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Dynamic ensemble prediction 
of cognitive performance 
in spaceflight
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Christopher W. Jones2, Kia Howard2, Marc Kaizi‑Lutu2, David F. Dinges2 & Haochang Shou1*

During spaceflight, astronauts face a unique set of stressors, including microgravity, isolation, and 
confinement, as well as environmental and operational hazards. These factors can negatively impact 
sleep, alertness, and neurobehavioral performance, all of which are critical to mission success. In this 
paper, we predict neurobehavioral performance over the course of a 6‑month mission aboard the 
International Space Station (ISS), using ISS environmental data as well as self‑reported and cognitive 
data collected longitudinally from 24 astronauts. Neurobehavioral performance was repeatedly 
assessed via a 3‑min Psychomotor Vigilance Test (PVT‑B) that is highly sensitive to the effects of sleep 
deprivation. To relate PVT‑B performance to time‑varying and discordantly‑measured environmental, 
operational, and psychological covariates, we propose an ensemble prediction model comprising of 
linear mixed effects, random forest, and functional concurrent models. An extensive cross‑validation 
procedure reveals that this ensemble outperforms any one of its components alone. We also identify 
the most important predictors of PVT‑B performance, which include an individual’s previous PVT‑B 
performance, reported fatigue and stress, and temperature and radiation dose. This method is broadly 
applicable to settings where the main goal is accurate, individualized prediction of human behavior 
involving a mixture of person‑level traits and irregularly measured time series.

Space travel is a costly and hazardous endeavor. Astronauts are often faced with cognitively demanding tasks 
that require sustained attention, despite chronic sleep deprivation and disruptions to their circadian  rhythms1. 
Human performance deteriorates without proper sleep, manifesting in slower reaction times and increased 
 errors2, heightening the risk of operational  accidents3. Therefore, it is critical to anticipate changes in alertness 
and performance on a dynamic and individualized  basis4. Vigilant attention is a construct typically assessed 
using reaction time and accuracy-based metrics in tasks requiring sustained attention. While environmental 
and psychological correlates of vigilant attention have been studied in healthy humans on  Earth5,6, highly trained 
and carefully selected astronauts are not necessarily represented in this population. Astronauts are also exposed 
to a unique set of conditions in  space7–9, including microgravity, extended confinement and isolation, radia-
tion exposure, and other environmental and operational extremes. The collective impact of these challenges on 
psychological health and performance is  inconclusive10,11 and not yet fully  understood12,13.

The goal of this study was to dynamically predict vigilant attention, assessed with a brief 3-min version of 
the Psychomotor Vigilance Test (PVT-B)14, as a function of astronauts’ past performance, self-reported stress 
and fatigue, demographic and operational information, and variations in environmental variables (Table S1). 
The main challenge to predicting PVT-B performance is unraveling variation associated with the circadian 
rhythm, individual traits, psychological state, and the external  environment15,16. Previously, PVT performance 
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was predicted via a two-process  model17, which incorporates a system of differential equations to describe 
homeostatic and circadian pressures governing sleep. While such models have expanded our understanding of 
sleep regulation and alertness, and have been greatly  adapted18–20, they are often deterministic and so preclude 
statistical comparisons; even models with person-level random  effects21 cannot typically accommodate a large 
number of covariates.

Statistical models offer a complementary approach to prediction, focusing on prediction accuracy and uncer-
tainty estimation at the expense of only indirectly modelling physiological processes. Traditional methods for 
assessing the associations between PVT performance and sleep patterns have included correlation and ANOVA 
 analyses22,23, which allow for hypothesis testing but cannot make forecasts of later performance, adjust for the 
autocorrelation in repeated PVT measures over time, or accommodate the non-linear relationships between 
PVT performance and  predictors24. Methods which have addressed these obstacles have mainly considered 
mixed-effect  models25 or an ensemble of mixed-effects and random forest  models26. However, neither of these 
methods can explicitly model time-varying predictors whose effects themselves are time-varying, as in the case 
of circadian  effects27 or  acclimation28,29.

In this paper, we propose a 3-model ensemble prediction scheme consisting of a linear mixed effects  model30, a 
random forest  model31, and a functional concurrent  model32, the last of which allows us to estimate time-varying 
effects of each (potentially time-varying) predictor. We also incorporate predicted outcomes from a two-process 
 model18 as a covariate, with the aim of connecting biomathematical and statistical models commonly used to 
predict PVT performance. Our method extends the 2-model ensemble proposed by Cochrane and  colleagues26, 
though we employ a variant of forward-chaining cross-validation33 to assess model performance. We demonstrate 
that the ensemble best predicts over the entire mission compared to any single component alone.

Material and methods
Participants and protocol. Reaction Self-Test (RST; see “Reaction self-test (RST)” section) data were col-
lected from N = 24 astronauts (Table 1) over 19 International Space Station (ISS) mission increments between 
2009 and  201434. Astronauts spent an average of 160 (SD = 19) days, with a range of 123–192 days, on the ISS. 
Two versions of the RST were used: a morning version was taken after awakening from sleep, and an evening 
version prior to bed. Ahead of spaceflight, astronauts were scheduled to complete the RST twice per testing day 
(i.e., one morning RST and one evening RST per day) at 180, 120, 90, 60, and 30 days before launch and daily in 
the week before launch. Post-mission RST assessments were scheduled daily in the week after return to Earth as 
well as once at 30, 60, and 90 days after return. During the space mission, astronauts were instructed to complete 
the RST twice a day every 4 days, with extra sessions completed around extravehicular activities (EVAs) and 
sleep period shifts to accommodate spacecraft dockings. The total adherence rate of 78.9% across all RSTs (83.8% 
in-flight) exceeded the pre-determined project goal of 75% adherence. This resulted in a total of 2968 RST obser-
vations. The original study and this retrospective analysis were approved by the Institutional Review Boards 
of Johnson Space Center and the University of Pennsylvania (for data analysis); all research was performed in 
accordance with relevant regulations and guidelines. Participants provided written informed consent prior to 
study participation and re-consented for this retrospective analysis.

Reaction Self‑Test (RST). The RST consists of a short survey (described below) followed by a computer-
ized and brief (3-min) version of the Psychomotor Vigilance Test (PVT-B). The PVT is a validated measure of 
sustained attention based on reaction time (RT) to visual stimuli that occur at random inter-stimulus  intervals35. 
Astronauts were instructed to monitor a box on the laptop screen and press the space bar once a millisecond 

Table 1.  Summary characteristics of the astronauts with reaction self-test (RST) data. Table values are 
mean (standard deviation) and count (percent) for continuous and categorical variables, respectively. Due to 
astronaut privacy concerns, marital status and number of children are not reported in this table.

(N = 24)

Sex, n (%)

 Male 19 (79.2)

 Female 5 (20.8)

Age at dock, years 48.2 (4.78)

Prior days in space 53.5 (72.7)

Prior missions 1.29 (0.86)

Highest educational attainment, n (%)

 Master’s 14 (58.3)

 MD/PhD 10 (41.7)

Nationality/agency, n (%)

 USA/NASA 16 (66.7)

 Non-USA/non-NASA 8 (33.3)

Average pre-flight overall performance score (OPS) 0.95 (0.02)

Number of in-flight RST observations 87.2 (18.8)
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counter appeared in the box and started incrementing. After that, the RT was displayed for 1 s and the next 
stimulus was presented after a random inter-stimulus interval of 2-5 s. Participants were instructed to react as 
quickly as possible without hitting the spacebar in the absence of a stimulus. The PVT-B has been recognized as 
a sensitive tool for detecting the effects of acute and chronic sleep deprivation and circadian misalignment, both 
of which are highly prevalent in  spaceflight1,36. It has negligible aptitude and learning  effects37, and is ecologi-
cally relevant as sustained attention deficits and slow reaction times affect many real-world tasks, including the 
operation of a moving  vehicle2.

Astronauts were instructed to perform the RST in the morning after getting up and in the evening in the 
2 h prior to bed, though the hour of the day varied (Figure S1). While the PVT-B portion is the same in both 
morning and evening versions, other portions differ slightly. The survey portion of the RST includes a sleep diary 
and 11-point Likert-type rating scales on tiredness, mental fatigue, physical exhaustion, stress, sleepiness, and 
a final rating depending on the time of day: workload (evening administration only) or sleep quality (morning 
administration only; Table S2). During both the morning and evening RSTs, astronauts were asked to list the 
name, dose unit, and doses taken of all medications ingested before going to bed the previous night (morning 
RST) and since awakening in the morning (evening RST). Additionally, in the evening RST, astronauts were 
asked to list caffeinated foods or beverages consumed since awakening in the morning (in both cases, “None” 
and “Decline to answer” were response alternatives). Astronauts were also asked whether they performed an EVA 
that day. This information was used to create binary variables for certain classes of medications and upcoming 
EVAs for each RST observation (Table 2).

Among the PVT-B performance metrics, we derived the LRM-50 as the outcome of interest, since it has been 
shown to be highly sensitive to sleep deprivation and has an approximately normal  distribution38. LRM-50 is a 
likelihood ratio-based metric that is based on response time (RT) distributions derived from either a non-sleep 
deprived (non-SDP) state corresponding to the first 15 h of wakefulness, or a sleep deprived (SDP) state cor-
responding to hours 15 through 33 of wakefulness. In the original study, these distributions were derived from 
participants in a total sleep deprivation protocol who performed the PVT every 2  h38. The RT space was divided 
into 50 categories consisting of 49 RT intervals plus false starts. For a certain RT range, the likelihood ratio was 
calculated as the relative frequency of responses falling into the range under the SDP condition, divided by that 
of responses falling into the range under the non-SDP condition. Likelihood ratios greater than 1 indicate that 
responses in that range are more likely to be observed under the SDP condition compared to non-SDP, and 
conversely for likelihood ratios less than 1. The LRM-50 score is calculated by determining the RT range and 

Table 2.  Summary measures from the reaction self-test (RST) data, including pre- and post-flight 
observations. Table values are mean (standard deviation) and count (percent) for continuous and categorical 
variables, respectively.

Total number of observations (N = 2968)

Period, n (%)

 Pre-flight 506 (17.0)

 In-flight 2109 (71.1)

 Post-flight 353 (11.9)

Time of day, n (%)

 Morning 1568 (52.8)

 Evening 1379 (46.5)

 Other 21 (0.71)

Alertness

 LRM-50 − 33.0 (12.7)

Sleep

 Time in bed sleeping, hours 6.61 (1.30)

 Time in bed not sleeping, hours 0.61 (0.77)

Self-report 11-point ratings

 Low workload (0–10) 4.47 (2.18)

 Very stressed (0–10) 3.87 (2.01)

 Poor sleep quality (0–10) 3.60 (1.87)

Medication use

 Caffeine, doses 2.05 (1.50)

 Sleep aid flag, n (%) 131 (4.41)

 Decongestant flag, n (%) 25 (0.84)

 Antihistamine flag, n (%) 36 (1.21)

 Pain medication flag, n (%) 143 (4.82)

Extravehicular activity (EVA)

 EVA today flag, n (%) 8 (0.27)

 EVA tomorrow flag, n (%) 23 (0.77)
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associated likelihood ratio for each PVT-B stimulus. Likelihood ratios of all stimuli are then multiplied and log-
transformed to induce symmetry around zero. Therefore, an LRM-50 of 0 means that this test bout is equally 
likely to be observed under an SDP or non-SDP condition. When LRM-50 < 0, the non-SDP condition is more 
likely relative to SDP, and conversely for LRM-50 > 0. LRM-50 correlates highly with response speed (reciprocal 
RT), but has the advantage that it also takes false starts (i.e., premature responses) into account. Compared to 
LRM-50, other commonly used PVT  metrics35, such as the number of lapses or false starts, were less effective 
in differentiating high performers such as astronauts (Fig. 1). We also considered a standardized measure of 
LRM-50, linearly scaled by each participant’s mean and standard deviation.

Finally, as a person-level measure of baseline performance, we considered each participant’s average pre-flight 
Overall Performance Score (OPS):

The OPS is moderately sensitive to sleep loss, combines false starts and lapses into a single number, and is eas-
ily interpretable: an OPS of 1 corresponds to perfect performance, while 0 corresponds to the worst possible 
performance.

Environmental data. During the in-flight study period, five domains of environmental measures were 
recorded on the ISS. Radiation dose levels were obtained from the Space Radiation Analysis Group at NASA 
Johnson Space Center, and were summarized in daily absorbed dosage units (mGy) based on readings from 
dosimeters located aboard the ISS. The radiation dose was defined as the sum of radiation due to Galactic Cos-
mic Rays and the South Atlantic Anomaly. Measurements were collected from the following instruments over 
the course of the study: passive dosimeters (Radiation Area Monitor, 2009–2012), active dosimeters (Radiation 
Environment Monitor, 2012–2014), Tissue Equivalent Proportional Counter (TEPC, 2009–2012), and Intra-
vehicular Tissue Equivalent Proportional Counter (IV-TEPC, 2013–2014). These instruments were rotated 
between several ISS modules (US Lab, Node 2, JEM, Columbus Module, and Service Module) at different times 
during the study period (Fig. S2).

Next, oxygen  (O2) and carbon dioxide  (CO2) levels in units of mmHg were collected from Major Constitu-
ent Analyzer (MCA) sample inlet ports located throughout the space station’s air circulation system (Fig. S2, 
Panel B). Samples were drawn from these inlet ports in a cyclical fashion and were analyzed in two mass 

Overall Performance Score = 1−
False Starts+ Lapses

Valid Stimuli
(

Including False Starts
) .

Figure 1.  The LRM-50 score is best able to differentiate between the high performers in our sample, which 
includes pre-, post-, and in-flight observations (n = 2968) for all astronauts. These scatterplots show the joint 
distribution of LRM-50 with four popular PVT metrics: lapses, false starts, total errors (lapses + false starts), and 
the overall performance score (OPS). The histograms at the top and right edges show the marginal distributions 
of the variables on the x- and y-axes, respectively. Compared to other PVT metrics, the LRM-50 score is more 
normally distributed and is more sensitive to better performers (i.e., those with lower LRM-50).
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spectrometer-based MCA units located in Node 3 and the US Lab. These units alternated between being the 
primary or backup unit, ensuring redundancy during scheduled maintenance or malfunction. We used the 
reading from whichever served as the primary sensor at the time. Temperature in Celsius (°C) was measured by 
sensors in the Node 2, Node 3, and US Lab modules. Temperature,  CO2, and  O2 data was downloaded from the 
Java Mission Evaluation Workstation System in intervals of at least 1 reading per second.

Noise exposure in A-weighted decibels (dBA) was not continuously monitored, but was rather collected peri-
odically. Astronauts set up acoustic dosimeters at rotating locations aboard the ISS for 24-h periods approximately 
every other month. The internal memory of these dosimeters allowed the recording of dBA levels in one-minute 
intervals, which were acquired through manual display recall and infrared serial interface download.

Demographic and operational data. Demographic information was obtained from all astronauts 
(Table 1) and included sex, age at the time of ISS docking, nationality, space agency, educational attainment, 
number of prior space missions, and prior days in space. Operational data included the number of occupants on 
the ISS for each day of the mission and proximity of test to dock/undock maneuvers or EVAs.

Derived predictors. We derived several predictors based on the RST data: a stress/fatigue composite score, 
four medication flags, and predicted PVT lapses given the sleep schedule. The stress/fatigue composite score was 
created based on principal components analysis (PCA) of the 11-point scales on which the crew rated several 
behavioral states (i.e., sleepiness, tiredness, fatigue, exhaustion, stress, workload, and sleep quality) before taking 
the PVT. The score was calculated as the weighted average of the 11-point rating questions, with weights deter-
mined by the loadings onto the first principal component (PC). Table S3 shows the loadings onto the first PC, 
which accounted for 48.3% of the variance. Higher values of the stress/fatigue composite variable correspond to 
increased tiredness, more stress, and worse sleep quality. The loading for workload was negligible, potentially 
due to its lack of correlation with the other variables. Next, medication use was coded as a binary variable for 
four broad categories: pain medications, sleep aids, decongestants, and antihistamines. These categories were 
chosen due to their established use by astronauts on the  ISS39 and because their use may affect sleep or be cor-
related with conditions affecting sleep or  alertness40–42. To represent the complex information contained in the 
sleep schedule, the final derived covariate was the number of predicted PVT lapses under a two-process  model18, 
which was calculated solely using an individual’s reported bedtime and wake time.

Data integration and interpolation. To integrate environmental data with RST data, several strategies 
were required as different variables were recorded at different time intervals: RST was collected twice a day every 
4 days; radiation dose and other operational variables were measured daily; temperature, noise level,  CO2, and 
 O2 were measured multiple times per day or minute (Table S4). For each RST observation, the value of radiation 
and ISS occupancy from that day was used. For temperature, noise,  CO2, and  O2, we used the average during the 
hour that the RST was completed, if available. Due to the logarithmic nature of decibel units, noise values were 
always averaged using the energetic average, while all other variables were averaged using the usual arithmetic 
mean.

During some 1-h periods, noise and temperature measurements were available for more than 1 sensor. For 
RST observations that occurred during these times, we employed location matching to achieve the best estimate 
for that individual. When the RST was taken on a computer located in Node 2 (where the crew quarters are 
located) or the US Lab, only the temperature or noise data from the corresponding Node 2 or US Lab was used. 
When the RST was taken elsewhere or the location was unknown, a weighted average of the Node 2 (75%) and 
US Lab (25%) measurements were used, reflecting the approximate empirical frequency of RSTs taken in these 
modules. Other variables  (CO2,  O2, and radiation) were only measured from one sensor at a time, so they were 
not location-matched.

When the daily or hourly value of an environmental variable was unavailable, we used two interpolation 
strategies, which are summarized in Table S4. Temperature,  O2, and  CO2 data had a relatively low rate of missing-
ness (Table S5), so the locally estimated scatterplot smoothing (LOESS, neighborhood parameter α = 0.1) value 
was used when the hourly average was not observed. Enough temperature data was available for Node 2 and US 
Lab that we could fit 3 separate LOESS interpolations: one for RST observations in Node 2, one for US Lab, and 
one for other or unknown locations which were interpolated using the weighted average described previously.

Noise levels were recorded on only 47 occasions throughout the study period, for a total of 722 hourly values. 
However, RST observations only rarely coincided with days that the acoustic dosimeters were active; as a result, 
99.71% of in-flight RST observations did not have an observed noise level. For interpolation, we assumed that 
noise levels followed a 24-h cycle that was similar between days, with higher noise levels during the daytime 
(defined as 7:00 AM to 10:59 PM UTC) compared to nighttime (11:00 PM to 6:59 AM UTC) (Figure S3). Then, 
noise levels were interpolated using separate linear interpolations for averaged daytime and nighttime values. In 
other words, the noise level for a daytime RST observation was the interpolated value between the average day-
time noise level from the most recent day of noise collection, and the next upcoming day; the same procedure was 
used for nighttime noise. The distribution of smoothed and unsmoothed environmental data is shown in Fig. 2.

Finally, the predicted PVT lapses depended solely on each individual’s reported sleep schedule consisting 
of bedtimes and wake times. For RST observations where the sleep time was not reported, these variables were 
carried forward from the last observation for that individual, and the predicted lapses were calculated using 
the observed and interpolated bedtimes and wake times. One individual did not report any sleep data, so their 
predicted lapses were replaced by the overall average.
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Statistical models. Our main goal was to construct a statistical model to predict the LRM-50 score for each 
participant at future points in time. Of the variables collected, we were also interested in identifying a subset of 
variables that were most important to predicting LRM-50. Candidate predictors of LRM-50 included a mixture 
of time-varying (i.e., function-valued) variables such as environmental data, most recent LRM-50 score, self-

Figure 2.  For each RST observation, the corresponding value of the environmental variable was found by 
using the observed value (if available) or the interpolated value formed by neighboring observations (“Data 
integration and interpolation” section). These plots illustrate the LOESS curves (black line) fit to the entire 
environmental data for radiation, temperature (separately for each location),  CO2, and  O2. A linear interpolation 
was used for noise (separately for daytime and nighttime). Each hollow blue circle corresponds to the observed 
hourly average  (CO2,  O2, temperature) or daily average (noise, radiation) that was used for an RST observation; 
the green diamond indicates that the interpolated value was used.
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reported stress/fatigue score, and ISS occupancy, as well as person-level (i.e., scalar-valued) data including each 
participant’s demographics, pre-flight average PVT, sex, and age at docking.

We employed an ensemble of several models to address each aspect of the data. For participant i and time t  , 
the linear mixed effects (LME) model defines the LRM-50 score yit as a function of p covariates 
Xit =

(

X
(1)
it , . . . ,X

(p)
it

)

 , intercept β0 , a p-dimensional vector of fixed effects β , person-specific random intercept 
bi , and error εit:

The advantages of LME include its simplicity and efficiency, as well as the option to model correlated meas-
urements over time: we specified a lag-one autoregressive (AR1) correlation structure to model the repeated 
measures of yit.

By contrast, the random forest  model31 specifies no closed form for the relationship between yit and Xit ; 
rather, it uses an aggregate of decision trees to identify splitting points for continuous variables that optimally 
predict the outcome. While prone to overfitting, random forests are able to model a more flexible non-linear 
relationship between outcome and predictors, at the cost of interpretability.

Finally, since neither the random forest nor the LME are able to model the serial dependence of time-varying 
predictors and their time-varying effects, we also considered the functional concurrent  model32: for participant 
i and observation j at time tij , the time-varying outcomes yij are related to p covariates X(1)

ij , . . . ,X
(p)
ij  through 

the following:

where fi are smooth functions approximated by thin plate splines, and bi(t) and εij are Gaussian processes rep-
resenting person-level random trajectories and time-independent errors, respectively. The ensemble prediction 
was then constructed as the average of the predictions from the LME, random forest, and functional concurrent 
model. All data analyses were performed using R version 3.6.143, employing the nlme, randomForest, and fcr 
packages for each model.

Model validation. To assess the performance of each model as well as the ensemble, we employed a 
forward-chaining validation procedure (Fig.  3). For participant i with ni RST observations, training length 
t ∈ {5, 10, . . . , 45, 50} , and window number k ∈ {1, 2, . . . , min(20, ni − t + 1)}, a given model was fit on win-
dow k defined by the k through ( k + t)th RST observations from participant i and all RST observations from 
all other participants. That is, the model is trained on a partial time series (window k ) for person i plus all other 
individuals’ full time series. Then, the squared prediction error was assessed at both observation k + t + 1 (test) 
and window k (training). By incrementing t  , the size of the training set is allowed to increase; by incrementing 
k , the training set shifts in time, so that the model is trained and evaluated at different portions of the mission. 
In contrast to methods which define the training set as all points prior to observation t + k + 126, controlling t  
allows us to minimize biases due to individual heterogeneity in observation frequency and number.

To aggregate these point-level errors into an overall error metric over all individuals, we defined a metric that 
weighted individuals equally, despite variation in ni . For a given number of training days t  , prediction error in 
the test set was measured at several levels. First, we defined the i th person’s error by the average squared error 
at day t + k + 1 (i.e., the test set) over all windows k:

where yitk is the true LRM-50 at day t + k + 1 , ŷitk is the predicted value, and Ni,t = min(20, ni − t + 1) is the 
number of possible window shifts. Then these were averaged over all n = 24 participants:

This averaging procedure ensured that, although some participants did not have enough data for 20 window 
shifts, their errors were weighted equally.

We then calculated the overall mean squared error (MSE) over all 10 values of t :

As before, MSEoverall weights errors equally for all participants and all values of t  . To calculate errors for the 
training set, we followed the same procedure as for test errors MSE(i, t) , except we also summed over the t  
observations in the partial time series (window k ) used in training the model:

yit = β0 + Xitβ + bi + εit.

yij = β0 + f1

(

X
(1)
ij , tij

)

+ . . .+ fp

(

X
(p)
ij , tij

)

+ bi
(

tij
)

+ εij ,

MSE(i, t) =
1

Ni,t

Ni,t
∑

k=1

(

yitk − ŷitk
)2
,

MSE(t) =
1

24

24
∑

i=1

MSE(i, t).

MSEoverall =
1

10

∑

t∈{5,...,50}

MSE(t).

MSEtrain(i, t) =
1

Ni,t

Ni,t
∑

k=1

t
∑

j=1

(

yitkj − ŷitkj
)

.
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Finally, to avoid over-penalizing large prediction errors, we considered an alternative error metric where the 
squared error MSE(i, t) was replaced by the median absolute error (MAE):

which is less sensitive to timepoints with large discrepancies between the predicted and observed LRM-50.
Other models, such as multivariate linear regression, time series regression (using the dyn R package), and 

generalized additive models (using the gamlss R package) were considered at this stage, but did not improve 
performance or goodness-of-fit of the final ensemble.

Variable selection. To identify the most important subset of variables for predicting LRM-50, we quanti-
fied a variable’s importance by the average increase in MSE (%IncMSE) when permuting that variable within a 
random forest model. We also considered importance based on the increase in node purity, which is measured 
by the Gini index. This data-driven framework for feature selection has been previously deployed in behavio-
ral contexts, including the identification of self-assessed and imaging biomarkers of cognitive  impairment44,45. 
Through Monte Carlo sampling of 50% of the data, we obtained 100 rankings of variable performance. The most 
important variables were then defined as those that appeared in the top 10 with the highest frequency (Fig. S4). 
While this metric ("Top 10 Rate") identifies variables that are consistently important to prediction, those scoring 
lower are not necessarily uninformative. In statistical analyses, we considered both models fit on the full set of 
predictors, as well as the subset consisting of the most important variables.

Shiny application. The ensemble model was implemented as a user-friendly and interactive R Shiny appli-
cation (Fig.  4). Given the data and the fitted ensemble model, the application displays individualized LRM-
50 predictions in the context of their entire performance history, and other model diagnostic information. To 
encourage hypothesis generation, the value of predictor variables can also be "toggled," allowing the user to view 
how the predicted LRM-50 changes under hypothetical sets of conditions. Finally, the application includes each 
participant’s entire trajectory of predicted and observed LRM-50 scores (not shown).

Results
Importance ranking of predictors of LRM‑50. According to the random forest importance ranking, 
the most important predictors of LRM-50 were individual characteristics including age and average pre-flight 
OPS; the most recent LRM-50 score (lagged LRM-50); psychological factors including the composite stress/
fatigue score; caffeine intake; total sleep missed during the most recent sleep opportunity (i.e., the sum of time 
taken to fall asleep, time spent awake during the night due to sleep disturbances, and time spent in bed before 

MAE(i, t) = median
{∣

∣yitk − ŷitk
∣

∣

}Ni,t

k=1
,

Figure 3.  We used a forward-chaining procedure to assess prediction accuracy of a given model. For 
participant i and number of days t, the model was fit on window k defined by the k through ( k + t)th Reaction 
Self-Test (RST) observations from participant i and the full data for all other participants. Then, the model 
prediction on the subsequent day was compared to the observed value on that day. The person-level prediction 
accuracy for a given participant was defined as the averaged squared difference between predicted and observed 
values over all values of k. The overall accuracy was then defined as the average of the person-level prediction 
accuracies.
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getting up); and smoothed environmental measurements, including temperature, noise, and radiation dose 
(Fig. 5). Additionally, the first 10 variables (lagged LRM-50 through total sleep missed) had a relatively high Top 
10 Rate compared to the other predictors, signifying that the rankings were stable from subsample to subsample.

Other sleep variables (sleep quality and sleep duration),  O2 and  CO2 levels, and sex were moderately impor-
tant. The test track (morning or evening RST), medication use, ISS occupancy, scheduled EVAs, and workload 
were rated lower, meaning that they were not consistently among the 10 most important predictors of LRM-50. 
Variable rankings based on node purity (Fig. S5) were similar to those noted in Fig. 5, though node purity-based 
importance tended to be more stable across Monte Carlo iterations.

Prediction accuracy of the ensemble model. Our analyses indicate that the ensemble model per-
formed better than any single model alone over various training lengths t  after forward-chaining cross-validation 
(Fig. 6). In testing data, the ensemble model achieved the lowest MSE on average (Table S6); it out-performed all 
3 of its constituent models for t ≥ 20 , but was out-performed by the LME for shorter training lengths t < 20 . In 
the training data, the random forest model achieved the lowest MSE for all values of t .

Many of the largest MSE values were due to "spikes" in a participant’s LRM-50 score that were unanticipated 
by all of the models (Fig. S6). In terms of the average MAE-based error, which is more robust to large prediction 
errors from spikes, the ensemble model continued to outperform the other models. However, its lead over the 
other models was less pronounced (Fig. S7).

While the previous results were based on the models’ fit on the full set of covariates, we also asked if per-
formance was preserved if the model was fit on a subset. This subset of "Top 10" variables was determined 
by the variable importance ranking in “Importance ranking of predictors of LRM-50” section: they were the 
lagged LRM-50, noise, temperature, stress/fatigue composite, pre-flight OPS, age, caffeine doses, radiation, "Very 
Stressed," and total sleep missed. We also considered the models’ fit on the Top 10 variables excluding noise 
(due to its high interpolation rate) and including  CO2 and  O2 (which were environmental factors of interest and 
ranked highly in terms of node purity-based importance). This defined 4 additional models (Table S6), which 
all performed similarly, though models excluding the noise variable achieved the highest errors.

Modelling the outcome as a standardized LRM-50 score, scaled by each participant’s average and standard 
deviation, led to similar performance as before, with the ensemble again outperforming its components (Fig. S8). 
Slight improvements in performance of the ensemble and functional regression models were achieved when 
replacing the LRM-50 score with the standardized version.

Finally, prediction accuracy was comparable when predicting more than 1 observation in the future. In addi-
tion to varying training length t  , we also varied the length of the test set (i.e., the number of future observations 
to predict in each cross-validation loop), up to 7 observations. Because the RST was administered twice a day 
every 4 days, this corresponded to an average chronological horizon of 15.32 days ahead. Overall, prediction 
accuracy was stable as the horizon grew, with marginal increases in MSE for predictions further out (Table S7).

Figure 4.  A screenshot of the R Shiny application implementing the ensemble prediction model. In the 
left panel, the user may "toggle" the value of each predictor (pre-set to averages observed for the individual 
astronaut). In the right panel, the resulting individualized predicted LRM-50 score for the selected participant is 
displayed (blue star at bottom of graph), along with the distribution of that astronaut’s observed scores over the 
entire in-flight period. The prediction was made given the most up-to-date information for the astronaut, and 
the red and green regions correspond to that astronaut’s worst 15% and best 15% scores overall.
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Nonlinear and time‑varying associations between environmental factors and alertness. To 
explore the modeled relationships between environmental conditions and LRM-50, we examined the corre-
sponding LME coefficients (Table S8) and functional concurrent regression heat maps (Fig. 7). In both models, 
we found that better predicted outcomes (i.e., lower LRM-50) was associated with lower radiation dose, higher 
 CO2 exposure levels, and fewer ISS occupants. Noise levels appeared to be associated with better performance; 
however, the majority of noise observations were imputed, and we refrain from interpreting this finding.

While the LME estimated positive effects of increased  O2 and temperature on predicted LRM-50, the func-
tional model revealed that these associations may be non-monotonic, suggesting that values either higher or 
lower than a certain range can affect vigilant attention negatively. In particular, partial pressures of  O2 between 
160 and 170 mmHg were linked to better predicted performance. The model predictions also suggest better 
PVT-B performance at low partial pressures of  O2 (< 140 mmHg). Temperatures between 21.5 and 22.5 °C and 
higher than 23 °C were associated with better predicted performance.

In addition to the concurrent radiation levels, we calculated cumulative radiation doses for each person on 
each day of their mission, defined as the cumulative sum of daily exposure values in mGy. While cumulative 
radiation dose was found to be an important predictor for LRM-50 on top of concurrent radiation (Supplemen-
tary Methods 1), its inclusion did not ultimately improve model performance even when limited to variables 
ranked high in importance (Table S9).

Individualized predictions. An astronaut’s LRM-50 score can be predicted at an arbitrary number of 
future time points, but this requires knowledge of environmental conditions and other covariates at those time 
points. In practice, we may obtain the best prediction at a particular time point by re-fitting the model on all pre-
vious data from that individual, as well as all data collected from other participants. After fitting the model, pre-
dictions are then made using the observed covariates from that day. By repeatedly re-fitting the model and pre-
dicting the next LRM-50 score at each observation, we are able to compare the entire sequence of the observed 
and predicted performance for each participant (Fig. 8). To estimate sampling variation, bootstrap confidence 
intervals and interquartile range can be obtained by bootstrapping participants (i.e., sampling individuals’ entire 
time series with replacement). We bootstrapped at the level of participants in order to preserve trends across 
the mission. The root mean squared error (RMSE) of these "chained" predictions over time ranged from 3.93 to 
12.11 among astronauts (Fig. S9).

 

Figure 5.  A variable’s importance was measured by the increase in mean squared error (MSE) by permuting 
that variable in a random forest model. Variable importance rankings were obtained from 100 resampling draws. 
The resulting "Top 10 Rate" (x-axis) describes how a given variable, over resampling trials, is repeatedly among 
the 10 most important variables in a random forest model. We then defined the Top 10 variables as those which 
scored higher on this metric; these consisted of the lagged LRM-50 through Total Sleep Missed (green text). 
Arrows next to names refer to the direction of association in the linear mixed effects model (Table S8): " <  < " 
represents association with lower LRM-50 (better performance) and vice versa for " >  > ". Due to low counts, 
the EVA variables were not included in the linear mixed effects model. (OPS = Overall Performance Score; 
RST = Reaction Self-Test; ISS = International Space Station; EVA = extravehicular activity).
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Discussion
The spaceflight environment is host to a plethora of psychological, operational, and environmental hazards. In 
this paper, we proposed an ensemble model to predict vigilant attention in astronauts over the course of a space 
mission. In contrast to previous methods that employed a single prediction  method25 or  ensemble26, ours includes 
a dynamic component to model time-varying covariate effects. While studies of behavioral health in space or 
in ground-based space analog environments have traditionally focused on a small number of  stressors7,46,47, our 
method addresses the intertwined and time-dependent effects of several concurrent stressors. The resulting model 
flexibly and accurately predicts PVT-B performance. We also identified the most important predictors of behav-
ioral alertness as a combination of individual traits, dynamic psychological state, and environmental conditions.

Ensembles of machine learning models are increasingly popular in human health studies due to their flex-
ibility and accommodation of non-standard data  types48. Our results suggest that, in settings where the goal is 
the prediction of a time-varying outcome given a combination of person-level and irregularly measured time 
series, ensembles which include a functional concurrent  regression32 are able to capture dynamic effects in a 
powerful way. Furthermore, the incorporation of models with both scalar and functional random effects is useful 
for individualized predictions (Fig. 8).

Model performance. The ensemble model achieved the best prediction accuracy, outperforming the ran-
dom forest, LME, and functional regression models in terms of test set MSE. While the random forest had the 
lowest training MSE, the disparity between its performance on training and test sets suggests that this model 
may have overfit the data. Interestingly, for most models, the MSE increased as the length of training data t  
increased, even though we often expect errors to decrease with more training data. One possible explanation is 
that, for longer training periods, the test set took place later in a person’s mission, when the drivers of perfor-
mance may be different. This may explain why functional regression and LME, which both assume autocorrela-
tion between successive observations, had larger errors in the training set when training time t  increased. By 
contrast, the random forest does not consider the elapsed time in mission.

In space missions, we are often precisely interested in identifying those exceptional times when individuals 
are at their worst. MSE is a more useful error metric for gauging performance in this case, because it is more 
sensitive to extreme errors compared to MAE. In our data, higher MSEs were driven by the aforementioned large 

Figure 6.  Prediction accuracy among each of the component models and the ensemble. Model performance 
was measured using the mean squared error (MSE) in predicting LRM-50, described in “Model validation”. A 
standardized measure that can be used to compare prediction accuracy for outcome data with different sizes and 
magnitudes was obtained by dividing the root MSE (RMSE) by the standard deviation (sd) of the outcome. The 
RMSE/sd represents the ratio of the model error to the overall variation of the outcome observed in the data.
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and unanticipated "spikes" in LRM-50, which tended to occur in the latter half of missions. Prediction at these 
spikes worsened as training length t  increased, which may also have contributed to the observed "C" shape when 
plotting MSE against t  (Fig. 6). These observations, together with the superior performance of the ensemble 
model in terms of both MSE and MAE, imply that the ensemble is a suitable and robust choice for time series in 
which periods of low variability are interspersed with occasional spikes.

Variable importance. Several predictors ranking highly in importance in our analyses have been previ-
ously explored in conjunction with PVT performance, including  age49, sleep duration and time  awake50, ambient 
 temperature6,51, and lagged PVT performance (performance history)52,53. We note that importance is a measure 
of relative predictive power within the random forest model; EVA events and medication use could have been 
labeled as "less important" if they did not exhibit sufficient variability in our data, despite their relevance to per-
formance in theory. The distinction between morning and evening RSTs was found to be less important, poten-
tially due to the lack of large differences in LRM-50 distribution by test track (Fig. S10). Any differences were 
likely due to late evening RST administrations and chronic partial sleep loss in astronauts; this is because vigilant 
attention is often relatively stable across the first 16 h of the wake period, before deteriorating quickly as a result 
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Figure 7.  Using predictions from the functional concurrent model, these heat maps show how the non-linear 
effects of environmental variables on LRM-50 vary over time in mission (ranging from 0 to 1 representing 
the proportion of mission time elapsed). The same functional concurrent model, which was fit on the entire 
observed data, was used for each panel. For each environmental variable, predictions were made at a regular 
grid of time points between 0 and 1, and at all observed values of that environmental variable. All other variables 
were held at their average (continuous) or reference (categorical) value. The marginal distribution of the 
environmental variable observations is displayed as a rug plot (orange lines) above the x-axis. We find that better 
predicted performance (i.e., lower LRM-50, indicated by lighter yellow regions) is generally associated with 
lower radiation dose, moderate to higher temperatures, higher  CO2, and moderate and lower  O2.
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of increasing homeostatic pressure and waning circadian promotion of alertness. Finally, collinearity between 
variables may have affected our results (Fig. S11): for example, poor sleep quality was positively correlated with 
total sleep missed, which could explain why the former did not rank higher in importance when both variables 
were in the model. Contrary to prior studies, caffeine was associated with worse predicted  performance54 in the 
LME analysis, possibly due to its inverse correlation with sleep quality and duration, suggesting that caffeine was 
consumed because of insufficient sleep but was not able to counteract the neurobehavioral effects of insufficient 
sleep.

Nonlinear associations of LRM‑50 and environmental stressors. Through heatmaps from the 
functional concurrent regression, we also qualitatively investigated the non-linear effects of environmental con-
ditions on neurobehavioral performance. We found that space radiation is associated with worse performance, 
which has been established in rodent studies involving a PVT  analogue55,56, but not in humans. The mechanism 
underlying radiation-related damage to cognitive function is not yet  understood10,12, and this association bears 
further investigation.

Although the effects of  CO2 exposure on performance are  debated57, we observed a beneficial effect of  CO2 
consistent with a recent report in astronaut-like  individuals58. Temperatures of 23–25 °C were also associated 
with better predicted LRM-50, consistent with a previous study finding better performance at "cool" temperatures 
of 26 °C51. However, other studies have not detected an effect of temperature on  alertness59. Also,  O2 exposure 
levels showed non-linear relationships with PVT performance, where low  O2 concentrations were related to 
better PVT performance, possibly due to the inverse relationship between  O2 and  CO2. Some of the effects of 
 CO2,  O2 and temperature may be explained by central nervous system arousing properties of these exposures 

Figure 8.  At each time point and for a given astronaut, LRM-50 can be predicted by fitting the model on all 
preceding data from that astronaut and the full data from other astronauts. The prediction (solid green line) is 
then made using covariate values from that time point. Sampling variability, given by the height of the error bars 
at each predicted value, was estimated as the interquartile range of predicted values from 100 bootstrap samples. 
In order to preserve time-varying trends, individuals were bootstrapped. The actual values of LRM-50 are 
displayed as hollow yellow circles. To protect astronauts’ privacy, the x-axis is the proportion of elapsed mission 
time rather than calendar time. (A) A participant with prediction error in the highest (worst) 25th percentile 
(Root mean squared error (RMSE) = 8.87). (B) A participant with prediction error in the lowest (best) 25th 
percentile (RMSE = 4.56).
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once they move outside a range that can easily be accommodated by homeostatic processes (e.g., increase in 
respiration depth and frequency as well as arousal with high  CO2  concentrations60). Finally, as most of the heat-
maps indicated, the brighter regions of better LRM-50 performance were predicted to occur at later timepoints 
when keeping the value of environmental stressor fixed. As individual performance did not generally improve 
over time, we conjecture that environmental stressors were gradually less coupled with poorest performance, 
potentially because individuals learned to adjust to the ISS environment. It should be noted that these heatmaps 
are meant to be hypothesis-generating rather than confirmatory, especially since some of the regions are sup-
ported with little data.

Applications, limitations, and future directions. Our findings have three main applications. First, 
the models were used to identify relevant predictors of objectively assessed alertness via PVT-B in spaceflight. 
Self-assessments of fatigue and stress, temperature and radiation exposure, caffeine consumption, and past PVT 
performance were identified as principal correlates of performance. This variable selection can inform space 
agencies of future areas to concentrate research and mitigation measures.

Second, a tool that can visualize relationships between two predictor variables, such as the R Shiny applica-
tion (Fig. 4) and functional regression heat maps (Fig. 7), could facilitate the generation of future hypotheses 
that can later be empirically tested.

Third, exploration-class space missions will involve communication delays and require more crew autonomy. 
Self-administered tests that assess readiness-to-perform can therefore be a helpful tool in guiding astronaut 
operational decisions. Using the most current environmental and RST measurements, the predicted LRM-50 
score could be incorporated into assessments of astronaut readiness ahead of mission critical tasks and EVAs. 
For new participants (i.e., individuals whose data did not inform model fitting), the predicted value would be 
heavily weighted on the group average. This highlights the importance of using a representative sample for model 
fitting. Our data, which represents one of the largest studies of neurobehavioral performance in astronauts on 
the ISS, would be a suitable option for making predictions in astronauts, and the R shiny application is a good 
first step in this direction. However, further validation and tests of astronaut acceptability are required before 
such a tool could be used in spaceflight.

This study also has several limitations. As the main objective of the ensemble model is to optimize prediction 
accuracy, the model does not provide statistical inferences on the significance of the effect of any single predic-
tor on the outcome. The coefficients (if they are available) of each component model are not guaranteed to be 
consistent across models, which may limit interpretability. Second, variable importance rankings are based on 
permutations or splits of a single variable within a random forest model; therefore, higher-order relationships 
between multiple predictors and their importance were not assessed. Third, our ensemble prediction weights 
each model equally, as no model consistently over- or under-performed. Future work could use cross-validation 
to determine these weights empirically. Fourth, the placement of environmental sensors was constrained by the 
requirements of spaceflight, and NASA did not collect ambient light data during the study  period61. We did not 
consider if the missingness of measurements was itself informative. These factors may have affected the esti-
mated associations between environmental stressors, sleep, and neurobehavioral performance. Fifth, as noted 
in a recent  paper34, RST observations and sleep–wake measurements were not collected on a daily basis, which 
limited the ability to measure cumulative sleep loss and assess the effect of circadian misalignments. While our 
model included many variables previously identified as relevant to PVT performance, there may be other envi-
ronmental, socioeconomic, or contextual  predictors62 that we are missing. However, it would be straightforward 
to add new predictors to the existing model. Sixth, the PVT assesses a single cognitive performance domain. 
While vigilant attention is a prerequisite for many real-world tasks, our findings do not necessarily translate to 
more complex cognitive or operational tasks. Finally, we did not externally validate model performance on a 
new group of astronauts, and further work is needed to validate neurobehavioral assessments in spaceflight.

Our statistical methodology has natural extensions. For instance, the ensemble model uses the entire data and 
concurrent measurements to predict LRM-50. When new observations are made, the entire model must be fit 
again on the expanded data. An interesting extension could involve Bayesian updating similar to those developed 
for the unified model of  performance63. In addition, our model only assesses the direct effects of environmental, 
psychological, and operational stressors on LRM-50; however, it would also be useful to understand the indirect 
effects through intermediate variables such as sleep quality and duration. Future work could involve more sophis-
ticated functional mediation analyses that model these relationships  explicitly64. Finally, stressors such as space 
 radiation65 and sleep  loss66 may have smaller day-to-day effects on neurobehavioral performance, but significant 
cumulative effects. While we considered a simple analysis of cumulative radiation, we look forward to study 
designs and methods that can model the effect of concurrent exposures, as well as exposure duration and history.

Conclusions
To our knowledge, our model is the first investigation of the dynamic, non-linear relationships between common 
spaceflight stressors, astronaut demographics, and self-reported ratings of sleep and behavioral state on vigilant 
attention, while also providing individualized predictions of future performance.

The success of spaceflight depends on the physical and mental health of crew members. Our study, based on 
one of the largest datasets of astronaut neurobehavioral performance and sleep in space, has identified promis-
ing avenues in modelling dynamic and personalized profiles of neurobehavioral alertness. Such tools could 
have important implications for safety and decision-making in one of the most high-profile and dangerous 
occupations.
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Data availability
Per funding agency requirements, the RST data analyzed in this study were uploaded to NASA’s Life Sciences 
Data Archive (LSDA; https:// lsda. jsc. nasa. gov) and, together with the environmental data, are available upon 
request from NASA.

Code availability
All R code required to replicate the analyses herein and produce the R Shiny application are available at https:// 
github. com/ danni- tu/ TRISH_ dynam ic_ predi ction.
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