cell activation during HIV-1 infection
both in untreated patients (Fogli et al., 2004) and in successfully
treated combined antiretroviral therapy (ART) patients (Licht-
fuss et al., 2012) though belonging to AIDS or non-AIDS clinical
groups (Bisio et al., 2013), understanding NK cell activation dur-
ing HIV-/HTLV-1 co-infection needs improved focusing. These
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considerations should be extended to HTLV-2 infection in vitro
and in vivo, since no data have been yet published on NK cells in
mono-infected patients.

ROLE OF MicroRNAs
MicroRNAs (miRNAs) are small single-strand non-coding RNAs
that repress gene expression by inhibiting translation and inducing
mRNA degradation (Ambros, 2004; Bartel, 2004). MicroRNAs can
be encoded by both cellular and viral genomes (Berezikov et al.,
2005; Grassmann and Jeang, 2008). Furthermore, viral miRNAs
have been described not only for DNA viruses but also for RNA
viruses as HIV-1 and BLV (Bennasser et al., 2004; Du and Zamore,
2007; Klase et al., 2013). MicroRNAs have been found to regulate
up to 92% of the human genes (Miranda et al., 2006), and also to
modulate viral gene expression. These alterations could be con-
sidered key mechanisms by which the virus imbalances immune
system. In fact, as reported by several authors, immune response
to invading agents as well as cellular proliferation and differentia-
tion can be affected by host miRNAs (Chen et al., 2004; Fazi et al.,
2005; Cobb et al., 2006; Li et al., 2007; Loffler et al., 2007; Ivanovska
et al., 2008; Johnnidis et al., 2008; Carissimi et al., 2009; Faraoni
et al., 2009; Huang et al., 2009; Lal et al., 2009; Curtale et al., 2010).
The importance of RNA interference (RNAi) machinery in retro-
viral infection outcome was confirmed by recent findings that
demonstrated how the miRNAs expression can be controlled by
retroviruses (Sampey et al., 2012). Thus, the mechanism of RNAi
mediated by miRNAs could be used by a virus to remain hidden
from host immune surveillance by generating an advantageous
cellular environments, and leading to adverse conditions for a
co-invading agent.

MicroRNAs expression was studied during of HTLV-1 or HIV-1
infection but no data were so far reported for the HIV-1/HTLV-
1 co-infection. Similarly, studies of miRNAs pattern during
HTLV-2/HIV-1 co-infection have not been published up to date.

Concerning HIV-1, changes in host miRNA transcription lev-
els have been detected in CD4+ purified cells from naive and
LTNP HIV-1-mono-infected patients. The hypothesis that miR-
NAs either could directly influence viral RNA sequences, or could
affect cellular factors involved in HIV replication were confirmed
by several findings (Houzet and Jeang, 2011). More specifically, it
was demonstrated that five cellular miRNAs recognize the 3′ end
of HIV-1 mRNAs and are up-regulated in resting, but not acti-
vated, CD4+ T cells (Huang et al., 2007), providing evidence of
a direct inhibition of HIV-1 replication by miRNAs. Two inde-
pendent groups support this notion with the demonstration that
HIV-1 nef gene contains a miR-29a targeted site that interferes with
the replication of the virus (Ahluwalia et al., 2008; Nathans et al.,
2009). Other authors found indirect inhibitory mechanisms miR-
NAs mediated. Specifically, it was found that miRNAs suppress
viral gene expression by decreasing PCAF (P300/CBP-associated
factor) expression and interfering with histone acetylation, and
leading to HIV-1 latency (Triboulet et al., 2007). However, the
deregulation of cellular miRNA expression which was shown to
correlate to HIV-1 latency may also favor virus production (Han
and Siliciano, 2007; Huang et al., 2007). Other miRNAs were
involved in the different monocyte or macrophage susceptibility
to the HIV infection (Wang et al., 2009, 2011).

Recently, it was shown that HIV-1 and other retroviruses as
bovine leukemia virus can affect the expression of both host
miRNAs and small virus-derived interfering RNAs (Klase et al.,
2007, 2009; Houzet et al., 2008; Ouellet et al., 2008; Althaus et al.,
2012; Kincaid et al., 2012; Schopman et al., 2012).

Similarly to HIV-1, it was demonstrated that HTLV-1 infec-
tion is responsible for alteration of host miRNAs profile (Bellon
et al., 2009; Rahman et al., 2012). By profiling the expression of
miRNAs, known to be involved in differentiation and prolifer-
ation of hematopoietic cells (Merkerova et al., 2008), abnormal
levels of miR-223, miR-181a, miR-150, miR-142.3p, and miR-
155, were detected in both primary ATL cells and in HTLV-1 cell
lines (Bellon et al., 2009). Furthermore, these samples showed an
altered expression of miR-155, miR-125a, miR-132, and miR-146
that play a role in the regulation of immune response (Bellon et al.,
2009). A forced expression of miR-155, induced by Tax with the
contribution of NF-κB and AP-1, has been found to enhance the
proliferation of HTLV-1-infected cells (Tomita, 2012).

A loss of miR-31 was also observed in primary ATL cells,
where the expression of this miRNA is epigenetically regulated,
and was correlated with the constitutively activation of NF-κB
which contributes to the oncogenic transformation (Yamagishi
et al., 2012).

Concerning miRNAs biogenesis, low levels of Drosha enzyme,
a key processor of miRNAs synthesis, were found in HTLV-1-
infected cell lines and infected primary cells. In addition, in vitro
studies revealed a nuclear co-localization of Tax and Drosha, and
that the interaction between the two proteins leads to absence of
cleavage of miRNAs by Drosha (Van Duyne et al., 2012).

MicroRNAs can target complementary sequences of both
HTLV-1and HIV-1 transcripts and act as a major line of defense
against retroviruses, but on the other hand viral proteins can inter-
fere with RNAi machine directly or by altering the expression of
cellular transcription factors. HTLV-1 Tax also interacts with CRE
binding (CREB) protein, a key factor to viral transcription, in
the presence of the HATs CREB binding protein (CBP), p300,
and P/CAF to activate HTLV-1 gene expression while HTLV-2
Tax specifically cooperates with CBP and p300 but not with p300
associated factor to enhance transcription from the viral pro-
moter (Tosi et al., 2006). Another mechanism by which HTLV-1
may influence the host cell miRNA expression profile is through
the activation of host transcription factors. Important transcrip-
tion factors and cellular kinases which interact directly with the
viral protein Tax are CREB, serum-responsive factor (SRF), NF-
κB, Cyclins D2 and D3, mitotic check point regulators (MAD1),
cyclin dependent kinases (CDKs), the CDK inhibitors p16INK4A

and p21(WAF1/CIP1), and the tumor suppressor p53 (Caron et al.,
1993; Suzuki et al., 1994; Yin et al., 1995, 1998; Clemens et al.,
1996; Colgin and Nyborg, 1998; Harrod et al., 1998; Gachon
et al., 2000; Nicot et al., 2000; Xiao et al., 2001; Kashanchi and
Brady, 2005; Easley et al., 2010). In particular, the NF-κB path-
ways activation is a hall mark of HTLV-1 infection and may be
the result of direct interaction between Tax and the NF-κB reg-
ulatory subunit IKKγ (Sun and Yamaoka, 2005; Yasunaga and
Matsuoka, 2011). Because numerous miRNA promoter sites are
positively regulated by NF-κB, it can be inferred that the activa-
tion of NF-κB by Tax increases the expression of several host cell
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miRNAs (Li et al., 2012; Lukiw, 2012; Wang et al., 2012). One spe-
cific example is given by miR-155 which has been found to be
up-regulated in HTLV-1-infected cells, as well as in a TNFα stim-
ulated cell line through an NF-κB pathway (Bellon et al., 2009;
Liu et al., 2011). Similar findings have already been described for
HIV-1 Tat which activates NF-κB by acting through the same bio-
chemical pathways used by a variety of other NF-κB inducers,
reviewed in Baeuerle and Henkel (1994), and for other viral pro-
teins, including Tax of HTLV-2, HBx, and MHBs of hepatitis B
virus, and EBNA-2 and LMP of Epstein-Barr virus (Baeuerle and
Henkel, 1994) and hemoagglutinin of influenza virus (Pahl and
Baeuerle, 1995). Of particular interest is the role of miRNA in
HTLV cellular transformation and recent findings demonstrate
that alteration of the miRNA profile of infected cells leads to
the development of ATL and HAM/TSP diseases (Sampey et al.,
2012). In HIV-1 disease, a modification of chromatin by viral pro-
teins and host cell miRNAs can contribute to the dysregulation
of host cell miRNA expression and likely provides a key system
used by the virus to modify host miRNA profiles (Bignami et al.,
2012). Also, it was demonstrated that Tax-1 induces a prompt
activation of chromatin remodeling factors as p300 and p/CAF
(Rahman et al., 2012). The chromatin reorganization, affected
by miRNAs which expression is in turns influenced by Tax pro-
teins, drives the establishment of viral latent status (Aliya et al.,
2012).

Recently, we studied miRNA profiles in CD4+ T-cells puri-
fied from HTLV-2-mono-infected patients and found evidence
for a miRNA signature (miR-329, miR-337-5p, miR-379-5p,
miR-503, miR-518d-3p, miR-203, miR-449a, miR-502-5p) that
discriminates infected from uninfected subjects, similarly to HIV-1
(Table 1; Bignami et al., 2012). Furthermore, by analyzing in detail
some functional aspects of the miRNAs belonging to retroviral sig-
nature we identified 135 predicted target genes that, on the basis
of gene ontology (GO) resources, revealed the presence of three
ontology aspects (Figure 1). Interestingly, we found that the most
significant GO terms, i.e., positive regulation of macromolecule
and cellular biosynthetic process, are related to the formation of
substances carried out by individual cells.

With specific reference to the deregulated host miRNAs
linked to the development of the HTLV-1 oncogenic or
neurodegenerative diseases (Table 2), only miR-155, a key regula-
tory component of the innate immune response, is differentially
expressed in HIV-1 and HTLV-2 infection. Thus, we speculated
that a functional impact of cross-talk between miRNA pattern,
and the subsequent multifunctional pathways, may occur during
HTLVs/HIV-1 co-infection.

The assessment of how the altered profiles of miRNA expression
can influence viral replication and latency, as well as the efficiency
of host defenses, may be useful for understanding the basis of
the retroviral related modifications of cellular pathobiology and
immunologic control.

CONCLUSION
Is the retroviral interference relevant to HIV-1 infection? In this
review we discussed how HIV-1/HTLVs co-infection can either
positively or negatively affect the course of HIV-1 disease. In par-
ticular, co-infection with HTLV-2 seems to confer immunological
benefits in patients with HIV-1. By contrast, HTLV-1 is mainly
associated to HIV-1 disease progression and to an increased risk
of TSP/HAM and ATL.

An overall picture of different effects of HTLVs on HIV infec-
tion is emerging. The widely diverging effect of HTLV-1 and
HTLV-2 on the clinical course of HIV-1 progression is remarkable,
and the findings initially reported for HTLV-2 are particularly sur-
prising. The possibility that specific co-infections may improve the
clinical course of HIV-1 infection by directly or indirectly inter-
fering with HIV-1 cell entry, replication and spread, originally
proposed by the study of HIV-1/HTLV-2-infected cells (Casoli
et al., 2000) has been confirmed by subsequent work on GB virus
C which is able to infect B cells and CD4+ or CD8+ T lymphocytes
(George et al., 2006).

Modulation of the cytokine/chemokine network represents a
major element of shift dynamics that regulates the co-existence
of several infections. Thus, cytokines and chemokines might be
considered strategic weapons in the bid to gain benefits to the

Table 1 | MicroRNAs equally expressed in HIV-1 and HTLV-2 vs HTLV-1 infection.

HIV-1 vs healthy

Bignami et al. (2012)

HTLV-1 vs healthy Pichler et al.

(2008), Bellon et al. (2009), Ruggero

et al. (2010), Rahman et al. (2012)

HTLV-2 vs healthy

Bignami et al. (2012)

hsa-miRNA miR-329 Down nd Down

hsa-miR-337-5p Down nd Down

hsa-miR-379-5p Down nd Down

hsa-miR-503 Down nd Down

hsa-miR-518d-3p Down nd Down

hsa-miR-203 Up nd Up

hsa-miR-449a Up nd Up

hsa-miR-502-5p Up nd Up

nd indicates not determined.
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FIGURE 1 | Biological functions of host miRNAs belonging to HTLV-2 and

HIV-1 retroviral signature. One hundred and thirty-five predicted target
genes were identified by miRDB database (http://mirdb.org). Functional
annotations were provided by DAVID bioinformatics resources
(http://david.abcc.ncifcrf.gov) on the basis of gene ontology (GO) resources

that consider three different aspects of GO: biological process, cellular
component, molecular function. The GO term selection was obtained using a
significant P -value less than 0.05 as a statistical threshold. Functional
annotations are sorted by score, from higher (minor significance) to lower
(greater significance).

infecting agents. Since a poor Th1 response and a dominant Th2
response have been implicated in the pathogenesis and progression
of HIV infection (Clerici and Shearer, 1993, 1994), HTLV-2 prim-
ing for a Th1 response via up-regulation of IFN-γ expression may
contribute to the “protective” effect of HTLV-2 infection on HIV-1
disease progression. In the case of HTLV-1 co-infection, high fre-
quencies of activated HTLV-1-infected CD4+ T cells can give a
boost to HIV-1 replication.

An enhanced secretion of CC-chemokines, in particular of
CCL3L1, was ascribed to the transactivating function of Tax-2
and the original studies of HTLV-2/HIV-1 co-infection proposed
this as a key mechanism of retroviral interference. The CCL3L1
isoform down-regulates CCR5 co-receptor for HIV-1 entry lead-
ing to a LTNP status in co-infected individuals with high HTLV-2
proviral load (Pilotti et al., 2007).

In the same manner, GBV-C acquisition via blood trans-
fusion increases the secretion of CCL5, CCL3, CCL4, and
CXCL12 and by means of their NS5A and E2 proteins sup-
port the deregulation of co-receptors, thus inhibiting HIV entry
and resulting in a reduced mortality in patients with advanced

HIV-1 disease (Tillmann et al., 2001; Bhattarai and Stapleton,
2012). Similarly to what occur in HIV-1/HTLV-1 co-infection,
HIV-1 disease progression is faster in individuals affected by
HCV or HSV co-infection (Van Asten and Prins, 2004; Corey,
2007).

Analysis of JAK/STAT regulation during HTLV-2 infection pro-
vides some clues of intervention to interfere with HIV-1 replication
by taking advantage of pathway interference instead of enzymatic
inhibition of viral enzymes. The lack of knowledge of HTLV-1
mediated activation pathway interference has probably limited
efforts in this direction.

Concerning innate immune responses in HIV-1 co-infection
with either HTLV-1 or HTLV-2, no data are so far available for
NK cell function, and little is known on other innate immune
cellular mechanisms. The observed effect of proviral load, but
not of Tax-1, on NK cell proliferation during HTLV-1 infection
(Norris et al., 2010), is likely to impact also on HIV-1/HTLV-1
co-infected patients, leading to enhanced NK cell activation and
possibly disease progression. On the contrary, when consider-
ing HTLV-2/HIV-1 co-infection, evidence of HTLV-2 interference
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Table 2 | MicroRNAs either up- or down-regulated in HTLV-1 infected cells vs HIV-1 and HTLV-2 infection.

HIV-1 vs healthy

Bignami et al. (2012)

HTLV-1 vs healthy Pichler et al.

(2008), Bellon et al. (2009), Ruggero

et al. (2010), Rahman et al. (2012)

HTLV-2 vs healthy

Bignami et al. (2012)

hsa-miRNA miR-21 ns Up ns

hsa-miR-24 nd Up ns

hsa-miR-93 nd Up ns

hsa-miR-132 nd Down ns

hsa-miR-143-3p nd Up nd

hsa-miR-146a nd Up ns

hsa-miR-149 ns Down ns

hsa-miR-155 ns Up Up

hsa-miR-223 ns Up ns

hsa-miR-873 Down Down ns

hsa-miR-150 nd Up ns

hsa-miR-142-5p nd Up ns

hsa-miR-181a nd Down ns

hsa-miR-125a Up Down Up

hsa-miR-146b ns Down ns

ns indicates not significant; and nd not determined.

with STAT/JAK pathways could possibly be linked to a decreased
HIV-1-associated NK cell activation. Further work in this direc-
tion is needed to improve our understanding of the mechanism(s)
associated with the positive effect of HTLV-2 on HIV-1 disease
course, and of the underlying causes leading to AIDS progression
by HTLV-1/HIV-1 co-infection and/or to HTLV-1 associated
morbidity.

Since miRNAs have been correlated with viral life cycle, they
represent good candidates among the top cellular factors to be
used by HTLVs to favor their own replication. In the case of co-
infection with HIV-1, HTLV proteins were found to interact with
cellular chromatin modifying enzymes and with cellular tran-
scription and other immune factors. The interaction of HTLV
Tax proteins with cellular factors results in the alteration of
miRNAs profile that in turns can activate transcription and con-
sequently viral replication. Furthermore a likely interplay between
two competing mechanisms is taking place: the ability of Tax
to manipulate chromatin structure and the innate host cellular
defense mechanism of RNAi to regulate pathogen gene expression.

HTLV/HIV-1 co-infection can be considered as a useful model
for the study of new strategic approaches for HIV-1 vaccine
development, as suggested by the finding that the exposure of
HTLV-2 infected macaques to SIVmac251 was not accompanied by
an exacerbation of SIVmac251 infection (Gordon et al., 2010).
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