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Abstract: This review evaluates methods, success and limitations of transgenes delivery in central 

nervous system (CNS). Both viral and nonviral (such as liposome mediated) methods, expression 

and stability of transgenes have been discussed. The controlled expression and delivery techniques 

of transgene at the injured or diseased sites have also been discussed. Mifepristone (RU486) and 

tetracycline-based switch system for controlled expression could be a very useful tool for clinical 

purposes. Here we emphasized the importance and consequences of viral- and nonviral-mediated 

transgenes transfer and therapeutic ability along with advantages of controlled expressions.
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Introduction
Damaged neuronal cells in the central nervous system (CNS) could not be repaired/

regenerated, leading to a partial disability or complete paralysis due to disruption of 

communication between brain and body. However, new fi ndings and developments in 

the gene therapy techniques related to CNS have improved the prospects for recovery 

to some extent. While research in this fi eld is still in the early stage, this work could 

lead to the clinical applications that can help to restore lost functions in the wake of 

brain and spinal cord injury. Development of new viral and nonviral vectors with cell 

type specifi c, physiologically-relevant and long term transgene expression at specifi c 

site is under progress. Nonviral vector such as cationic1,2 and anionic liposome3 shows 

no-immune response or toxicity to host. Genetically engineered cells and direct DNA 

transfer4 have also shown potential in certain experimental paradigms. This review 

provides an update and recent advancement in the gene therapy techniques related to 

CNS diseases and injuries.

Potentials of therapeutic genes in CNS injury and disorders
Many therapeutics genes, such as nerve growth factor (NGF), brain-derived neuro-

trophic factor (BDNF), B-cell lymphoma-2 (BCL-2), heat shock protein (HSP), etc, 

could be used to prevent and cure CNS related injuries or disorders (Table 1).

NGF gene for therapeutic applications
Nerve growth factor (NGF) is the prototypical neurotrophic factor having ability to protect 

peripheral sensory and sympathetic neurons from programmed cell death (apoptosis).5 

Studies done so far have shown that direct CNS administration of recombinant growth 

factors including NGF can rescue damaged neurons and promote regeneration.2,6 In 

addition, NGF is able to protect adult sensory and sympathetic neurons against a variety 

of insults that include axotomy, ionophore treatment, exposure to hydrogen peroxide 

and excitatory amino acids.7,8 Localized diffusion of gene products into targeted region 

of CNS parenchyma could secrete proteins only within CNS regions relevant to neuro-

pathological states, thus limiting the peripheral side effects.9 The intracerebroventricular 
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injection of NGF gene increases mNGF (messenger RNA of 

NGF) levels in the hippocampus that causes increased choliner-

gic neurotransmitter synthetic enzyme choline acetyltransferase 

(ChAT) activity within the brain.9 Chronic intraventricular 

injection of rhNGF (recombinant human Nerve growth factor) 

via cannulae for 21 days increased synaptosomal high affi nity 

choline uptake, choline acetyltransferase activity, and [3H] 

acetylcholine synthesis by 50%–90% compared to lesion 

control values.10 Cholinergic neurotransmission defi cits after 

traumatic brain injury (TBI) might be the result of presynaptic 

alterations in the storage and release of acetylcholine (Ach) or 

due to conformational changes in the receptors for Ach.11

BDNF gene for therapeutic applications
Brain-derived neurotrophic factor (BDNF) is well docu-

mented for their therapeutic role in the development and 

survival of injured CNS. BDNF is known to stimulate axon 

outgrowth, branching, proliferation, differentiation, and can 

work as neurotransmitter.12 BDNF have also been implicated 

in synaptic plasticity,13 long-term memory,14 and expression 

of NMDA receptors.15 Loss of NMDA receptors is a cause 

of memory impairment16,17 after injury.18,19 BDNF is found 

in soluble form and induces differentiation and survival 

of neurons by binding to its receptor known as trkB. TrkB 

receptors are present in three isoforms, namely full length 

isoform TK+, and two truncated isoforms, TKT1 and TKT2, 

in the cellular membrane of mammalian CNS. In fact, trkB is 

a part of tyrosin kinase receptor group20 capable of adding a 

phosphate group at tyrosin/serine/theronine residues on target 

proteins after interaction with BDNF. While trkB kinase is 

activated by BDNF, NT-3, and NT-4, but the other subtypes 

trkA and trkC are activated by NGF and NT-3, respectively. 

The cationic lipid-mediated BDNF gene transfection in primary 

hippocampal cell cultures enhances recovery of neurofi lament 

loss produced by CNS injury.1 BDNF gene transfection could 

increases phosphoinositide 3-kinases (PI3-kinases) activity 

in CNS cells. PI-3 kinases are family of related enzymes 

capable of phosphorylating the 3-position hydroxyl group 

of the inositol ring of phosphatidylinositol. PI-3 kinases play 

important role in a variety of cellular responses such as mito-

genesis, membrane traffi cking and preventor of apoptosis.21 

Moreover, BDNF has been shown to induce anti-apoptotic 

mechanisms after stroke that reduces infarct size and secondary 

neuronal cell death. BDNF is also a potent stimulator of adult 

neurogenesis.22 Apart from that BDNF is able to protect the 

brain from infl ammatory brain injury in bacterial meningitis.23 

Increasing the level of BDNF is an effective way to decrease 

mortality and to improve sequela upon bacterial meningitis.

BCL-2 gene for therapeutic applications
BCL-2 gene is known for the synthesis of anti-apoptotic protein. 

The name BCL-2 has been derived from B-cell lymphoma 2, 

and its anti-apoptotic group includes BCL-2 proper, BCL-xl, 

and BCL-w. Herpes simplex virus (HSV)-mediated delivery of 

BCL-2 gene into hippocampus and striatum in vivo can attenuate 

the damaging effects of ischemic brain.24 Over-expression of 

BCL-2 gene prevents the release of apoptosis-inducing factor.25 

The post-ischemic injection of adeno-associated virus (AAV)-

containing BCL-2 gene has a neuroprotective effect that inhibits 

ischemic neuronal cell death.26 BCL-2 gene may also delay 

disease progression in chronic degenerative disorder such as 

Parkinson’s disease.27 6-Hydroxydopamine (6-OHDA) is a 

Table 1 Therapeutic applications of various genes in central nervous system diseases and their current status

S No. Gene types Diseases Current status References

1. NGF Alzheimer’s disease (AD), Huntington’s 
disease, Neuroblastoma, Neuronal tube 
defects (NTD), Seizure

Phase I clinical trial is in progress
Over-expression of NGF is able to 
sort out the problems related with NTD

110–115

2. BDNF Bacterial meningitis (BM), Parkinson 
disease (PD), Fragile X syndrome

BDNF rescues from BM and genetic 
variation in BDNF affect risk for PD

23, 116

3. BCL-2 Parkinson disease, Ischemic brain injury BCL-2 inhibits caspase-3 activation 
and DNA fragmentation.

24, 27, 117

4. HSP70/72/75 Focal cerebral ischemia HSP protect and improves the 
neuron survival

32, 118

5. IL-lra Ischemia and local brain injury, Seizure, 
Neurotrauma

Different family of IL-1ra reduces 
the risk of different kinds of CNS injuries

119, 119

6. Combination of 
NGF/BDNF/BCL-2/HSP 
genes

Various other neurological diseases Combination of genes could short 
out many neurological/CNS diseases

Work is in 
progress

Abbreviations: BCL-2, B-cell lymphoma-2; BDNF, brain-derived neurotrophic factor; HSP, heat shock protein; IL-lra, interleukin-lra; NGF, nerve growth factor.
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neurotoxin to dopaminergic neurons. BCL-2 produced by the 

vector prevented 6-OHDA-induced degeneration of neurons 

and increased the surviving capabilities of TH (tyrosine 

hydroxylase) immunoreactive neurons in the Substantia 

Niagra two weeks after the lesioning.28 Administration and 

expression of BCL-2 gene in adult rat CNS neurons prevent 

retrograde cell death and minimizes atrophy.29 In vivo neuro-

protection of injured CNS neurons occurs by an injection of a 

DNA plasmid encoding the BCL-2 gene.30 Overexpression of 

BCL-2 gene in primary cultured neurons protects an insult in 

cAMP receptor dependent manner, whereas protection is not 

seen against severe traumatic insults.31 These informations 

will provide a new insight into the molecular therapeutics for 

neurodegenerative conditions in future.

HSP72 genes for therapeutic applications
Heat shock protein 72 (HSP72) protein is expressed into 

the brain after stroke and seizures and is able to remove 

denatured proteins from a cell to assist new protein synthesis. 

Gene transfer therapy with defective HSV-vector over 

expressing HSP72 improves neuronal survival against focal 

cerebral ischemia and systemic kainic acid administration.32 

Overexpression of HSP72 gene into rat brain can improve 

striatal and hippocampal dentate gyrus neuron survival after 

systemic kainic acid administration. The transgenic mice 

over-expresing HSP72 could attenuated hippocampal injury 

after focal cerebral ischemia.33

Interleukin-1 receptor antagonist genes 
for therapeutic applications
Interleukin-1 (IL-1) acts as a cofactor and is responsible 

for infl ammatory reaction after transient ischemia and local 

brain injury. Central and systemic administration of an IL-1 

receptor antagonist (IL-1ra) reduces ischemic brain injury in 

short-term. IL-1ra is usually produced by the normal brain cells 

that produce IL-1. The adenovirus vector mediated over expres-

sion of human IL-1ra gene can attenuate ischemic infl ammatory 

response in the mouse brain and infl ammation based neuronal 

diseases.34 The mechanism involves binding of IL-1ra to the 

receptor of IL-1 preventing infl ammatory reaction in ischemic 

cortex, striatum and corpus callosum regions. It is still unknown 

whether IL-1 is responsible for neuronal cell death directly or 

exacerbates other forms of damage or both.

Ex vivo transfer mediated 
therapeutic applications 
for CNS injury and disorders
Ex vivo gene transfer is a potential means of treating chronic 

neurological disorders and injury related neural degeneration. 

In this approach cells are modifi ed genetically in vitro and 

then transplanted to the injured site of CNS. Injured cell 

replacement therapy is not suitable due to the blood–brain 

barrier (BBB). To circumvent the BBB, ex vivo gene therapy 

is most acceptable and is able to traverse the BBB or other 

membranes of the CNS. Fibroblast, peripheral nerves, astro-

cytes, and myoblasts cells could be used for the ex vivo gene 

therapy in the CNS.

Fibroblast cells modifi ed with NGF genes have been 

transplanted into the brain and spinal cord to provide neu-

rotrophic factors and substrates for axonal growth and elon-

gation. NGF secreting fi broblast cells transplant have been 

shown to prevent degeneration of cholinergic neurons in the 

basal forebrain of primates. Transplant induces sprouting of 

sensory, motor, and noradrenergic neurites after spinal cord 

injury. The controlled and targeted expression of tetracycline-

regulated ex vivo delivery of NGF is possible at transplanted 

sites.34 Genetically transduced Schwann cells grafted to 

spinal cord injury sites increase axonal growth by the over 

expression of NGF.35,36 When fi broblasts cells, genetically 

modifi ed to secrete NGF, BDNF, NT-3, and basic fi broblast 

growth factor (bFGF), transplanted into the central gray mat-

ter of the spinal cord in the adult rats, sensory neurites of 

dorsal root origin extensively penetrated NGF-, NT-3-, and 

bFGF-secreting grafts, whereas no growth has been found 

in BDNF-secreting grafts.37

Injured CNS tissues and damaged neurons are unable to 

regenerate their axons spontaneously. Genetically modifi ed 

peripheral nerves can be implanted ex vivo, in transected 

sciatic nerve, avulsed ventral root, hemi-sected spinal cord, 

and intact brain to overexpress the transgene encoding growth 

promoting NT-3 proteins that improves the permissive proper-

ties of the nerves.15 The rat fi broblasts, genetically modifi ed to 

produce NT-3, grafted to acute spinal cord dorsal hemisection 

lesion cavities showed signifi cant partial functional recovery 

in corticospinal axon growth at distal to the injury site.38

Astrocytes originated from CNS have effi cient secretory 

mechanisms to play an important role in neuronal growth. 

Human adult astrocytes modifi ed with specifi c transgene 

could be used for ex vivo gene therapy. Ex vivo cell trans-

plantation decreases the chances of immunological rejection 

at minimum level and thus obviating the side effects of 

immunosuppressors.39

Myoblast cells40 and astrocytes41 could be genetically 

modifi ed to express tyrosine hydroxylase (TH) and dopa-

mine in culture. These modifi ed myoblasts, not showing 

immuno-rejection property, might be used as gene carriers 

for ex vivo gene therapy in the CNS. Thus, ex vivo gene 
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therapy in the CNS could be an effi cient and convenient tool 

for the future.42 Defi ciency of beta-glucuronidase (GUSB) 

causes multisystem progressive degenerative syndrome, 

mucopolysaccharidosis (MPS) type VII (Sly disease), in 

adult brain that could be cured by transplanting engineered 

GUSB-secreting cells to super-secrete the normal enzyme 

for export to surrounding neural tissues.43

Controlled expression of therapeutic 
genes in CNS
There is a need to control the transgene expression to prevent 

adverse effects of overexpression. The concept of molecular 

switches is based on the use of tissue-specifi c promoters, 

which confers restricted expression of transgene appropri-

ately within the tissue. Appropriate regulation means the 

capability of the system to turn the transgene on and off in 

response to symptoms (expression) of the targeted disease. 

Many gene switch systems are available to control transgene 

expression but in CNS, mifepristone (RU486), and tetracy-

cline (tet)-based switch systems are important.

Transgene regulation by inducible 
promoter (mifepristone)
Transgene expression can be controlled by using a specifi c 

promoter whose activity can be controlled by mifepristone,44 

a progesterone hormone antagonist. Mifepristone is a 

19-nonsteroid which has a specifi c high affi nity binding to 

the progesterone and glucocorticoid receptor. Mifepristone-

responsive gene switch system has become most attractive 

for an application in traumatized CNS. The synthetic 

progesterone antagonist readily crosses the BBB when 

administered systemically.45 In this system the transgene 

to be regulated is placed under transcriptional control 

of a promoter, which in turn is activated by a specifi c 

transactivator, consisting of a fused tripartite protein. The 

tripartite proteins are Gal4 (Yeast DNA-binding domain), 

HBD (mutated progesterone receptor that binds specifi cally 

to mifepristone), and VB 16 (activation factor derived 

from HSV). The vector used for gene therapy encodes the 

fusion protein, and either a cytomegalovirus (CMV) or 

tissue-specifi c promoter, which drives its expression after 

delivery. In its native state, the transactivator does not 

induce transgene transcription but binding of mifepristone 

to the transactivator enable the administered transactivator 

to immediately initiate the transgene expression. This 

switch system has been used to regulate genes systemically 

when transferred with either plasmid DNA46 or adenoviral 

vectors,47 or in conjunction with HSV vector-mediated gene 

transfer.48 With inclusion of a mifepristone-responsive gene 

switch into gene delivery vector, transgene expression could 

be regulated according to therapeutic need.

Transgene regulation by tetracycline 
antibiotic-based gene switch
Tetracycline-based switch system is based on the use 

of inducible elements and factors along with transgene, 

regulated by the administration of a second-step drug or 

by the end product. Based on the above principle, highly 

controlled gene expression of recombinant Ad and AAV 

vectors using combinations of a tissue-specifi c promoter and 

a tetracycline transcription factor have been constructed.49 

Thus, it is possible to transfer a putative therapeutic gene to 

specifi c tissue in a completely dormant state. Expression of 

the dormant gene can be induced by the oral administration 

of a second-step drug (rapamycin or mifepristone) that directs 

the formation of an active transcription factor complex on 

the silent promoter of the transferred gene. Despite the above 

information, no literature is available to show a switch based 

promoter in AAV vector for the transfer of therapeutic gene 

in brain injury. In contrast, a switch based promoter with 

stable expression of a constitutive AAV-erythropoietin vector 

in non-CNS tissues has been successfully demonstrated. 

Moreover, the regulation of tet-promoter is simple because 

gene induction or repression is being controlled by only 

one protein. Also, this switch system can be packaged into 

a single vector due to smaller size of tet-transactivator and 

tet-regulatable promoter. The minimal CMV promoter is 

fused to the tet-operator sequence to stimulate transcription 

of tet-transactivator in the absence of tetracycline. Tet-

regulatable gene expression system can release NGF-GFP 

(green fl uorescent protein) in a controlled manner from 

primary rat fi broblasts in a dose-dependent manner by the 

exposure to the tet analog doxycyline.50

Recent developments in CNS 
gene delivery vectors/carriers
Many techniques (such as viral and nonviral vectors, 

chemical carriers, and physical forces) could be used for 

targeted delivery of transgenes at the diseased or injured 

CNS site (Figure 1).

Viral vectors for CNS therapeutic 
gene delivery
Viral vectors have become important tool for the gene 

delivery at particular site in the brain. Different strategies are 
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used to deliver genes to CNS and enhance its distribution. 

One way is to inject the viral vectors directly into the cerebral 

lateral ventricles (LVs). By this way, virus will be delivered 

throughout the CNS.51 Another way is to inject at multiple 

sites to cover a large volume. Some agents such as Mannitol52 

and heparin53 are used to increase the distribution of vectors. 

Some important viral vectors have been discussed below.

Simple viral vectors
Herpes simplex virus (HSV) vectors
HSV is a neurotrophic virus having ability to establish a 

life-long latent state in neurons. It is an enveloped (envelope 

contains at least 10 glycoproteins) double-stranded DNA 

encoding more than 80 identifi ed genes bearing 152 kb 

viral genome. HSVs infect neurons by rapid retrograde 

axonal transport mechanism, thus providing a means of 

gene transfer to targeted cells that are not easy to reach 

directly.54 Two types of HSV-vectors were constructed for 

gene transfer: recombinant virus (RV) and amplicon vectors. 

Recombinant replication-conditional viruses contain one 

or more mutated genes (such as r34.5 or ICP6) in the full 

genome to reduce overall toxic effects. Replication defective 

RV vectors or multiplication-defective genomic HSV vec-

tors were constructed by deleting all immediate-early (IE) 

genes such as ICP0,55 ICP4, ICP22, ICP27, and ICP4756,57 

that encode transactivating factors. Such deletion eliminated 

expression of other viral genes56,58 that may be toxic to cells. 

These multiple gene-deleted vectors have many advantages: 

(a) can propagate to high titers in the complementing cell 

lines, and (b) long-term expression of latency associated 

transcripts (LATs) in genome does not depend on IE-genes. 

This provided a chance to construct a highly defective HSV-

vector that can readily persist in a latent state in neurons, and 

transgenes could be expressed using the LAT promoter. Basi-

cally HSV amplicon based vectors are plasmid-based DNA 

constructs. A typical HSV amplicon construct contains, in 

addition to the gene of interest, a copy of HSV replication 

origin (oris) and packaging signal (pac). When these vectors 

were introduced into cells together with a helper HSV, the 

amplicon plasmid DNA effi ciently amplifi ed and packaged 

into viral particles. Helper virus free amplicon stock could 

be generated by co-transfecting amplicon set of cosmids 

or BAC plasmids containing fragmented or modifi ed HSV 

genome.59

The HSV amplicon mediated gene transfer has many 

advantages over recombinant HSV vectors. These advantages 

include nontoxic and nonimmunogenic responses to the target 

cells, since amplicon based vectors do not encode any viral 

gene products. Amplicon is a multiple gene delivery system 

because each amplicon contains 10–15 copies of the inserted 

gene due to its concatemeric form. This gives much higher 

expression of transgene in comparison to recombinant virus 

• HSV
• Lentivirus
• Retrovirus
• Recombinant adeno-associated virus
  (rAAV)   
• SV40 virus
• Helper-dependent adenoviral vector
  (hdAdV)

• HSV/AAV hybrid
• HSV/EBV
• HSV/EBV/Retrovirus
• Ad/AAV
• Ad/Retrovirus

• Cationic and anionic liposome
• FuGene6
• Poly[α-(4-aminobutyl)-L-glycolic
  acid] (PAGA) 
• Peptide (eg, Cys–Trp–Lys)
• Polyethylene glycol (PEG) 
• etc.

• Electroporation
• Bioblastic or biolistic
  (Gene gun)
• Ultrasound
• etc.

Transgene delivery
vectors/carriers 

Viral
vectors/carriers 

Nonviral
vectors/carriers 

Simple viral
vectors/carriers 

Hybrid viral
vectors/carriers 

Chemical
carriers 

Physical forces
carriers 

Figure 1 Vehicles for gene delivery in central nervous system to regenerate the damaged cells.
Abbreviations: AAV, adeno-associated virus;  Ad, adenovirus; EBV, Epstein–Barr virus; HSV, herpes simplex virus; SV-40, simian virus 40.
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containing similar type of gene cassette.60 Moreover, it is 

easy to insert gene of choice into amplicon vectors that has 

long-term transgene expression in different areas of CNS.61 

In order to improve the proportion of amplicons generated, 

a selection system for amplicon production is developed in 

which the HSV thymidine kinase (TK) gene is inserted into 

an amplicon plasmid and an HSV mutant with both TK and 

glycoprotein H (gH) genes deleted is used as a helper.60 HSV 

virus has been designed in which the prokaryotic Cre–loxP 

site-specifi c recombination system is employed. In this 

system, gH-helper virus is engineered in such a way that 

loxP sites fl ank both copies of its packaging signals and thus 

generated stocks with high amplicon titer and much improved 

amplicon over helper virus ratio. The injection and expression 

of HSV vectors containing β-NGF gene under the transcrip-

tional control of either human cytomegalovirus immediate 

early promoter (HCMV Iep) element or HSP-latency active 

promoter (HSV-LAP2) produced biologically active NGF in 

transfected PC-12 cells. HSV virus-mediated NGF synthesis 

induces expression of superoxide dismutase and catalase, 

and is effective in protecting cells from apoptosis induced 

by hydrogen peroxide.62 Replication defective genomic 

HSV vector mediated transfer of β-NGF, under the control 

of either the LAP2 or HCMV Iep promoter, into the knee 

joint of animals has been effective for treatment of peripheral 

neuropathesis.57 Amplicon HSV has a lot of advantages but 

it still has some limitations because it is usually diffi cult to 

generate a stock with a high amplicon titer and high ratio of 

amplicon to helper virus.

Lentivirus vectors
Lentivirus vectors are derived either from the HIV-1 

(human immunodeficiency virus type-1) vector or FIV 

(feline immunodeficiency virus) vector after genetic 

manipulation63,64 and able to carry 8 kb of sequence to any 

neuronal cell type with sustained expression in which normal 

cellular functions are not compromised either in vitro or in 

vivo.65 HIV-1-derived vectors have ability to integrate into 

the host genome of dividing and nondividing cells, and 

hence can be utilized for the transfer of genes with stable 

expression even in post-mitotic neurons. Lentiviral vector-

encoded beta-galactosidase transgene showed very effi cient 

transfer, integration, and sustained long-term expression 

without showing any pathology in adult rat brains. In vivo 

gene transfer using lentiviral vector depends on a functional 

integrase protein.66 A recent report suggests that lentiviral 

vectors surpass retroviral vectors in effi cient long-term 

and stable gene transfer in adult neural stem cells.67 On the 

other hand, the HIV-1 has a broad host range and can infect 

brain, liver, and muscle cells. The targeted transduction of 

transgene in the CNS was achieved using specifi c envelope 

glycoproteins to pseudotype lentivrial vectors. The use of 

Ebola-pseudotyped virus, Mokola-pseudotyped, and murine 

leukemia virus (MuLV)-pseudotyped lentiviral vectors are 

more effi cient and stable alternatives to vesicular stomatitis 

virus glycoprotein (VSV-G)-pseudotyped vector gene for 

the transduction of transgene in mouse CNS.68 Despite of 

these developments the clinical application of both the 

HIV-1 and FIV vectors for CNS has yet to be confi rmed 

experimentally.

Retrovirus vectors
The higher and unequal effi ciency of retroviral vectors to 

integrate their genome into host cell chromosomal DNA 

has made it the fi rst choice for many gene therapy applica-

tions. In many clinical trials so far no single case has been 

reported which attributes adverse events of insertional 

mutagenesis, caused by retrovirus vector application. The 

vectors have 8.5 kb of transgenes fl anked by retroviral long 

terminal repeat (LTR) regions, a virion packaging signal, and 

a primer binding site for reverse transcription. After delivery 

into cells, double-stranded DNA sequences can be reversely 

transcribed which can then get integrated randomly into host 

cell genome. This vector has limited use for gene delivery to 

CNS because of their ability to transfer genes only to dividing 

cells, yet have been well suited for on-site delivery to neural 

precursors for lineage studies.69

Recombinant adeno-associated viral (rAAV) vectors
There are 11 AAV serotypes have been reported so far.70–72 

They infect cells from several diverse tissue types. Capsid 

serotype is the main determinant of tissue specifi city and 

pseudotyping of AAV vectors to alter their tropism range 

for their use in gene therapy. Different serotypes can bind 

to different cellular receptors. Among these, serotype 2, 4, 5 

(AAV2, 4, 5) have been studied most extensively73,74 and are 

found effi cient for transduction in the mammalian brain.73 

rAAV vector is the vector of choice for gene delivery to 

neurons due to several advantages: (a) easy to manipulate 

genetically, (b) ability to transduce most tissues including 

terminally differentiated cells, (c) purifi cation to high titers, 

and are (d) relatively safe. The replication defective recom-

binant adenoviruses are commonly used as gene transfer 

vectors because of their less immunogenicity and ability to 

transduce both neurons and glial cells effi ciently.75 rAAV-

mediated in vivo gene transfer has demonstrated effi cient 
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long-term transduction (from three months to more than 

1.5 years), lack of cytotoxicity and cellular immune response 

in target tissues, especially in the CNS.76

The contamination risk could be eliminated in rAAV 

production by (i) substituting adenovirus with a plasmid-

bearing E2a, E4orf6, and VA helper function, and (ii) growing 

on HEK 293 cells which express Ad E1a and E1b.77,78 There 

are two types of toxicity due to (a) aggregation of rAAV 

with cell lysate proteins, and (b) residual hyperosmotic CsCl
2
 

during purifi cation step.79 Both types of toxicity could be 

removed by substitution of density centrifugation with iso-

osmotic and inert medium iodixanol. Affi nity chromatography 

is being used for high level of purifi cation of rAAV.80,81 

The heparin sulfate proteoglycan (a cellular receptor for 

attachment and infectivity of AAV-281) and virion-specifi c 

monoclonal antibodies82 could be utilized as core facility 

for the purifi cation and production of rAAV using ligand 

specifi c matrix chromatography. Moreover, rAAVs have 

been developed having capability to express human proto-

oncogene BCL-236 that confers an ability to block neuronal 

death after transient ischemia. rAAVs have capability to 

package 6.6 kb vector sequence that could be used for gene 

therapy for hemophilia A and other diseases with large cDNA 

such as muscular dystrophy and cystic fi brosis.83

Aromatic L-amino acid decarboxylase (AADC) 

converts L-dopa to dopamine. The AADC gene encoded in 

rAAV vectors has been used for therapy purposes to treat 

Parkinson’s disease.84 Prevention of dopaminergic neuron 

death by AAV vector-mediated glial cell derived neuro-

trophic factor (GDNF) gene transfer in rat mesencephalic 

cells has also been reported.85 The behavioral recovery in 

5-hydroxydopamine-lesioned rats by co-transduction of 

striatum with tyrosine hydroxylase and AADC genes using 

two separate AAV vectors is possible.85 Although, rAAV has 

shown its potential in gene therapy, further improvements 

are needed to consider for clinical uses.

Simian virus 40 (SV40) vectors
SV40 virus is a member of the nonenveloped particle of 

polyoma family of viruses with double stranded circular DNA 

genome of 5.25 kb. SV40-derived vectors can express both 

in vitro or in vivo with long term transgene expression either 

into caudate-putamen or lateral ventricle after injection.86 

For transgene expression in CNS, rAAV utility is measured 

in comparison to SV40. SV40 can package genomes up 

to 5.7 kb without diffi culty after deleting structural genes. 

rSV40s (recombinant SV40) do not elicit detectable neutral-

izing antibody responses.87

Helper-dependent adenoviral vectors
Third generation adenovirus vectors (AdV), called gutless 

or helper dependent adenoviral vector (hdAdV), have 

been developed that retain only the sequences necessary 

for packaging and replication of viral genome and lack all 

structural genes75 thus extending the cloning capacity of the 

vector (up to 37 kb). This novel construct has capacity to 

propagate to high titers without contaminating helper Ad virus 

using a Cre-lox-based recombinase system. Gene transfer by 

hdAdV demonstrated persistent gene expression with negligi-

ble toxicity in peripheral organs such as liver.88,89 hdAdV has 

been used to transduce genes to CNS for stable gene transfer 

that signifi cantly prolonged transgene expression (up to 183 

days).89 The number of macrophages and T lymphocytes 

infi ltrating the brain could be greatly reduced in hdAdV-

treated host in comparison to fi rst generation adenovirus 

(fgAd)-treated host.6 The hdAdV provides equally eff icient 

or higher infectivity but signif icantly reduced toxicity than 

fgAd vectors.90 Low toxicity is extremely important for 

the clinical applications of hdAdV as a future tool for gene 

delivery to CNS. Studies delivering α−antitrypsin and leptin 

gene using hdAdVs in vitro or in vivo have shown that these 

fully deleted Ad vectors can provide high-level, long-term 

gene expression with improved tolerance due to absence 

of the viral genome.88,89 However, hdAdV infection causes 

moderate but signifi cant changes in cell function and viability 

at excessive viral titers in primary neuronal cultures.91

The expected improvements for clinical use of hdAdVs 

are: (1) to remove all helper viruses from the hdAdV 

preparation to avoid even trace amount of contamination, 

(2) development of targeted hdAdVs to localize gene trans-

fer to specifi c cell types, (3) production of high-titer vector 

without the cost of contamination by wild-type AAV, and 

(4) use of molecular switches for controlled expression of 

transgene by the vectors. Moreover, it is possible that some 

of improvements can be achieved through the construction 

of hybrid viral vectors utilizing two different viruses.

Hybrid viral vectors
These vectors are also known as chimeric or hybrid viral 

vectors and constructed or developed to achieve reproducible 

and stable gene delivery to the CNS or other parts of the 

body. Such kind of hybrid vectors has been constructed to 

incorporate different viral elements with particular features 

to stabilize the transgenes at transfected site. Various types of 

vectors have been constructed by utilizing the combination of 

two or more viral elements or gene sources. Some important 

hybrid viral vectors have been discussed below.
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HSV/AAV hybrid amplicon vectors
The hybrid amplicon vectors contain oris and pac signals of 

HSV-1 and ITR sequences of AAV to fl ank the transgene. 

It was produced either with or without the AAV rep gene 

to evaluate its importance in producing sustained transgene 

expression in human glioma cells.92 The hybrid amplicon 

vector extended transgene expression in dividing human 

glioma cells well beyond the capacity of HSV amplicons. 

Higher transduction effi ciency in primary neuronal cultures 

and longer expression of the transgene in neurons were 

also noted in hybrid amplicon-mediated gene transfer in 

comparison to AAV and AdV.93,94

HSV/EBV and HSV/EBV/retrovirus hybrid 
amplicon vectors
Amplicon elements of HSV, latent origin of DNA replication 

(ori-P), and Epstein–Barr nuclear antigen-1 gene (EBNA-1) 

elements of Epstein–Barr virus (EBV) are used to construct 

HSV/EBV hybrid vector. Inclusion of ori-P and EBNA-1 

increased the stability of transgene during replication in the 

dividing cells.95 A hybrid vector having the character of HSV 

and retrovirus has also been constructed.96,97 This hybrid 

HSV/retrovirus vector confers ability of retrovirus vector 

to transduce into both dividing and nondividing cells in a 

single step of infection. Since this new construct has ability to 

transduce into nondividing cells it can be effi ciently utilized 

for the transfer of gene in CNS.

Ad/AAV hybrid vectors
This hybrid vector encodes the AAV Rep78 protein and an 

ITR-fl anked transgene.98 Another type of Ad/AAV vector 

consist of an AAV ITR-fl anked transgene in which the AAV 

Rep isoforms are conjugated to the Ad-virion via poly-lysine 

bridge to site specifi c delivery of the transgene.

Ad/retrovirus hybrid vectors
This chimeric vector is constructed to increase the transfec-

tion capability and to successful expression of transgene in 

the neighboring cells. When any cell is transfected by the 

hybrid (Ad/retrovirus) vector, transfected cells produce two 

types of functional progeny: a retroviral packaging functions 

and retroviral vector/transgene sequences. The progeny after 

release can infect neighboring cells leading to the incorpora-

tion of transgene.91

Nonviral vectors for CNS therapeutic gene delivery
Problems associated with viral vector gene delivery systems 

(eg, unwanted deleterious immune response or changes in 

the properties of delivered virus due to endogenous recom-

bination and mutagenic behavior leading to oncogenesis) 

lead to the development of nonviral vector delivery systems. 

This contains use of chemical carriers and naked gene 

delivery using electro-poration, gene gun (bio-ballistic or 

biolistic), ultrasound and hydrodynamics (high pressure).

Chemical carriers mediated 
CNS gene delivery
Chemical carriers are designed to protect the delivered DNA 

from nuclease activity. Nonviral vector such as cationic1 and 

anionic liposome3 with no immune response or toxicity have 

been reported. Although, the cationic liposome mediated 

gene transfer to different cell types is successful, this method 

is limited in use due to its lower transfection effi ciency in 

compared to viral systems. A novel compound, FuGene6,99 

has also been tested to transfer gene of choice using reporter 

plasmid pEF-beta galactosidase. This compound has less 

toxicity in comparison to the Lipofectamine, as shown by 

Trypane blue staining.

The novel compound FuGene6, a commercially-available 

cationic lipid, has a very high potential to transfer DNA into 

cells of glial origin, and might be an interesting candidate 

for ex vivo and in vivo gene therapeutic approaches.99 The 

FuGene6-mediated gene transfer is useful to transfer the 

reporter gene β-galactosidase into C6 glioma cells, primary 

glia, and primary neurons.100 The cationic liposome DNA 

complexes (CLDCs) produces signifi cant levels of expression 

of both reporter genes and biologically relevant genes in non-

parenchymal cells lining CNS.9 The intracerebroventricular 

or intrathecal injection of either CLDCs containing the 

β-galactosidase (β-Gal) gene produced patchy and widely 

scattered areas of β-Gal expression. The chloramphenicol 

acetyl transferase (CAT) reporter gene product is present at 

signifi cant levels after single intracerebroventricular injection. 

To improve effi ciency, the fusion proteins derived from the 

Sendai virus is incorporated into cationic liposomes to avoid 

degradation by endocytosis.101 Nonhistone chromatin pro-

teins, a high mobility group protein, have been incorporated 

into the liposome for the transfer of transgene at specifi c 

site.102 Many cationic polypeptides eg, polylysine, spermi-

dine, etc having capacity to bind the negatively charged DNA 

are used to target the gene transfer to the cell linked with 

specifi c ligands. Although liposome mediated gene transfer 

into the brain has nontoxic and nonimmunogenic effect, 

it has low effi ciency of transgene expression in compared 

to the viral mediated transgene expression. The ori-P and 

EBNA-1 gene elements from the EBV have been used in 

the liposome-associated DNA to prolong the stability of the 
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transgene in the dividing cells.103 Biodegradable polymer, 

poly[α-(4-aminobutyl)-L-glycolic acid] (PAGA) a derivative 

of poly-L-lysine is under trial for delivery of transgene. Other 

than PAGA, PEG (polyethylene glycol) and peptide mediated 

(eg, Cys–Trp–Lys) are also under trial.

Physical forces-mediated CNS 
transgenes delivery
Successful transfer of naked DNA into the adult mouse 

brain has been reported. Microprocessor-controlled injector, 

an important tool for nonviral gene transfer technique, has 

successfully been used to deliver the gene into the CNS.40 

Reports are also available to show the use of electroporation 

technique to deliver naked transgene in the skin at particular 

site.104,105 Few reports show the success of in vivo electropora-

tion technique in the nervous system of embryonic mice106 that 

can be used to repair the injured or diseased CNS. In mice brain 

organotypic slice cultures, both biolistics and electroporation 

techniques provide better transfer rate and transgene expression 

than lipotransfection technique107 providing the use of nonviral 

techniques for therapeutic purposes in clinical studies.

Nanotechnology could also be used for the targeted gene 

delivery.108 Research is in progress to use this technology to 

transfer the gene or drug at particular site which is otherwise 

impossible in clinical studies. Studies are in progress to use ultra-

sound as a physical force to introduce transgenes in CNS.109

Conclusion
Genes with good expression ability of therapeutic molecules 

have signifi cant potential in CNS injury. Many viral vectors 

are available to deliver therapeutic genes at target site. How-

ever, CNS gene delivery remains a challenge. A smart viral 

delivery vehicle with optimal gene titer could solve the prob-

lems associated with CNS therapeutic gene delivery. In vivo 

studies suggest that recombinant virus along with lentivirus 

is a better and more promising vehicle for long-term effi cient 

transgene expression in CNS tissues. Other option perhaps is 

a nonviral, targeted transgenes delivery with CNS compatible 

biomaterial. This emerges as a viable option for CNS gene 

delivery and therapeutic expression for use in many neuronal 

diseases. In the place of in vivo gene delivery, ex vivo gene 

delivery techniques looks very exciting for the repair of lost 

tissues after TBI or necrosis in CNS.
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