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Many of the traits associated with elevated rates of speciation, including niche specialization and having small and isolated

populations, are similarly linked with an elevated risk of extinction. This suggests that rapidly speciating lineages may also be

more extinction prone. Empirical tests of a speciation-extinction correlation are rare because assessing paleontological extinction

rates is difficult. However, the modern biodiversity crisis allows us to observe patterns of extinction in real time, and if this

hypothesis is true then we would expect young clades that have recently diversified to have high contemporary extinction risk.

Here, we examine evolutionary patterns of modern extinction risk across over 300 genera within one of the most threatened

vertebrate classes, the Amphibia. Consistent with predictions, rapidly diversifying amphibian clades also had a greater share of

threatened species. Curiously, this pattern is not reflected in other tetrapod classes and may reflect a greater propensity to speciate

through peripheral isolation in amphibians, which is partly supported by a negative correlation between diversification rate and

mean geographic range size. This clustered threat in rapidly diversifying amphibian genera means that protecting a small number

of species can achieve large gains in preserving amphibian phylogenetic diversity. Nonindependence between speciation and

extinction rates has many consequences for patterns of biodiversity and how we may choose to conserve it.
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Impact Summary
The rates of speciation and extinction dictate the frequency at

which new species arise and are lost over evolutionary time.

Characteristics of species that may promote speciation include

being highly specialized to particular environments, existing

in isolated populations, or having a low population abundance.

These same traits are also associated with extinction: special-

ized species are vulnerable to environmental change, species

that exist in isolated pockets lack population connectivity, and

small populations can blink out rapidly. This suggests that

lineages speciating readily due to these traits may also read-

ily lose species. Assessing whether speciation and extinction

rates are correlated is difficult, as measuring extinction based

on fossils can be biased for many groups. However, we are

currently in the midst of observing numerous extinctions in

real time, and observing variation in the species currently at

risk of extinction may serve as a proxy measure for extinc-

tion rate across groups. In this study, we show in amphibians

that lineages that have high ongoing diversification also have a

greater share of species threatened with extinction compared to

slowly diversifying groups. This supports the idea that specia-

tion and extinction may go hand-in-hand. Comparing this pat-

tern in amphibians to other clades reveals a surprising discrep-

ancy: only plants have been found to show a similar pattern.

One mechanism that may produce this link between speciation

and extinction could be the mode of speciation–new species

arising from isolated populations may be highly specialized,

range-restricted, and vulnerable to extinction. In the grand
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scheme for amphibian conservation, evolutionarily distinct

species are less at risk of extinction—and therefore preserving

the amphibian tree of life can be achieved with modest con-

servation goals. If speciation and extinction rise (and fall) in

tandem, this might suggest that lineages may fall along a con-

tinuum of producing few, long-lived species, or many short-

lived species. Linking speciation rates and extinction rates to

each other, and to particular modes of speciation, would be an

important advance in our understanding of how life on earth

diversifies.

Introduction
The evolutionary rates of speciation and extinction, their differ-

ence being diversification rate, shape current patterns of diversity

across the tree of life. Standing diversity varies considerably

across clades, consistent with lineage-specific aspects of biology

influencing speciation rates, extinction rates, or both (Jablonski

2008). Some biological characteristics that may increase spe-

ciation rates include poor dispersal capability (Claramunt et al.

2012), specialization and narrow niche breadths (Rolland and

Salamin 2016), large body size (Liow et al. 2008; Monroe and

Bokma 2009), or persistence at low population size (Stanley

1990). In turn, these characteristics are also predicted to increase

risk of extinction: poor dispersers have limited abilities to

(re)colonize or move to suitable environments (Smith and Green

2005; Sandel et al. 2011), specialists are vulnerable to environ-

mental change (McKinney 1997; Colles et al. 2009), large-bodied

species typically have slow life histories (Cardillo et al. 2005;

Reynolds et al. 2005), and small populations are subject to

demographic stochasticity or extinction from local catastrophies

(Lande et al. 2003; Mace et al. 2008). If similar traits drive both

speciation and extinction rates, then these rates may be positively

correlated across lineages.

Support for a positive speciation-extinction correlation has

remained elusive, in part due to the difficulty of estimating either

rate. There is some evidence for a positive speciation-extinction

relationship from the paleontological record in certain groups

(Stanley 1990), but for many clades the fossil record is poor. Un-

der certain assumptions, it is possible to estimate speciation and

extinction rates separately from phylogenies of extant lineages

(Nee et al. 1994), but resultant extinction rates tend to be sorely

underestimated (Rabosky 2010). However, we are currently in

an era of unprecedented extinction and this unfortunate state

of affairs may allow us to directly compare rates of extinction

across clades as biodiversity losses accelerate. For certain taxa,

clades that seem to have speciated both rapidly and recently

have in turn a greater share of currently rare and threatened

species (Schwartz and Simberloff 2001; Lozano and Schwartz

2005; Davies et al. 2011), consistent with the expectation under

a general speciation-extinction relationship and suggesting that

modern patterns of extinction may serve as a viable surrogate.

Contemporary rates of extinctions are estimated to be mag-

nitudes greater than paleontological rates due to human activi-

ties (Pimm et al. 1995; Ceballos et al. 2015). Importantly, al-

though certain drivers of extinction are different in the modern

context (Harnik et al. 2012a; Condamine et al. 2013), the same

traits associated with modern extinctions have also been linked

with species’ lifespan and mass extinctions in the fossil record

(McKinney 1997). For instance, geographic range size dominates

patterns of modern extinction risk across terrestrial vertebrates

(Cardillo et al. 2005; Sodhi et al. 2008; Lee and Jetz 2011;

Böhm et al. 2016), and similarly is one of the best predictors

of species longevity in the fossil record (Kiessling and Aber-

han 2007; Harnik et al. 2012b; Orzechowski et al. 2015; Smits

2015). Specialization has been linked to both modern extinction

risk and to species durations in terms of both dietary breadth

(Boyles and Storm 2007; Olden et al. 2008; Smits 2015) and

habitat/environment breadth (Heim and Peters 2011; Harnik et al.

2012b; Ducatez et al. 2014). Both abundance and body size af-

fect modern extinction risks across taxa (Cardillo et al. 2005;

Reynolds et al. 2005; Mace et al. 2008). Fossil evidence also

suggests that abundance can dictate the longevity of species

(Kiessling and Aberhan 2007), and that large-bodied species

often have higher background and mass extinction rates (Liow

et al. 2008; Sallan and Galimberti 2015; but see Smits 2015).

If these traits drive both ancient and modern extinctions, and

tend to be conserved within lineages over time, then we may

expect that extant clades with high contemporary extinction risk

should also have high extinction rates over their history. Temporal

changes in threats may shift the traits underlying extinction risk

(Bromham et al. 2012; Lyons et al. 2016), but many of these

traits appear general enough to create consistent long-term dif-

ferences in extinction risk (Harnik et al. 2012b; Finnegan et al.

2015; Orzechowski et al. 2015; Smits 2015). Though this con-

cept has yet to be thoroughly tested, emerging evidence suggests

that lineages suffering high contemporary extinction risk simi-

larly had high rates of extinction in the fossil record (McKinney

1997; Condamine et al. 2013; Finnegan et al. 2015). Examining

modern extinctions may therefore offer an accelerated view of

the same patterns that structure paleontological extinction rates

across clades.

Net diversification rates are easier to estimate than indepen-

dent speciation or extinction rates, but diversification is biased

towards speciation rates for more recent groups such as genera

because extinction must lag speciation (Nee et al. 1994). There-

fore diversification rates in extant lineages are often reflective

of speciation rates, as is typically inferred through analyses of

molecular phylogenies of extant taxa (Rabosky 2010).
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If contemporary patterns of extinction reflect paleontolog-

ical rates, and if diversification rates tend to reflect speciation,

then, under the hypothesis of covarying speciation and extinction

rates, modern rates of extinction should be positively correlated

with diversification rates across young clades. Alternatively, if

extinction and speciation are independent then one would expect

no correlation between modern rates of extinction and clade di-

versification rates. Here, we test this hypothesis using patterns of

diversification and extinction across 329 genera of Amphibia, a

vertebrate group with one of the highest rates of modern extinction

(Hoffmann et al. 2010).

Methods
TAXONOMIC AND PHYLOGENETIC DATA

We identified amphibian genera that had both phylogenetic and

threat status data available that would allow separate estimates

of diversification rate and contemporary extinction risk (N = 329

genera). We delineated genera based on the taxonomy from the

Amphibian Species of the World database v6.0 (Frost 2016) and

included all monophyletic clades that (i) had at least one species

assessed for threat status by the International Union for the Con-

servation of Nature (IUCN) Red List (IUCN 2016), (ii) that had

both crown and stem group ages, and (iii) that had more than two

representatives on the phylogeny for non-mono/ditypic genera

(to mitigate against underestimating crown ages). For each genus

we compiled data on extant species richness, and both crown and

stem group age. Extant species richness (n) was assessed based on

species counts in the Amphibian Species of the World database.

Crown and stem group ages (in millions of years) were estimated

from one of the most extensive published, time-calibrated phy-

logenies for amphibians (Pyron 2014). Net diversification rates

can be estimated either by crown or stem ages (Magallon and

Sanderson 2001). Both estimators have their drawbacks: crown

ages exclude monotypic genera, and stem ages are shared be-

tween pairs of lineages. We therefore considered both stem and

crown diversification-rates using the method-of-moments estima-

tor (Magallon and Sanderson 2001).

EXTINCTION RISK

To characterize the contemporary extinction rate for each clade,

we assessed the proportion of species in each genus that are cur-

rently threatened with extinction. Each amphibian species that

has been assessed by the IUCN Red List (n = 6460; IUCN 2016)

was classified based on their threat category as either “threat-

ened” (IUCN threat categories: Vulnerable (VU), Endangered

(EN), Critically Endangered (CR), Extinct in the Wild (EW),

or Extinct (EX)) or “nonthreatened” (species listed as Least

Concern (LC) and Near-Threatened (NT)). For each genus our

measure of extinction rate was the proportion of “threatened”

species.

RANGE SIZE PATTERNS

Geographic range size is typically the dominant driver of ex-

tinction risk for terrestrial vertebrates (Cardillo et al. 2005;

Sodhi et al. 2008; Lee and Jetz 2011), and evolutionary pro-

cesses can shape patterns of geographic distributions consider-

ably (Barraclough and Vogler 2000). Species range-restriction

has also been associated with heightened rates of speciation in

some taxa (Jablonski and Roy 2003; Price and Wagner 2004), in-

cluding certain groups of amphibians (Eastman and Storfer 2011;

Wollenberg et al. 2011). To investigate whether relationships

between extinction risk and diversification might be mediated

through species’ range size patterns we examined associations be-

tween genera diversification rate and the mean logarithmic extent

of occurrence across species. Range size, in km2
, was estimated

for 6311 species based on extent of occurrence polygons from the

IUCN (IUCN 2016).

ANALYSIS

To determine the role of evolutionary diversification on contem-

porary patterns of extinction across genera we used phylogenetic

generalized linear models, which can control for phylogenetic

autocorrelation in extinction risk across genera. Extinction risk

(proportion of threatened species per genus) was fit with a bi-

nomial error distribution. Models were run using uninformative

priors for 2 × 106 generations with a 2 × 105 burn-in, and a

sampling interval of 1000. We compared models examining the

relationship between proportion of species threatened per genus

and species richness, crown and stem age, and diversification

rate based on stem or crown ages. Species richness and lineage

ages were loge transformed, and crown diversification rate was

square root transformed, to improve their distributions. To de-

scribe the relationship between mean species’ range size (loge

transformed) and diversification rate across genera, we used the

same modeling approach with a Gaussian error distribution. The

significance of richness, age, and diversification were evaluated

based on the 95% credibility intervals (CI) of the coefficient esti-

mates. We calculated the mean correlation coefficient (r) between

predicted and observed genus extinction risk to evaluate the fit for

each model. Analyses were performed using the package “MCM-

Cglmm” (Hadfield 2010) in R v. 3.3.3.

Results
Extinction risk was distributed unevenly across the amphibian

genera, with rapidly diversifying clades having a greater share

of threatened species (Fig. 1); this holds true for diversification

rates estimated from both stem ages (β = 7.55, 95% CI = 1.32,
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Figure 1. Plot of the proportion of globally threatened species and diversification rate across amphibian genera, showing a positive

relationship between extinction risk (proportion species threatened) and net diversification rate calculated using (A) stem age (n = 329)

and (B) crown group age (square root transformed, n = 247). Gray lines indicate the fitted relationships (1800 samples) drawn from the

posterior distribution of the models.

14.66, pMCMC = 0.02, Fig. 1A) and crown ages (β = 4.16,

95% CI = 1.70, 6.53, pMCMC < 0.001, Fig. 1B; these two

diversification estimates were moderately correlated, r = 0.69).

Diversification rate (for both stem and crown group age) was the

best evolutionary descriptor of the distribution of threat across

these clades, as neither species richness, stem age, nor crown age

had a significant influence on extinction risk (Table 1).

Considering only the subset of genera that have both crown

and stem diversification rates (and so have at least two species)

we found that the relationship between contemporary extinction
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Table 1. Summary of generalized linear models relating loge (genera species richness), loge (age), and net diversification rate (square

root transformed for crown diversification rate) to patterns of extinction risk (proportion of threatened species) for all genera with stem

ages (top, including monotypic genera, n = 329) and all genera with crown ages (bottom, n = 247).

Variable β (95% CI) pMCMC Pagel’s λ (95% CI) r

Species richness 0.108 (−0.08, 0.26) 0.201 0.43 (0.33, 0.51) 0.047
Stem age −0.345 (−0.83, 0.16) 0.170 0.44 (0.35, 0.51) 0.081
Stem diversification rate 6.735 (0.91, 12.61) 0.018 0.43 (0.35, 0.51) 0.087
Species richness 0.189 (−0.04, 0.39) 0.094 0.42 (0.33, 0.50) 0.097
Crown age −0.339 (−0.76, 0.06) 0.120 0.43 (0.33, 0.51) 0.083
Crown diversification rate 4.162 (1.70, 6.53) < 0.001 0.43 (0.33, 0.51) 0.178

Coefficients represent the posterior mean and correspond to a logit link, and r represents the correlation between observed and model predicted genus

extinction risk.

risk and stem diversification was even stronger in this subset

(β = 11.42, 95% CI = 3.96, 21.02; pMCMC = 0.01),

suggesting that monotypic genera may contribute to uncer-

tainty in the pattern. Although explanatory power was gen-

erally modest (Table 1), the models are robust: the propor-

tion of threatened species significantly increases with crown

diversification rate when removing when removing both the

most rapidly diversifying, and highly threatened, clade Telma-

tobius (β = 3.78, 95% CI = 1.52, 6.40, pMCMC = 0.001),

and also when removing the 10% highest diversifying clades

(n = 224; β = 3.41, 95% CI = 0.49, 6.27, pMCMC = 0.026).

Across these 329 genera there was a strong phylogenetic

signal in average species’ range size (Pagel’s λ = 0.73, 95% CI =
0.54, 0.82), and in addition to having a greater share of threatened

species, rapidly diversifying genera also contained species with

smaller mean geographic ranges (β = –11.00, 95% CI = –3.08,

–18.24, pMCMC = 0.004, Fig. 2A; β = –3.47, 95% CI = –0.79,

–6.18, pMCMC = 0.01, Fig. 2B).

Discussion
The positive relationship between the proportion of currently

threatened species and their evolutionary diversification across

amphibian genera is consistent with theory linking speciation and

extinction rates across clades. Importantly, diversification rate had

a much stronger influence than lineage age or species richness,

suggesting that the process of speciation itself could be driving

this relationship.

The causal mechanisms expected to simultaneously drive

speciation and extinction rates are general across biodiversity

(Stanley 1990), suggesting that this pattern should be widespread.

Although evidence of a positive correlation between these rates

has been found in fossil data among different groups (Stanley

1979; Jablonski 1986; Gilinsky 1994; Liow et al. 2008), there

appears to be little support for a link between diversification

and modern extinction risk across other vertebrates. Neither birds

(Jetz et al. 2014), nor mammals (Verde Arregoitia et al. 2013),

nor squamate reptiles (Tonini et al. 2016), exhibit any association

between evolutionary distinctiveness (a species-level measure of

diversification; Jetz et al. 2012) and threat status. The only other

group where a direct link between diversification and extinction

risk has been demonstrated is within angiosperms from the Cape

of South Africa (Davies et al. 2011). In this highly endemic re-

gion, the youngest, rapidly diversifying clades also have a greater

share of threatened species. This pattern of heightened extinction

risk in diversifying plant clades may be a general phenomenon, as

species rarity rises in tandem with clade richness in vascular plants

across both taxonomic levels and geographic realms (Schwartz

and Simberloff 2001; Lozano and Schwartz 2005). This raises a

key question: what do amphibians have more in common with

plants than with their tetrapod counterparts?

A pattern of positively correlated speciation and extinction

may ultimately be driven by mode of speciation. Amphibians of-

ten have specialized breeding habitat requirements and are gener-

ally poor dispersers (Smith and Green 2005; Wells 2007), which

may produce many small, geographically isolated populations

that in turn encourage speciation. This form of peripatric spe-

ciation may predominate for amphibians, as has been suggested

for plant speciations in South Africa and observed in the height-

ened rates of species rarity in speciose plant families (Schwartz

and Simberloff 2001; Lozano and Schwartz 2005; Davies et al.

2011). Under this hypothesis, rapidly speciating clades would pro-

duce a preponderance of range-restricted species that are in turn

highly threatened by anthropogenic drivers (Sodhi et al. 2008).

Indeed, we found that genera diversification rate was negatively

correlated with average species’ range size, consistent with peri-

patry being a potential mechanism driving an association between

speciation and extinction. Alternatively, it may not be that peri-

patric speciation dominates in amphibians, but rather that some

other biological trait both drives diversification and tends to limit

range size, for example small body size or narrow niche breadths

(Wollenberg et al. 2011; Slatyer et al. 2013). We might also expect
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Figure 2. Plot of mean species’ geographic range size (km2) and net diversification rate across amphibian genera, calculated using

(A) stem age and (B) crown group age (square root transformed). Gray lines indicate the fitted relationships (1800 samples) from the

posterior distribution of the models.

that species’ geography, and its heritability, could play an impor-

tant role driving both speciation and extinction across clades if

certain physical environments or biomes concurrently drive both

processes. Understanding how the form and tempos of speciation

relates to species’ characteristics will be critical to unraveling

these evolutionary patterns of extinction in the amphibians.

Another compelling question concerns how these patterns of

impending extinction might shape the future amphibian tree of

life. We can estimate the expected loss of phylogenetic diversity

based on current patterns of extinction risk: if all currently threat-

ened species were lost across the 329 genera in our dataset, then

we would lose 21.55% of genus-level phylogenetic diversity.
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However, an even distribution of threat across these same gen-

era would result in significantly less phylogenetic diversity loss

at 20.05% (95% CI = 19.0%, 21.1%; see electronic supplemen-

tary material). This runs counter to the typical expectation for the

loss of evolutionary history when speciation and extinction are

positively correlated (Heard and Mooers 2000; but see Parhar and

Mooers 2011). Interestingly, our result is due to a subset of clades

facing complete lineage extinction, in that all species are threat-

ened. Saving just one species, irrespective of identity, in each of

these genera (n = 20) would prevent the loss of an estimated 1.4

billion years of evolutionary history. From this perspective the

most effective method to preserve amphibian biodiversity in an

age of contemporary mass extinction may entail shifting some

focus from species to lineages, even if this means allowing some

extinction of phylogenetically redundant species in rapidly diver-

sifying lineages.

A link between speciation and extinction rates has many

consequences for shaping past, present, and future patterns of

biodiversity. It may suggest that lineages fall along a slow-to-

fast continuum for species turnover, where rapidly speciating lin-

eages produce short-lived, extinction-prone species due to shared

traits driving both speciation and extinction processes in tandem

(Stanley 1990). There is some limited evidence for this includ-

ing patterns of higher species turnover in large-bodied mammals

(Liow et al. 2008; Monroe and Bolkma 2009), that speciose plant

clades may both produce and lose many rare species (Schwartz

and Simberloff 2001; Davies et al. 2011), the reduced species

longevity and heightened origination of range-restricted marine

gastropods (Jablonski 1986), and the elevated speciation and ex-

tinction rates of specialist taxa generally (Colles et al. 2009;

Rolland and Salamin 2016). The lack of association between evo-

lutionary distinctiveness and threat among birds (Jetz et al. 2014),

mammals (Verde Arregoitia et al. 2013), and reptiles (Tonini et al.

2016), may indicate that either these patterns do not arise at the

taxonomic scale of species or that high clade turnover obscures

the relationship between net diversification and extinction risk in

these groups. Analyzing this same question at the species-level for

amphibians might help resolve this paradox and, importantly, ac-

count for other processes driving contemporary extinction risk that

may have contributed to the fairly low explanatory power of diver-

sification at the genus level. For instance, a species-level analysis

would allow us to assess the role of geography in patterns of diver-

sification and extinction in amphibians (see, e.g., Pyron and Wiens

2013). However, this crucial step is currently precluded by the lack

of a fully sampled amphibian phylogeny necessary for such an

analysis. To account for turnover, independently estimating speci-

ation and extinction rates, perhaps through combining both fossil

and molecular phylogenetic data in well-sampled clades, will be

key to assess whether speciation and extinction rates are con-

currently driven by biological characteristics across a diverse set

of taxa.

Ecological limits may also be crucial to a positive speciation-

extinction correlation. Clades near their carrying capacity, where

speciation and extinction balance out, may be expected to exhibit

the positive relationship we report here, while clades in their

diversity “growth phase” may be able to escape this trade-off

(Rabosky 2009; Etienne et al. 2012). This growth phase may be

associated with novel ecological opportunities or adaptations that

may allow some high turnover clades to temporarily decouple

speciation and extinction rates and undergo adaptive radiations

(Rabosky and Lovette 2008). Understanding the conditions that

maintain, or break down, any relationship between speciation and

extinction rates will be key to our understanding of the long-term

temporal dynamics of biodiversity.

Here, we demonstrate that net diversification is associated

with a greater contemporary extinction risk across amphibian

genera. This pattern is consistent with the theory that speciation

and extinction rates may be driven by the same suites of traits,

or by common geography, resulting in clades that both rapidly

diversify and lose species. Nonindependence of speciation and

extinction rates would add a new piece to both understanding

temporal patterns of biodiversity and how we may aim to prioritize

and manage that biodiversity in the present.
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