
Diabetic retinopathy, a major complication of type 1 and 
2 diabetes, is characterized by damage to the retinal micro-
vasculature, which can eventually lead to impaired vision and 
blindness [1]. In addition to producing vascular dysfunction 
in the retina, diabetes also damages the neurons [2]. The 
purpose of investigating transcriptional gene expression was 

to concurrently measure changes to the neurons, glia, and 
vasculature as diabetes progresses in the rat retina. These 
genes included those related to glutamate neurotransmission 
and transport. The expression of vascular endothelial growth 
factor (VEGF), erythropoietin (EPO), and insulin-like growth 
factor-1 (IGF-1) were also measured since they have neuro-
protective properties in addition to their effects on the retinal 
vasculature.

Glutamate is the predominant excitatory neurotransmitter 
in the retina [3]. This study focused on ionotropic glutamate 
receptors, which are divided into three classes based on their 
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Purpose: This study investigated changes in the transcript levels of genes related to glutamate neurotransmission and 
transport as diabetes progresses in the Long-Evans rat retina. Transcript levels of vascular endothelial growth factor 
(VEGF), erythropoietin, and insulin-like growth factor binding protein 3 (IGFBP3) were also measured due to their 
protective effects on the retinal vasculature and neurons.
Methods: Diabetes was induced in Long-Evans rats with a single intraperitoneal (IP) injection of streptozotocin (STZ; 
65 mg/kg) in sodium citrate buffer. Rats with blood glucose >300 mg/dl were deemed diabetic. Age-matched controls 
received a single IP injection of sodium citrate buffer only. The retinas were dissected at 4 and 12 weeks after induction of 
diabetes, and mRNA and protein were extracted from the left and right retinas of each rat, respectively. Gene expression 
was analyzed using quantitative real-time reverse-transcription PCR. Enzyme-linked immunosorbent assay was used to 
quantify the concentration of VEGF protein in each retina. Statistical significance was determined using 2×2 analysis 
of variance followed by post-hoc analysis using Fisher’s protected least squares difference.
Results: Transcript levels of two ionotropic glutamate receptor subunits and one glutamate transporter increased after 
4 weeks of diabetes. In contrast, 12 weeks of diabetes decreased the transcript levels of several genes, including two 
glutamate transporters, four out of five N-methyl-D-aspartate (NMDA) receptor subunits, and all five kainate receptor 
subunits. Diabetes had a greater effect on gene expression of NMDA and kainate receptor subunits than on the α-amino-
3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits, for which only GRIA4 significantly decreased 
after 12 weeks. VEGF protein levels were significantly increased in 4-week diabetic rats compared to age-matched 
control rats whereas the increase was not significant after 12 weeks. Transcript levels of VEGF and VEGF receptors 
were unchanged with diabetes. Erythropoietin and IGFBP3 mRNA levels significantly increased at both time points, 
and IGFBP2 mRNA levels increased after 12 weeks.
Conclusions: Diabetes caused significant changes in the transcriptional expression of genes related to ionotropic glu-
tamate neurotransmission, especially after 12 weeks. Most genes with decreased transcript levels after 12 weeks were 
expressed by retinal ganglion cells, which include glutamate transporters and ionotropic glutamate receptors. Two genes 
expressed by retinal ganglion cells but unrelated to glutamate neurotransmission, γ-synuclein (SNCG) and adenosine 
A1 receptor (ADORA1), also had decreased mRNA expression after 12 weeks. These findings may indicate ganglion 
cells were lost as diabetes progressed in the retina. Decreased expression of the glutamate transporter SLC1A3 would 
lead to decreased removal of glutamate from the extracellular space, suggesting that diabetes impairs this function of 
Müller cells. These findings suggest that ganglion cells were lost due to glutamate excitotoxicity. The changes at 12 
weeks occurred without significant changes in retinal VEGF protein or mRNA, although higher VEGF protein levels 
at 4 weeks may be an early protective response. Increased transcript levels of erythropoietin and IGFBP3 may also be 
a protective response.
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affinity for the glutamatergic agonists N-methyl-D-aspartate 
(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propio-
nate (AMPA), and kainate [3]. In previous work, diabetes was 
found to alter the expression of selected glutamate receptor 
subunits in the retina of Wistar rats with up to 4 months 
of diabetes [4,5] and in diabetic patients without signs of 
retinopathy [6], but an overall pattern of changes was not 
apparent. The NMDA receptor antagonist memantine was 
shown to reduce retinal vascular and neuronal changes in 
a rat model of diabetes [7]; therefore, understanding iono-
tropic glutamate receptor dysfunction in diabetes may have 
therapeutic importance. Glutamate transporters are also key 
constituents in glutamatergic neurotransmission because 
they regulate the extracellular concentration of glutamate. 
The glutamate transporter SLC1A3 (also known as GLAST) 
takes up extracellular glutamate into Müller cells [8]. Another 
type, the vesicular glutamate transporters (VGLUTs), medi-
ates glutamate uptake into the synaptic vesicles of excitatory 
neurons [9]. Previous work showed that diabetes impairs 
glutamate metabolism and transport in the retina [10-13].

To provide further information on retinal and glial cells, 
the transcript levels of the neural- and glial-related genes 
γ-synuclein (SNCG), glial fibrillary acidic protein (GFAP), 
and adenosine A1 receptor (ADORA1) were measured. SNCG 
is expressed in retinal ganglion cells [14]. It is implicated in 
the pathogenesis of breast tumors and Alzheimer disease, 
but the normal physiologic function of SNCG is unknown 
[15]. GFAP is an intermediate filament protein expressed in 
glial cells. Increased protein levels of GFAP, which indicates 
glial reactivity, were found in one study of early diabetic 
retinopathy [12]. ADORA1 is expressed on retinal ganglion 
cells and blood vessels [16].

VEGFA and EPO have neuroprotective and angiogenic 
properties. In addition to being found in retinal blood vessels, 
VEGF expression has been found in several retinal layers, 
including the inner nuclear layer (INL), outer nuclear layer 
(ONL), and ganglion cell layer (GCL), and within the cyto-
plasm of retinal ganglion cells and glial cells [17-19]. Similar 
to VEGFA, EPO has angiogenic properties [20]. It is mainly 
expressed in the kidney, but the retina also expresses EPO 
along with the EPO receptor (EPOR) [21,22]. In addition to 
effects on the vasculature, VEGFA and EPO have neuro-
protective effects in the brain and retina [23-26]. Similar to 
VEGF and EPO, the IGF-1 system is involved in angiogenesis 
and neuroprotection [27]. IGF-1 is normally bound to one of 
six binding proteins (IGFBP1–6), which prolongs its half-life 
in the circulation. The IGFBPs also function independently of 
IGF-1 [28], although their roles have not been fully elucidated. 
A study of patients with proliferative diabetic retinopathy 

showed that they had significantly increased IGF-1 and 
IGFBP2 protein levels in the vitreous [29].

This study measured transcriptional gene expression 
in the pigmented Long-Evans rat retina at 4 and 12 weeks 
of diabetes. The results showed concurrent changes in the 
expression of genes related to glutamate neurotransmission, 
glutamate transport, VEGF, EPO, and IGFBPs.

METHODS

Induction of diabetes: These experiments were approved by 
the Northwestern University IACUC and conformed to the 
NIH Guide for the Care and Use of Laboratory Animals. 
Pigmented Long-Evans rats between 50 and 57 days old 
(Harlan Laboratories, Madison, WI) were maintained on a 12 
h:12 h light-dark cycle, and had access to standard rat chow 
and water ad libitum. The rats were assigned to four groups: 
4-week control rats, 4-week diabetic rats, 12-week control 
rats, and 12-week diabetic rats. Each group comprised of six 
rats. Diabetes was induced with a single intraperitoneal (IP) 
injection of streptozotocin (STZ; Axxora, San Diego, CA; 65 
mg STZ/kg rat, 6.5 mg/ml) in 0.05 M sodium citrate buffer 
(pH 5). Rats with blood glucose levels greater than 300 mg/
dl 2 days after induction were deemed diabetic. Three rats 
each from the 4-week diabetic and 12-week diabetic groups 
had blood glucose levels below 300 mg/dl and were rein-
jected with STZ. None of the rats were treated with insulin. 
Age-matched control rats received a single IP injection of an 
equivalent volume of sodium citrate buffer (0.01 ml/g rat). 
Blood glucose levels were measured from the tail vein 2 
days after the injections and weekly thereafter using a Bayer 
CONTOUR Meter (Bayer HealthCare, Mishawaka, IN). The 
meter read “HI” if blood glucose exceeded 600 mg/dl. Those 
readings were set to 600 mg/dl for averaging. Readings were 
usually taken in the morning under non-fasting conditions. 
Rats were also weighed every week.

Sample collection and preparation: After 4 and 12 weeks of 
diabetes, the rats were anesthetized with 5% isoflurane and 
decapitated. Each retina was immediately dissected from the 
eye as previously described by Winkler [30]. The retina was 
then frozen on dry ice and stored at −80 °C.

Quantitative real-time reverse-transcription polymerase 
chain reaction: Total RNA was extracted from the right 
retinas using RNeasy Lipid Tissue Mini Kit (Qiagen, 
Valencia, CA). The cDNA was synthesized by reverse tran-
scription of 1 µg RNA primed with oligo(dT) and random 
9-mers. The primers were designed using PerlPrimer [31] as 
previously described [32]. The forward and reverse primers 
were limited to 18–20 base pairs (bp) in length. The generated 
amplicon varied from 69 to 110 bp. The primer sequences and 
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PCR conditions for each gene are given in Appendix 1. The 
cDNA synthesized from the samples was used as a substrate 
for quantifying messenger RNA (mRNA) expression levels 
by quantitative RT–PCR in the presence of SYBR Green 
(Stratagene, La Jolla, CA). The amount of mRNA of each 
gene was normalized to acidic ribosomal phosphoprotein (P0) 
mRNA for each rat [33]. Then, data from the six rats in each 
group were averaged. Graphs in the Results section show 
the normalized mRNA levels and relative mRNA scaled to 
4-week control rats.

VEGF protein measurements: Protein was extracted from the 
left retinas by homogenization in lysis buffer (10 mM Tris 
pH 7.4, 1.0 mM Na3VO4, and 1% sodium dodecyl sulfate) at 
95 °C. The lysates were incubated at 95 °C for 5 min. The 
samples were then centrifuged and the supernatant collected. 
Protein samples were stored at −80  °C until analyzed. 
Sodium dodecyl sulfate was removed using Pierce Detergent 
Removal Spin Columns (Pierce Biotechnology, Rockford, 
IL). Total protein concentration was quantified using the 
Pierce bicinchoninic acid (BCA) Protein Assay Kit (Pierce 
Biotechnology). The Quantikine Rat VEGF Immunoassay 
(R&D Systems, Minneapolis, MN) was used to quantify the 
concentration of VEGF protein in each retina. The antibody 
in the immunoassay recognized the VEGFA 120 and 164 
isoforms. VEGF protein concentration was then normalized 
to the total protein concentration for each rat.

Statistics: All values are reported as mean ± standard error 
of the mean (SEM) unless otherwise stated. A data point 
was considered an outlier if it was greater than two standard 
deviations from the mean of the group. Data sets with outliers 
were GRIN2D, GRIA2, VGLUT2, VGLUT3, insulin-like 
growth factor binding protein 2 (IGFBP2), and IGFBP3. 
These data sets were Winsorized at the fifth percentile [34,35] 
to minimize the effects of the outlier. The first step in the 
Winsorization process was to first sort all 24 measurements 
in a data set from lowest to highest. Then, the lowest and 
highest values were replaced with the next value in the data 
set. Thus, the mRNA levels for the five genes listed above 
are reported as the Winsorized mean and SEM. The data for 
IGFBP2 were averaged from two separate qRT-PCR runs. 
Statistical significance was determined using a two-factorial 
analysis of variance (ANOVA) with two levels in each factor 
(2×2 ANOVA) and was defined as p<0.05. The factors for 
the ANOVA were time point (levels: 4 weeks and 12 weeks) 
and treatment (levels: control and diabetic). Fisher’s protected 
least significant difference was used for post-hoc analysis. 
StatView (SAS Institute, Cary, NC) was used to perform the 
statistical analyses.

RESULTS

Streptozotocin-induced diabetes: All the STZ-treated rats 
exhibited characteristics of diabetes. The rats’ blood glucose 
levels were over 300  mg/dl and remained consistently 
hyperglycemic until the animals were euthanized (Figure 
1A). Several rats lost weight after STZ treatment, and all 
the diabetic rats gained weight slower than the age-matched 
control rats (Figure 1B). They also showed symptoms of poly-
uria. The age-matched control rats had normal glucose levels, 
consistently gained weight until euthanized, and showed no 
signs of polyuria.

Transcriptomic analyses: The significant changes in mRNA 
expression found from post-hoc tests following ANOVA are 
discussed below. The complete results of the ANOVA are 
summarized in Appendix 2.

NMDA receptor subunits: All the ionotropic glutamate recep-
tors are tetrameric proteins that form cation channels. The 
NMDA receptor is a heterotetramer formed by two conserved 
NR1 subunits encoded by the gene GRIN1 and two NR2 
subunits encoded by the genes GRIN2A–D [36]. GRIN1 
is more abundantly expressed in the retina than the other 
subunits (Figure 2A). Its expression levels in the 12-week 
diabetic rats were significantly lower than in the 12-week 
control rats and the 4-week diabetic rats (p<0.05). The 
12-week diabetic rats also had lower GRIN1 mRNA levels 
than the 4-week control rats, but the difference did not reach 
significance (p=0.0610). For the genes GRIN2A, GRIN2B, 
and GRIN2D, the transcript levels were significantly 
decreased in the 12-week diabetic rats compared to each of 
the three other groups (p<0.002, p<0.01, and p<0.03, respec-
tively). The mRNA expression pattern for GRIN2C differed 
from that of the other NMDA receptor subunits (Figure 2B). 
GRIN2C was significantly increased in the 4-week diabetic 
rats compared to the age-matched control rats (p<0.02).

AMPA receptors: Similar to the NMDA receptors, the 
AMPA receptors are heterotetramers. Each AMPA receptor 
is composed of two conserved subunits of GluR2, which is 
encoded by GRIA2 and is the most abundantly expressed 
subunit in the retina (Figure 3A). The other two subunits 
are GluR1, GluR3, or GluR4, which are encoded by GRIA1, 
GRIA3, and GRIA4, respectively. The AMPA receptor 
subunits each have two isoforms, flip and flop, which result 
from alternative splicing of the mRNA transcript [37]. The 
retina predominantly expresses the flop isoforms of GRIA1, 
GRIA2, and GRIA4, and the flip and flop isoforms of GRIA3 
[38]. The primers for GRIA1, GRIA2, and GRIA4 were not 
specific for a particular isoform, while the flip isoform of 
GRIA3 was analyzed. Figure 3B shows the expression 
patterns of the AMPA receptors scaled to the 4-week control 
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rats for each gene. The 12-week diabetic rats had significantly 
lower GRIA1 transcript levels than the 4-week diabetic rats 
(p<0.05). The 12-week diabetic rats also had significantly 
lower expression of GRIA4 mRNA than each of the three 
other groups (p<0.01). In contrast, diabetes did not alter the 
expression of GRIA2 and GRIA3 flip at either 4 or 12 weeks 
(p>0.02).

Kainate receptors: The genes GRIK1, GRIK2, GRIK3, 
GRIK4, and GRIK5 encode for the protein subunits GluR5, 
GluR6, GluR7, KA1, and KA2, respectively. GluR5, GluR6, 
and GluR7 can form homomers and heteromers, whereas 
KA1 and KA2 must complex with GluR5, GluR6, or GluR7 
to form a functional receptor [39]. Figure 4A shows the abun-
dance of transcript for each kainate receptor subunit. All five 

Figure 1. Blood glucose and weight. 
Weekly measurements of (A) 
blood glucose and (B) weight for 
control and diabetic rats combined 
for 4- and 12-week time points 
(mean±SD).
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kainate receptor subunits showed similar mRNA expression 
patterns (Figure 4B) where the 12-week diabetic rats had 
significantly lower mRNA levels than each of the three other 
groups (p<0.03).

Glutamate transporters: The mRNA expression levels 
of four glutamate transporters were measured: SLC1A3, 
VGLUT1, VGLUT2, and VGLUT3 (Figure 5). SLC1A3 is 
expressed on Müller cells and is responsible for uptake of 
glutamate for reprocessing [8]. SLC1A3 mRNA levels in 
12-week diabetic rats were significantly lower than those of 
the 4-week control rats and the 4-week diabetic rats (p<0.005 
and p<0.001, respectively). The 12-week diabetic rats also had 
lower SLC1A3 mRNA levels than the 12-week control rats, 

with the difference approaching significance (p=0.0522). The 
VGLUTs mediate glutamate uptake into synaptic vesicles. 
VGLUT1 mRNA was more abundantly expressed than the 
two other vesicular transporters (Figure 5A), and its expres-
sion was significantly lower in 12-week diabetic rats than each 
of the three other groups (p<0.05). VGLUT2 expression was 
significantly decreased in the 12-week diabetic rats compared 
to the 4-week diabetic rats (p<0.02). VGLUT2 mRNA levels 
in 4-week diabetic rats trended toward a 1.25-fold increase 
over the 4-week control rats (p=0.0503). In contrast to its 
effect on the other glutamate transporters, diabetes had no 
effect on the mRNA expression of VGLUT3 (p>0.15).

Figure 2. Effect of diabetes on 
expression of NMDA receptor 
subunits. qRT-PCR analysis was 
performed on cDNA isolated 
from control and STZ-induced 
diabetic rat retina after 4 and 12 
weeks. Expression of each gene 
was normalized to acidic ribo-
somal phosphoprotein (P0) for 
each rat (A), and then scaled to the 
4-week control rats for each gene 
(B; mean ± SEM). Compared to 
the age-matched control rats, the 
12-week diabetic rats had signifi-
cantly reduced transcript levels of 
GRIN1, GRIN2A, GRIN2B, and 
GRIN2D (*, p<0.05; **, p<0.01; 
*** p<0.005). Transcript levels 
of GRIN2C were significantly 
increased in the 4-week diabetic 
rats compared to the age-matched 
control rats (*, p<0.05). 
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SNCG, GFAP, and ADORA1: The mRNA expression patterns 
of other neural- and glial-related genes not directly connected 
to glutamate signaling were also studied. Figure 6A shows the 
relative transcript levels of each gene in the retina, and Figure 
6B shows their expression patterns. The 12-week diabetic rats 
had significantly lower levels of SNCG and ADORA1 mRNA 
than each of the three other groups (p<0.01). In contrast, 
diabetes did not affect GFAP expression at either 4 or 12 
weeks of diabetes (p>0.05).

VEGF, EPO, and their receptors: The relative transcript 
levels for VEGF, EPO, and their respective receptors are 
shown in Figure 7A. Figure 7B shows the expression patterns. 
Diabetes did not affect VEGFA mRNA levels (p>0.05). The 
VEGF receptors FLT1 and KDR significantly decreased after 

12 weeks in the control and diabetic rats (p<0.02), which is 
most likely due to age effects, not diabetes. Diabetes signifi-
cantly increased EPO mRNA levels 1.49-fold after 4 weeks 
and 1.51-fold after 12 weeks (p<0.05). Unlike its ligand, EPO 
receptor (EPOR) expression did not change with diabetes 
(p>0.15).

IGF-1 receptor and binding proteins: IGFBP2 transcript levels 
were much greater than the levels of IGFBP1 and IGFBP3 
(Figure 8A). IGFBP2 mRNA levels were significantly higher 
in the 12-week diabetic rats than in the age-matched control 
rats and the 4-week diabetic rats (p<0.02). The 4-week 
diabetic rats trended toward lower IGFBP2 mRNA levels than 
age-matched control rats (p=0.0532). Although its expression 
was low in the retina, IGFBP3 mRNA levels in the 4-week 

Figure 3. Effect of diabetes on 
mRNA expression of AMPA 
receptor subunits. qRT-PCR 
analysis was performed on cDNA 
isolated from control and STZ-
induced diabetic rat retinas after 4 
and 12 weeks. Expression of each 
gene was normalized to acidic 
ribosomal phosphoprotein (P0) for 
each rat (A), and then scaled to the 
4-week control rats for each gene 
(B; mean ± SEM). The 12-week 
diabetic rats had significantly 
lower GRIA1 mRNA than the 
4-week diabetic rats (#; p<0.05). 
The 12-week diabetic rats also had 
significantly reduced mRNA levels 
of GRIA4 compared to the age-
matched control rats (**, p<0.01). 
Diabetes did not affect the mRNA 
levels of GRIA2 and GRIA3 flip at 
4 or 12 weeks. 
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and 12-week diabetic rats were significantly increased over 
their age-matched control rats (p<0.05). The effect of diabetes 
on mRNA expression at each time point varied among IGF1R, 
IGFBP1, IGFBP2, and IGFBP3 (Figure 8B). Diabetes did not 
alter the mRNA expression of IGF1R or IGFBP1 (p>0.15).

VEGF protein levels: The diabetic rats had elevated VEGF 
protein levels compared to the age-matched control rats. 
Figure 9 shows VEGF protein levels normalized to total 
protein for each group. The 4-week diabetic rats had 1.5 
times the VEGF protein of the age-matched control rats 
(53.5±4.6 pg VEGF/mg total protein versus 36.1±7.6 pg 
VEGF/mg total protein, p<0.04). The 12-week diabetic rats 
also had higher VEGF protein levels at 1.2 times the levels 
of the age-matched control rats (72.5±4.9 pg VEGF/mg total 

protein versus 59.6±4.1 pg VEGF/mg total protein), but this 
difference was not significant (p=0.1025). Total protein levels 
were not significantly different between the groups (p>0.1).

DISCUSSION

Diabetic retinopathy is clinically defined as injury to the 
retinal microvasculature. In addition to vascular changes, 
patients with diabetes demonstrate retinal functional changes, 
which can appear early in non-proliferative diabetic reti-
nopathy (NPDR) before signs of microvascular injury. Thus, 
dysfunction in the diabetic retina encompasses vascular and 
neural changes [2]. This study evaluated genes related to 
glutamate neurotransmission and transport, and genes that 

Figure 4. Effect of diabetes on 
expression of the kainate receptor 
subunits. qRT-PCR analysis was 
performed on cDNA isolated 
from control and STZ-induced 
diabetic rat retinas after 4 and 12 
weeks. Expression of each gene 
was normalized to acidic ribo-
somal phosphoprotein (P0) for 
each rat (A), and then scaled to the 
4-week control rats for each gene 
(B; mean ± SEM). Compared to 
the age-matched control rats, the 
12-week diabetic rats had signifi-
cantly reduced mRNA levels of all 
the kainate receptor subunits (*, 
p<0.05; **, p<0.01; ***, p<0.005). 
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have protective effects on the retinal vasculature and neurons 
(Table 1). Several studies have shown that diabetes increased 
apoptosis and ganglion cell loss in the rat retina. STZ-induced 
diabetes significantly increased TUNEL–positive cells in 
Sprague-Dawley rat retinas after 1, 3, 6, and 12 months of 
diabetes [40]. Another group found significantly lower retinal 
ganglion cell counts after 4 weeks of diabetes in Brown 
Norway rats [7]. Likewise, diabetic patients exhibit structural 
changes to the inner retina early in diabetes. Patients with 
non-proliferative diabetic retinopathy had a significantly 
thinner nerve fiber layer (NFL) than non-diabetic control rats 
[41-44]. In patients with minimal NPDR, the GCL and the 
NFL were significantly thinner than in non-diabetic control 
rats, while the outer retina was unaffected [45-49]. Thinning 

of the GCL and the NFL suggests that ganglion cell injury or 
death occurs early in diabetes.

The results of this study combined with previous work 
suggest that the loss of ganglion cells in diabetes may be 
caused by glutamate excitotoxicity [50-52]. Most glutamate 
receptor subtypes have been implicated in excitotoxicity by 
allowing excessive influx of Ca2+ into neurons [50]. Elevated 
intracellular calcium levels can trigger various downstream 
effects, including cell death. Although the exact mechanisms 
leading from excess glutamate to cell death are not fully 
understood, Ca2+ influx through NMDA receptors is a key 
contributor [52]. NMDA receptors are the primary mediators 
because they are directly coupled to Ca2+ signaling pathways 

Figure 5. Effect of diabetes on 
expression of the glutamate 
transporters SLC1A3, VGLUT1, 
VGLUT2, and VGLUT3. qRT-PCR 
analysis was performed on cDNA 
isolated from control and STZ-
induced diabetic rat retinas after 4 
and 12 weeks. Expression of each 
gene was normalized to acidic 
ribosomal phosphoprotein (P0) for 
each rat (A), and then scaled to the 
4-week control rats for each gene 
(B; mean ± SEM). The SLC1A3 
mRNA levels in the 12-week 
diabetic rats were significantly 
lower than those of the 4-week 
control rats and 4-week diabetic 
rats (###, p<0.005; ####, p<0.001). 
The 12-week diabetic rats also had 
lower SLC1A3 mRNA levels than 
the 12-week control rats, but the 
difference was not quite signifi-
cant (p=0.0522). The 12-week 
diabetic rats had significantly 
lower VGLUT1 mRNA levels than 
the age-matched control rats (***, 
p<0.005). VGLUT2 mRNA was 
significantly higher in the 4-week 
diabetic rats compared to the 
12-week diabetic rats (#, p<0.05). 
VGLUT2 mRNA levels in the 
4-week diabetic rats increased 1.25 
fold over the 4-week control rats, 
but the difference was not quite 
significant (p=0.0503). 
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that lead to cell death [50,52]. Thus, the pathway of Ca2+ 
influx through NMDA receptors is pathologically more 
detrimental than the concentration of intracellular Ca2+.

Glutamate transporters: Diabetes was previously found 
to impair glutamate transport and glutamate recycling in 
Müller cells [11,12]. Müller cells maintain a low extracellular 
concentration of glutamate by taking it up via the transporter 
SLC1A3, also known as GLAST [8]. The activity of SLC1A3 
in Müller cells isolated from Long-Evans rats was reduced 
after 4 weeks and decreased further after 13 weeks [11]. 
Consistent with those results, this study found that SLC1A3 
mRNA levels were significantly reduced after 12 weeks of 
diabetes. The changes in SLC1A3 expression are most likely 
specific to that gene and do not reflect a general loss of 

Müller cells since the GFAP mRNA levels were not signifi-
cantly altered. Within the Müller cells, glutamine synthetase 
converts glutamate to the less neuroactive glutamine, which 
is then taken up by neurons and converted to glutamate. The 
content and activity of glutamine synthetase in the retina 
decreased after 2, 3, and 6 months of diabetes in Sprague-
Dawley rats [13]. These Müller cell dysfunctions in diabetes 
may lead to accumulation of glutamate in the extracellular 
space of the retina and contribute to glutamate excitotoxicity 
[10,12,13].

In addition to SLC1A3, the expression of VGLUT1 
and VGLUT2 transcripts was also altered by STZ-induced 
diabetes. The main function of the VGLUTs is to load 
glutamate from the cytoplasm into synaptic vesicles [9]. In 

Figure 6. Effect of diabetes on 
expression of SNCG, GFAP, and 
ADORA1. qRT-PCR analysis was 
performed on cDNA isolated from 
control and STZ-induced diabetic 
rat retinas after 4 and 12 weeks. 
Expression of each gene was 
normalized to acidic ribosomal 
phosphoprotein (P0) for each rat 
(A), and then scaled to the 4-week 
control rats for each gene (B; mean 
± SEM). The 12-week diabetic 
rats had significantly lower SNCG 
and ADORA1 mRNA levels than 
the age-matched control rats (**, 
p<0.01; ***, p<0.005). Diabetes 
did not affect the mRNA levels of 
GFAP at 4 or 12 weeks. 

http://www.molvis.org/molvis/v19/1538


Molecular Vision 2013; 19:1538-1553 <http://www.molvis.org/molvis/v19/1538> © 2013 Molecular Vision 

1547

the rat retina, VGLUT1 is expressed in photoreceptor and 
bipolar cell terminals [53]. In this study, VGLUT1 expression 
was significantly decreased after 12 weeks of diabetes. In 
contrast, VGLUT2 mRNA was upregulated after 4 weeks of 
diabetes, but the increase was not sustained after 12 weeks. 
VGLUT2 is expressed on horizontal and ganglion cells in the 
rat retina [53]. VGLUT3 is expressed in non-glutamatergic 
amacrine cells in the rat retina [53], and its mRNA expres-
sion was not affected by diabetes in this study. Diabetes 
decreased VGLUT1 and VGLUT2 protein levels in retinal 
synaptosomes after 2 weeks but not after 8 weeks in Wistar 
rats [54]. Diabetes affects the expression of VGLUT1 and 2, 
but more studies are needed to determine the pathological 
consequences.

Ionotropic glutamate receptors: Diabetes also altered the 
expression of the NMDA receptor subunit transcripts. With the 
exception of GRIN2C, the NMDA receptor subunits showed 
significantly reduced mRNA expression after 12 weeks of 
diabetes. However, in contrast to the results of this study, 
another study using Wistar rats found that GRIN1 mRNA 
expression was increased after 1 and 4 weeks of diabetes and 
did not change after 12 weeks, and GRIN2C mRNA levels 
did not change at any time point [4]. Retinal ganglion cells 
express the NMDA receptor subunits GRIN1 and GRIN2A-
D, but the combination of NMDA receptor subunit expression 
can depend on the individual cell [38]. GRIN1, GRIN2A, 
GRIN2B, and GRIN2D are much more likely to be expressed 
on ganglion cells than GRIN2C. Conversely, amacrine cells 
also express GRIN1 and GRIN2A–D but NMDA receptors 

Figure 7. Effect of diabetes on 
expression of VEGF and VEGF–
associated genes. qRT-PCR analysis 
was performed on cDNA isolated 
from control and STZ-induced 
diabetic rat retinas after 4 and 12 
weeks. Expression of each gene 
was normalized to acidic ribosomal 
phosphoprotein (P0) for each rat 
(A), and then scaled to the 4-week 
control rats for each gene (B; mean 
± SEM). The retina expresses 
erythropoietin (EPO) at low levels, 
yet diabetes significantly increased 
EPO transcript levels (significant 
main effect for treatment factor; 
+, p<0.05). The transcriptional 
expression of VEGFA, the vascular 
endothelial growth factor (VEGF) 
receptors FLT1 and KDR, and 
erythropoietin receptor (EPOR) did 
not change with diabetes. 
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are not found in all amacrine cells [38]. It is unclear why 
GRIN2C had a different expression pattern than the other 
NMDA receptor subunits. GRIN2C mRNA increased after 
4 weeks of diabetes, but qRT-PCR of the entire retina cannot 
distinguish whether ganglion cells or amacrine cells were 
responsible. The depressed expression of GRIN1, GRIN2A, 
GRIN2B, and GRIN2D mRNA could indicate downregu-
lation of NMDA receptors but, taken with other evidence, 
strongly indicates ganglion cell and possibly amacrine cell 
loss after 12 weeks. Ganglion cells may be more susceptible 
to glutamate excitotoxicity than other neurons because they 
are the primary cell type expressing NMDA receptors.

Ganglion cells also express AMPA and kainate recep-
tors, as do other retinal neurons. In situ hybridization studies 

showed strong labeling for GRIK1, GRIK2, GRIK3, and 
GRIK5 mRNA in ganglion cells [36]. In the present study, 
all the kainate receptor subunits were downregulated after 12 
weeks of diabetes.

Most of the AMPA receptor subunits exhibited different 
mRNA expression patterns than the kainate and NMDA 
receptor subunits, which may be due to differences on which 
retinal cell types the subunits are expressed. In situ hybridiza-
tion showed that GRIA2 and GRIA3 were expressed in the 
cells of the INL, the ONL, and some ganglion cells [55]. In 
this study, diabetes did not change the expression of GRIA2 
and GRIA3. In agreement with these results, the GRIA2 and 
GRIA3 mRNA levels did not change in the Long-Evans rat 
retina assessed with in situ hybridization after 2 and 6 weeks 

Figure 8. Effect of diabetes on 
mRNA expression of IGF-1 asso-
ciated genes. qRT-PCR analysis 
was performed on cDNA isolated 
from control and STZ-induced 
diabetic rat retinas after 4 and 12 
weeks. Expression of each gene 
was normalized to acidic ribosomal 
phosphoprotein (P0) for each rat 
(A), and then scaled to the 4-week 
control rats for each gene (B; mean 
± SEM). The 12-week diabetic rats 
had significantly higher IGFBP2 
transcript levels than the age-
matched control rats (**, p<0.01). 
The 4-week diabetic rats had lower 
IGFBP2 mRNA levels than the 
4-week control rats, but the differ-
ence did not reach significance 
(p=0.0532). Although expression 
of IGFBP3 in the retina was low, 
the IGFBP3 transcript levels for the 
4-week and 12-week diabetic rats 
were significantly increased over 
those of the age-matched control 
rats (*, p<0.05). Diabetes did not 
affect the mRNA expression levels 
of IGF1R or IGFBP1 at 4 or 12 
weeks. 
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of diabetes [55], nor did they change in the Wistar rat retina 
after 1, 4, or 12 weeks of diabetes as measured with qRT-PCR 
[4]. In addition to ganglion cells, photoreceptors, bipolar cells, 
and amacrine cells express GRIA1 and GRIA3. Diabetes did 
not change GRIA2 and GRIA3 mRNA expression possibly 
because photoreceptors, bipolar cells, and amacrine cells 

were less likely to be affected by glutamate excitotoxicity 
than ganglion cells. GRIA1 is expressed predominantly by 
amacrine cells and bipolar cells, and to a lesser extent by 
ganglion cells [38]. The mRNA expression of GRIA1was 
biphasic with an increase after 4 weeks and a decrease after 
12 weeks. However, Wistar rats showed no change in GRIA1 
transcript levels after 1, 4, and 12 weeks of diabetes [4]. 
GRIA4 is almost exclusively expressed by ganglion cells [38]. 
Its mRNA expression levels were significantly decreased 
after 12 weeks of diabetes, supporting the conclusion that 
ganglion cells were lost at that time point in Long-Evans rats.

Although there could be selective downregulation of 
GRIA4 and specific NMDA and kainate receptor subunits 
with no loss of ganglion cells, it is more likely that the 
ganglion cells expressing these receptors were lost by 12 
weeks of diabetes. The evidence that glutamate uptake is 
reduced implicates glutamate excitotoxicity in this process. 
With continued elevation of glutamate, ganglion cell loss 
would be expected to continue past the time points investi-
gated here. Other evidence obtained in this study supports 
the conclusion that ganglion cells were lost in the 12-week 
diabetic rat retina. SNCG was used as a marker for ganglion 
cells [14], and its mRNA levels decreased significantly in the 
12-week diabetic rats compared to each of the three other 
groups. ADORA1 mRNA levels also decreased significantly 
in the 12-week diabetic rats. It is expressed in the ganglion 
cell layer [16], and interaction with adenosine reduces 
glutamate-induced calcium influx into the ganglion cells [56]. 
As noted in the introduction, other work also supports the 
conclusion that ganglion cells are lost as diabetes progresses 

Figure 9. Effect of diabetes on VEGF protein levels. Total protein 
was extracted from one retina of each rat. VEGF protein levels 
were measured with enzyme-linked immunosorbent assay (ELISA) 
and normalized to total protein for diabetic (black bars) and age-
matched control (gray bars) rats at 4 and 12 weeks (mean ± SEM). 
The asterisk (*) indicates significantly different from age-matched 
control rats, p<0.05).

Table 1. Summary of gene expression changes.

Decreased expression at 12 weeks of diabetes Interaction between time point and diabetes: Increase at 4 weeks 
followed by decrease at 12 weeks

NMDA receptor subunits GRIN1 GRIA1
GRIN2A VGLUT2
GRIN2B LDHB
GRIN2D GAPDH

AMPA receptor subunit GRIA4 Increased expression at 4 weeks of diabetes
Kainate receptor subunits GRIK1 GRIN2C

GRIK2 Increased expression at 12 weeks of diabetes
GRIK3 IGFBP2
GRIK4 Increased with diabetes
GRIK5 EPO

Glutamate transporters SLC1A3 IGFBP3
VGLUT1

Neural-related SNCG
ADORA1
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in rodent models and humans. The loss of ganglion cells 
could partially account for the decreased visual function of 
diabetic Long-Evans rats [57]. At 8 weeks of diabetes, rats 
with or without cataracts exhibited similar losses in contrast 
sensitivity and acuity.

The VEGF, EPO, and IGF-1 system: In this study, VEGF 
protein levels significantly increased after 4 weeks but not 
12 weeks of diabetes, which is consistent with other studies. 
The VEGF protein levels were higher in the diabetic rats than 
the control Sprague-Dawley rats after 2, 4, and 6 weeks of 
diabetes but not after 12 weeks [58]. Another study found that 
VEGF protein levels were increased after 4 weeks of diabetes 
in Sprague-Dawley and Long-Evans rats and significantly in 
Brown Norway rats, yet no change was found in any strain 
after 12 weeks [59]. The early increase in VEGF protein 
levels was not accompanied by an increase in mRNA expres-
sion in this study or the study by Schrufer et al. [58], while 
Brucklacher et al. found VEGF mRNA levels decreased in 
diabetic rats at 4 and 12 weeks [60]. These results suggest that 
post-transcriptional mechanisms or translational regulation 
acts to alter VEGF protein levels, or that qRT-PCR of samples 
from the whole retina is not sensitive enough to detect VEGF 
mRNA changes occurring in specific cell types. In addition, 
the results show that elevated VEGF protein levels are not 
persistent in the retina early in diabetes and can vary as the 
disease progresses. Diabetes did not alter the mRNA expres-
sion of the VEGF receptors FLT1 and KDR.

EPO also has angiogenic properties [20,61,62]. VEGF 
and EPO are reported to have neuroprotective properties as 
well [63,64]. In a post-mortem analysis, retinas from diabetic 
patients without diabetic retinopathy had higher EPO mRNA 
levels than age-matched controls [21]. In this study, the EPO 
mRNA levels were elevated in the rat retina at 4 and 12 weeks 
of diabetes, possibly to protect the neural and vascular cells 
in the retina.

Diabetes increased the expression of IGFBP2 after 12 
weeks and IGFBP3 after 4 and 12 weeks, but did not change 
the expression of IGF1R or IGFBP1. The interaction between 
IGF-1 and its receptors regulates VEGF expression and can 
induce blood–retinal barrier breakdown [65] and retinal 
neovascularization [66,67]. The effects of the IGF-1 system 
can be seen in the vasculature and the central nervous system 
[68,69]. The IGF binding proteins modulate the activity of 
IGF-1 but also have effects independent of IGF-1 and IGF1R. 
IGFBP3 has been shown to have anti- and proapoptotic 
characteristics and to promote and inhibit proliferation in 
various cell and tissue types (see [70,71] for reviews). These 
activities are most likely dependent on tissue type and patho-
logical condition. In agreement with this study, Kirwin et 

al. found IGFBP3 transcript levels significantly increased 
after 4 weeks and 3 months of diabetes in the Long-Evans rat 
retina [72]. In the mouse model of retinopathy of prematurity, 
exogenous IGFBP3 promoted vessel survival during the vaso-
obliterative hyperoxic phase and increased vessel regrowth 
during the relative hypoxic phase independent of IGF-1 [73], 
and reduced apoptosis in retinal neurons [74]. Even less is 
known about the functions of IGFBP1 and IGFBP2 in the 
retina. How IGF binding proteins impact the progression of 
diabetic retinopathy has yet to be fully evaluated.

Conclusion: Diabetes caused significant changes in the 
expression of genes related to glutamate neurotransmission 
and transport. Evidence suggests diabetes causes dysfunc-
tion in glutamate processing resulting in ganglion cell 
loss. The effect of diabetes on the expression of ionotropic 
glutamate receptor subunits varies between humans and 
rats and between rat strains. Nonetheless, diabetes alters the 
expression of the various ionotropic glutamate receptors, and 
the changes vary over the duration of diabetes. Mounting 
evidence indicates that diabetes disrupts glutamate signaling 
in the retina and affects retinal neurons as well as the retinal 
vasculature. Alterations in gene expression varied with the 
duration of diabetes. Most of the genes with elevated mRNA 
levels after 4 weeks did not have sustained increases after 12 
weeks. In addition, more genes had altered expression after 
12 weeks, indicating that diabetes leads to more changes 
in the retina over time. Increased expression of EPO and 
IGFBP3 and increased VEGF protein levels may be protective 
responses to damage caused by diabetes, but these responses 
may not provide sufficient protection. This study shows that 
diabetes not only injures the retinal vasculature but also 
affects the neurons in the retina.

APPENDIX 1. PRIMER SEQUENCES.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2: RESULTS OF TWO-FACTORIAL 
ANOVA (2×2 ANOVA) FOR EACH GENE.

To access the data, click or select the words “Appendix 2.”
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