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Abstract

miRNAs are small regulatory RNAs which govern gene expression post-transcriptionally by 
primarily binding to the 3'-UTR of mRNA target genes. miR-145 is a well-studied miRNA that 
has been implicated in controlling a range of biological processes. miR-145 is expressed 
in a variety of tissues and cell types and acts as a tumor-suppressor by regulating target 
gene signaling pathways involved in different aspects of tumor growth and progression. 
There is also strong evidence that highlights the important functions of miR-145 in the 
cardiovascular system. Here, we review the mechanisms of miR-145 in tumorigenesis and 
cancer progression and compare and contrast with the roles of miR-145 in cardiovascular 
development and disease. We discuss the important targets of miR-145 in cancer and their 
possible link to the cardiovascular system.

Introduction

miRNAs are a group of small (~22 nucleotides in length) 
ncRNA molecules that functionally fine tune gene 
expression through post-transcriptional regulation (1). 
Since their discovery in the nematode Caenorhabditis 
elegans in 1993 (2, 3), there have been significant discoveries 
steering the field of small RNA biology that have modified 
the longstanding dogmas of gene regulation. Multiple 
miRNAs across different species of animals and plants 
have been discovered and an estimated 2000 mature 
miRNAs are encoded by the human genome (4).

miR-145 was first identified as a novel tissue-specific 
miRNA expressed in murine hearts (5). Since this initial 
report in 2002, miR-145 has garnered much attention, 
with 1708 PubMed articles with miR-145 in the title or 
abstract as of October 2020. Nearly 60%, or 1017 of these 
publications are cancer-related studies, while 210 or only 

12% are cardiovascular-associated. The importance of 
miR-145 in the cardiovascular system became apparent 
in 2009, when a group of high-profile papers collectively 
demonstrated its tissue-specific expression during mouse 
development and its regulatory role in vascular smooth 
muscle cells (6, 7, 8, 9, 10, 11). miR-143 and miR-145 are 
co-transcribed as a single bicistronic primary transcript (8, 
12). Even though miR-143 and miR-145 are co-transcribed, 
the absence of homology in their mature sequences, 
highlights their ability to bind to different targets and 
therefore have distinct functions (9). The data show 
that miR-145 targets Krüppel-like factors, Klf4 and Klf5, 
both of which stimulate proliferation, while increasing 
myocardin expression to promote a differentiated vascular 
smooth muscle phenotype (7, 8, 9). Furthermore, miR-
145 targets several mediators that govern actin dynamics 

-20-0012ID: XX-XXXX; 

Key Words 

 f miR-145

 f cancer

 f cardiovascular

 f smooth muscle

2 1

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International 
License.

https://doi.org/10.1530/VB-20-0012
https://vb.bioscientifica.com� ©�2021�The�authors
� Published�by�Bioscientifica�Ltd

mailto:brenda.lilly@nationwidechildrens.org
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/VB-20-0012


D Sawant and B Lilly miR-145 in cancer and the 
cardiovascular system

R1162:1

https://vb.bioscientifica.com © 2021 The authors
 Published by Bioscientifica Ltd

and polymerization in support of a contractile smooth 
muscle phenotype (9). These and more recent studies 
in vascular injury models suggest a more complex role, 
with miR-145 having an anti-proliferative and beneficial 
role in disease pathology in certain instances (7, 13) 
while having a distinctly opposite effect in other models 
(9). In addition to its actions in vascular smooth muscle 
cells, miR-145 has been reported to have functions in 
other cardiovascular cell types. These publications have 
reported on miR-145 activities in cardiac fibroblasts and 
myofibroblasts and endothelial cells (14, 15). Despite these 
informative reports, the function of miR-145 specifically 
in the cardiovascular system remains incomplete. Given 
the wealth of studies on miR-145 in cancer cells (16), it 
is intriguing to consider that the functions of miR-145 
in tumor environments may shed light on its activities 
in cardiovascular cells. In this review, we highlight the 
roles and particular pathways that miR-145 regulates in 
cancer cells and attempt to link these with the functions 
of miR-145 in the cardiovascular system. While, it is well 
known that miRNAs functions are context dependent, 
understanding miR-145 in cancer could possibly inform 
our understanding of its critical functions in cells within 
the cardiovascular system.

Mechanisms of miR-145 in cancer

miRNAs mediate post-transcriptional regulation of target 
genes by binding to gene-specific seed sequences (17, 18). 
More than 50% of miRNA genes are located in genomic 
regions associated with cancer or fragile sites, which are 
often deleted or repeated in cancer (19, 20), and many 
miRNAs are commonly dysregulated in cancer (20). 
miRNAs can function as oncogenes as well as tumor 
suppressor genes by targeting gene signaling pathways 
that influence tumor growth, invasion, metastasis and 
angiogenesis (21). The earliest reports that linked miRNAs 
and cancer discussed miR-15 and miR-16 as tumor 
suppressors in B-cell chronic lymphocytic leukemia. 
miR-15 and miR-16 are expressed from chromosome 
region 13q14, which is frequently deleted in lymphocytic 
leukemia (22, 23). Since then many miRNAs have been 
associated with cancer, one such cluster being the miR-
143/145 cluster, which is frequently downregulated in 
many cancers. Studies focused solely on miR-145 show that 
in normal cells, it is highly expressed in adult mesodermal 
tissues, such as uterus, ovaries, testis, heart and prostate 
(24, 25). The expression of miR-145 is downregulated in a 
wide range of cancers, including colorectal cancer (CRC), 

non-small-cell lung cancer (NSCLC), breast cancer (BCa), 
prostate cancer (PCa), gastric cancer (GC), ovarian cancer 
(OC), and bladder cancer (BC) (16, 25, 26, 27, 28). miR-
145 mainly acts as a tumor suppressor and inhibits cancer 
stem cells, tumor growth, invasion and metastasis, and 
tumor angiogenesis (29, 30, 31, 32). Thus, these miRNAs 
have widely been categorized as tumor-suppressors, 
although, more recent reports also highlight them as 
oncogenes (33, 34, 35, 36). Of note, one such report 
investigated the expression profile of miR-145 in samples 
of colorectal cancer with and without metastasis to lymph 
node (34). When compared to normal tissue, miR-145 
expression is downregulated in both metastatic and non-
metastatic samples. However, miR-145 is dramatically 
upregulated in cancer samples associated with metastasis 
when compared to the non-metastatic samples. In 
addition, overexpression of miR-145 leads to an increase 
in colorectal cancer cell migration in vitro, and an 
enhanced metastasis to lymph nodes in vivo in mice (34). 
Similarly, miR-145 has opposing roles in different types of 
esophageal cancer; esophageal squamous cell carcinoma 
(ESCC), derived from squamous cells in the esophageal 
lining and esophageal adenocarcinoma (EAC), derived 
from glandular cells not normally part of the esophageal 
lining. The expression of miR-145 in esophageal squamous 
cell carcinoma inhibits cell proliferation and invasion 
and enhances anoikis (cell death triggered by detachment 
from extracellular matrix (ECM); an ability that is reduced 
during metastasis) (35). These results confirm previous 
studies that highlight miR-145 as a tumor suppressor. 
However, in esophageal adenocarcinoma cells, miR-145 
expression leads to an increase in metastatic potential and 
protection against anoikis (35). Thus, in certain contexts 
of cancer, miR-145 functions as a pro-metastatic miRNA 
rather than a tumor suppressor miRNA. Taken together, 
the expression and function of miR-145 in cancer depends 
upon various factors such as the type of cancer, the stage 
of cancer development and the cell origin of the tumor. 
These factors become absolutely critical to evaluate when 
contemplating the use of miR-145 as a therapeutic or as a 
potential biomarker in cancer.

miR-145 and stem cells

miR-145 represses pluripotency of human embryonic 
stem cells (hESCs) by directly targeting core pluripotency 
factors (37). Core transcription factors (TFs) such as 
Octamer-binding transcription factor 4 (OCT4/POU5F1), 
SRY-box 2 (SOX2), NANOG control a wide range of 
downstream genes required for the self-renewal and 
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pluripotency properties of embryonic stem cells. Other 
factors such as KLF4, c-MYC (MYC) and E-RAS are required 
for the maintenance of pluripotency and self-renewal 
of embryonic stem cells and are often upregulated in 
cancer. The core factors decrease during differentiation 
of embryonic stem cells. Contrastingly, miR-145 levels 
are low in human embryonic stem cells but increase 
during their differentiation. Xu  et al. demonstrated that 
miR-145 represses pluripotency and disrupts the self-
renewal state of embryonic stem cells by targeting the 
3’UTRs of OCT4, SOX2 and KLF4 (37). Additionally, 
OCT4 can bind to the promoter and represses miR-145, 
indicating a double-negative feedback loop involving 
pluripotency and miR-145 (37). Further investigation 
of the function of miR-145 during human embryonic 
stem cell differentiation, revealed that expression of 
miR-145 leads to an increase in differentiation markers 
of mesoderm lineage (α-smooth muscle actin (ACTA-2)) 
and ectoderm lineage (β-III tubulin (TUBB3)). This ectopic 
expression of miR-145 acts through the repression of 
OCT4 and SOX2 to induce differentiation (37). Another 
study confirmed that miR-145 directly targets OCT4, 
SOX2 and NANOG and that ectopic expression of miR-145 
during differentiation of embryonic stem cells leads to 
the degradation of these core factors (38). Thus, miR-145 
plays a critical role in controlling stem cell self-renewal 
and driving differentiation by suppressing pluripotency 
factors summarized in Table 1.

Similar to its role in controlling pluripotency in 
embryonic stem cells (37), miR-145 regulates the cell fate 
of cancer stem cells by suppressing the same pluripotency 
factors that function in embryonic stem cells. Tumors 
harbor a small population of cells called cancer stem 
cells (CSCs)/cancer stem-like cells (CSLCs), which highly 
express OCT4, NANOG, SOX2 and KLF4 (39, 40). The 
stem-like characteristic of cancer stem cells has been 

speculated to drive tumor progression, metastasis, relapse, 
and drug resistance (39, 41). Evidence from different 
research studies reveal a common underlying mechanism 
of miR-145 function in the regulation of cancer stem 
cells in different cancer types. Overexpression of miR-
145 suppresses OCT4, SOX2, NANOG and KLF4 in cancer 
stem cells in colorectal cancer, laryngeal squamous cell 
carcinoma (LSCC) and cervical cancer (CC) (32, 42, 43). 
Further, overexpression of miR-145 inhibits stemness 
property of cancer stem cells, induces differentiation, 
and reduces tumor growth and progression in these 
cancers. Additionally, miR-145 plays an important role 
in inhibiting tumorigenicity of bone metastatic prostate 
cancer (PCa) cell line and its metastasis to the bone in vivo, 
by suppressing cancer stem cell markers, OCT4, KLF4, and 
c-MYC (44). Taken together, these findings demonstrate 
that miR-145 plays an important role in regulating 
cancer stem cell characteristics to inhibit tumor growth, 
progression, and metastasis.

miR-145 and tumor growth and angiogenesis

miR-145 reduces tumor growth by regulating the 
expression of genes that are critical in cell proliferation 
and apoptosis in various cancers. c-MYC is a widely 
studied oncogene and is often dysregulated in many 
tumors. c-MYC regulates numerous genes, which 
play pivotal roles in cell proliferation, apoptosis and 
differentiation (45). Moreover, c-MYC is a direct target 
of miRNA-145. Ectopic expression of miR-145 suppresses 
c-MYC and delays cell cycle progression and inhibits 
tumor cell proliferation and tumor growth in vitro and 
in vivo in breast, colon cancer and non-small lung cancer 
(46, 47). In addition, in non-small lung cancer, miR-145 
inhibits tumor cell proliferation by targeting OCT4 and 
impairs the progression of lung cancer development (48). 
Thus, miR-145 targets genes (Table 2) involved in cell 
proliferation to regulate tumor growth.

Similarly, miR-145 acts as a suppressor of cell 
proliferation in bladder cancer. The expression of miR-
145 is lower in bladder cancer samples and bladder 
cancer cell lines when compared to normal tissues and 
human uroepithelial cell lines, respectively (49). miR-
145 directly targets 3’UTR of KLF4 and the ectopic 
expression of miR-145 in human bladder carcinoma cell 
line leads to the down-regulation of KLF4 and repression 
of cell proliferation (49). Another study showed that the 
proto-oncogene plasminogen activator inhibitor-1 (PAI1 
encoded by the SERPINE1 locus) is upregulated and the 
miR-143/145 cluster is downregulated in all stages of 

Table 1 Shared miR-145 targets in human embryonic stem 
cells and cancer stem cells.

Target genes
3’UTR target 
site location Types of cancer References

OCT4 
(POU5F1)

138–157;  
1276–1297

LSCC, cervical,  
NSCLC

(37, 38, 42,  
43, 48)

SOX2 1–20;  
1391–1411

Colorectal,  
LSCC, cervical

(32, 37, 38,  
42, 43)

KLF4 256–285 LSCC (37, 42)
NANOG 764–790 Cervical (38, 43)
c-MYC (MYC) Unknown Prostate, breast,  

colon, NSCLC
(44, 46, 47)

LSCC, laryngeal squamous cell carcinoma; NSCLC, non-small cell lung 
cancer.
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bladder cancer (50). PAI1 is known to enhance cancer cell 
proliferation and angiogenesis by inhibiting apoptosis 
(51). Both miR-143 and miR-145 directly bind to the 
3’UTR of PAI1 mRNA and reduce PAI1 mRNA and protein 
levels in bladder cancer, cervical cancer and non-small 
lung carcinoma cell lines (50). Thus, miR-143/145 cluster 
targets the oncogene, PAI1, in various cancers. 

In colorectal cancer, miR-145 and miR-143 attenuate 
tumor cell growth in the small intestine of ApcMin/+ 

mice, which develop colorectal tumors, by inhibiting 
the extracellular signal regulated kinase 5 (ERK5)/c-
MYC and p68/p72/B-catenin signaling pathways (52). 
B-catenin signaling pathway is known to be involved 
in tissue homeostasis and is often aberrantly activated 
in many cancers. In colon tumor development, DEAD-
box RNA helicase subunits p68/p72 (DDX5/DDX17) 
are critically involved in β-catenin signaling, to activate 
many downstream effectors such as c-MYC. Moreover, 
miR-145 directly targets the 3’UTR of p72, impairing 
B-catenin signaling, and represses c-MYC in human 
colon cancer cells (52). Another study demonstrated that 
miR-145 inhibits tumor growth in patients with colon 
cancer by targeting the mammalian target of rapamycin 
(mTOR)/p70S6K1 signaling (53). mTOR/p70S6K1 
signaling regulates various cellular functions such as 
cell cycle, apoptosis, cell growth and proliferation 
and hence is the most targeted pathway in cancer 

therapy. miR-145 directly inhibits p70S6K1 by binding 
to its 3’UTR. It downregulates the downstream targets 
of p70S6K1, angiogenic factors and tumor growth 
effectors, hypoxia-inducible factor 1 (HIF-1 (HIF1A)) and 
vascular endothelial growth factor (VEGF). Thus, miR-
145 inhibits tumor growth via p70S6K1. In addition, 
miR-145 inhibited HIF1 and VEGF by directly targeting 
oncogene N-RAS and insulin receptor substrate, IRS1, 
thereby reducing tumor growth in colorectal cancer 
(54). Another study in colon cancer, demonstrated that 
miR-145 directly targets p21-activated kinase-4 (PAK4) 
and downregulates ERK pathway to inhibits tumor cell 
growth (55). PAKs are a family of protein kinases that 
regulate various cellular functions such as cell survival, 
proliferation and migration and are often hyperactivated 
in various cancers. Thus, miR-145 suppresses tumor 
growth in various cancers by targeting different signaling 
pathways involved in proliferation, survival and growth.

Angiogenesis and re-endothelialization are common 
vascular consequences in many diseases including cancer, 
atherosclerosis and ischemic heart disease. A key factor 
that influences tumor growth and metastasis is tumor 
angiogenesis. There are growing reports that demonstrate 
that ectopic expression of p70S6K1 in vascular endothelial 
cells and cancer cells can lead to tumor angiogenesis (56, 
57, 58). miR-145 functions as a tumor suppressor by 
downregulating HIF1α and VEGF expression by directly 

Table 2 miR-145 targets in cancer that are present in cardiovascular cell types.

Target genes Cardiovascular cell type Type of cancer References

OCT4 (POU5F1) SMC, perivascular cells LSCC, cervical, NSCLC (42, 43, 48, 86, 87)
SOX2 EC Colorectal, LSCC, cervical (32, 42, 43, 92)
KLF4 SMC LSCC, cervical, bladder (8, 42, 43, 49)
NANOG SMC Cervical (43, 88)
c-MYC (MYC) Cardiomyocytes Breast, prostrate, colon, NSCLC (44, 46, 47, 103)
PAI1 (SERPINE1) SMC Bladder (50, 84)
p70S6K1 EC Colon (53, 58)
DDX17 (p72) Cardiomyocytes Colon (52, 106)
MUC1 EC Lung (61, 91)
SMAD3 Fibroblasts, cardiomyocytes Nasopharyngeal (63, 100)
HOXA1 Cardiac neural crest cells Oral (OSCC) (65, 104)
FSCN1 EC Lung (NSCLC), breast (70, 71, 90)
JAMA (F11R) EC, leukocytes Breast (69, 72, 108)
N-RAS EC, SMC Breast, colorectal (30, 54, 84, 97)
VEGFA EC Breast (30, 95, 96)
PAK1 Cardiomyocytes, EC Bladder, breast (66, 67, 93, 94)
PAK4 Cardiomyocytes, EC Colon (55, 93, 94)
IRS1 EC Colorectal (54, 98)
N-CADHERIN EC Lung (74, 75)
ADAM17 EC, SMC, fibroblasts Renal (59, 102)
ROCK1 SMC Breast (73, 85)

EC, endothelial cells; LSCC, laryngeal squamous cell carcinoma; NSCLC, non-small cell lung cancer; OSCC, oral squamous cell carcinoma; SMC, smooth 
muscle cells.
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targeting p70S6K1, thereby repressing tumor growth and 
angiogenesis (53). In another study, miR-145 was shown 
to inhibit tumor angiogenesis and growth by regulating 
N-RAS and VEGF-A in breast cancer cells and colorectal 
cancer (30). Thus, miR-145 plays an important role in 
cancer malignancy by inhibiting tumor growth and 
angiogenesis.

miR-145 and apoptosis

Metalloprotease a disintegrin and metalloproteinase 
17 (ADAM17) expression increases with the degree of 
malignancy in different cancers including renal cell 
carcinoma (RCC). On the contrary miR-145 levels are 
lower in renal carcinoma cell lines and renal cancer 
patient tissues when compared to primary renal cell lines 
and normal tissue ,respectively (59). In renal carcinoma 
cells, miR-145 directly binds to the 3’UTR and represses 
ADAM17 mRNA, leading to down-regulation of ADAM17 
protein levels and decrease in tumor cell proliferation. 
This also leads to an increase in cells in the G1/G0 phase 
of cell cycle with fragmented nuclei, indicative of early 
apoptosis (59). In urothelial carcinoma cells, miR-145 
overexpression strongly stimulates activated caspase 
dependent and independent apoptotic pathways (60). 
Thus, miR-145 affects the tolerance of tumor cells to 
apoptotic factors. 

miR-145 and tumor invasion and metastasis

Malignant tumors are characterized by the local invasion 
of tumor cells and metastasis to other organs. miR-145 
controls tumor malignancy in different cancers. miR-145 
significantly inhibits cell invasion of metastatic breast 
cancer cells and suppresses lung metastasis in mouse 
models of metastasis through downregulating MUC1 (61). 
MUC1 is a highly characterized metastasis promoting 
gene, which is upregulated in different tumors, and 
is a direct target of miR-145 (61, 62). In addition, miR-
145 affects the invasive and metastatic characteristics 
of nasopharyngeal cancer (NPC) by directly targeting 
Smad3 (63). Smad3 is a known intracellular mediator 
of TGF-B signaling and is known to promote invasion 
and metastasis in many cancers (64). In oral squamous 
cell carcinoma (OSCC), miR-145 is poorly expressed and 
homeobox A1 (HOXA1), is highly expressed. HOXA1 is 
an important transcriptional factor during development 
and a potential activator of ERK/MAPK pathway involved 
in cell proliferation, apoptosis and growth. Ectopic 

expression of miR-145 inhibits HOXA1 and inactivates the 
ERK/MAPK signaling pathway, thereby suppressing oral 
squamous cell carcinoma proliferation, migration, and 
invasion (65). In breast cancer, PAK1 is a known activator 
of the MAPK pathway (66). In bladder cancer, the levels 
of miR-145 negatively correlate with expression of PAK1 
(67). PAK1 is known to enhance invasion of cancer cells 
through the expression of MMP-9. miR-145 directly targets 
PAK1, decreases MMP-9 expression, and thereby inhibits 
cell invasion of bladder cancer. 

Some invasive tumor cells are characterized by 
increased cell motility, which require actin cytoskeletal 
reorganization, decreased cell-cell adhesion and an 
increased formation of actin-based cellular protrusions 
called filopodia. Fascin 1 (FSCN1) is an actin binding 
protein involved in the formation of filopodial protrusions. 
It plays an important role in cytoskeletal dynamics and 
the regulation of cell adhesion and motility (68). Another 
protein important in cell-cell adhesion is JAMA (F11R), 
a membrane protein that is often dysregulated in cancer 
cells leading to increased migration and invasion (69). In 
non-small cell lung cancer and in breast cancer, FSCN1 
promotes migration and invasion (70, 71). miR-145 
expression inhibits cell migration and invasion in these 
cancers by directly targeting and downregulating JAMA 
and FSCN1 (70, 71, 72). RhoA and its downstream effector, 
Rho-associated kinase (ROCK1), are key regulator of actin 
cytoskeleton reorganization. Since actin reorganization 
plays an important role in cancer cell migration and 
invasion, ROCK is a positive regulator of cancer cell 
invasion. Overexpression of miR-145 directly targets and 
represses ROCK1 and greatly reduces the invasive ability 
of glioma cells (73). 

Tumor metastasis is a multi-step process that also 
includes epithelial to mesenchymal transition (EMT). 
Loss of E-cadherin with increased N-cadherin expression 
is an important step during EMT and an important 
characteristic of metastatic cells. Studies have shown 
that overexpression of miR-145 directly targets and 
reduces N-cadherin expression, inhibiting invasion, and 
metastasis of a lung adenocarcinoma cell line (74). In 
non-small-cell lung cancer cell lines, miR-145 expression 
is low and ectopic expression of miR-145 inhibits TGF-β-
induced epithelial to mesenchymal transition (EMT) and 
suppresses cancer cell invasion and migration (75). 

In summary, miR-145 plays an important role in 
various stages of cancer development from cancer stem 
cells, tumor growth, angiogenesis, invasion and metastasis 
(Fig. 1).
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miR-145 in the cardiovascular system. Is 
there a link to cancer?

During embryogenesis, miR-145 is highly expressed in the 
heart and blood vessels of the developing embryo (6, 10). 
Postnatally, miR-145 expression is reduced in the heart 
and is abundantly expressed in vascular smooth muscle 
cells (vSMC) of the aorta, pulmonary artery, and coronary 
vessels (6, 7, 10). miR-145 is found in lung myofibroblasts 
(76) and cardiac fibroblasts (14) and is present in 
endothelial cells (15). Moreover, evidence reveals that 
it is detectable in plasma and can be secreted by both 
endothelial and smooth muscle cells (77, 78). These data 
indicate that miR-145 has diverse functions within the 
cardiovascular system.

In vascular smooth muscle cells (vSMCs)

miR-145 is abundantly expressed in vascular smooth 
muscle cells and its function in vascular smooth muscle 
cells has been extensively examined (6, 7, 8, 9, 10, 11). 
The expression of miR-143/145 in development mirrors 
that of classic smooth muscle-specific genes, where it 
first appears in the heart and developing somites, and 
over time becomes restricted to the forming vasculature 
(6, 10). Its expression pattern alone hints at a regulatory 
role in vascular smooth muscle differentiation. Indeed, 
miR-143/145 transcript has been shown to be regulated 
by the serum responsive factor (SRF)/Myocardin (Myocd) 
complex, which is a critical activator of vascular smooth 
muscle cells differentiation (Fig. 2) (79). This complex 
binds to the enhancer region CArG-box in the promoter 
of miR-143/145 to induce tissue- specific expression 
in the heart and vasculature (8, 9, 80). Functionally, 
miR-145 suppresses the expression of Klf4, a positive 
regulator of vascular smooth muscle cells proliferation 
and phenotypic switch, thus promoting differentiation 

(8). In addition, miR-145 maintains the vascular smooth 
muscle cells contractile phenotype by increasing the 
expression of Myocd which in turn induces vascular 
smooth muscle cell differentiation and contractility (8). 
Overexpression of miR-145 leads to the upregulation of 
vascular smooth muscle cells differentiation genes such 
as α-smooth muscle actin (Acta2), calponin (Cnn1), and 
smooth muscle myosin heavy chain (Myh11) (7). miR-145 
regulation of Klf4 to control vascular smooth muscle cells 
differentiation is reminiscent of the suppression of KLF4 
in promoting differentiation of embryonic stem cells as 
well as cancer stem cells. Thus, in the context of smooth 
muscle cell fate in the vasculature and in the progression 
of cancer, miR-145 plays a pivotal role in the suppression 
of proliferation by directly targeting Klf4. 

In addition to the SRF/Myocd pathways, miR-143/145 
expression is controlled by the transforming growth 
factor (TGF-B1) pathway, a known stimulus of smooth 
muscle cell differentiation. (In cancer, TGF-B1 is often 
upregulated during tumorigenesis and mainly acts via 
the SMAD factors. It initially suppresses tumorigenesis 
and later drives cancer metastasis by inducing epithelial 
to mesenchymal transition (EMT), cell motility and 
invasion (64, 81)). In coronary artery smooth muscle 
cells, (TGF-B) induces miR-145 expression through two 
TGF-B signaling pathways (p38MAPK and SMAD) that 
act on upstream enhancers of miR-145 (Smad binding 
element (SBE) and CArG box), leading to the transcription 
of miR-143/145 (82, 83). Ectopic expression of miR-145, 
induces expression of Cnn1 and Acta2, while anti-miR-145 
reduced TGF-B1 induced expression of Cnn1 and Acta2. 
Thus, TGF-B1 induces smooth muscle cell differentiation 
through miR-143/145 expression. Another study revealed 
that miR-145 is induced in vascular smooth muscle 
cells by endothelial cells through Notch signaling (84). 
In smooth muscle cells, miR-145 directly suppressed 
TGF-B receptor II (TGF-BR2) expression and blocked the 

Figure 1
Tumor progression is a multi-step process and 
miR-145 regulates various targets at different 
stages of tumorigenesis. miR-145 inhibits tumors 
growth and angiogenesis and increases apoptosis 
by directly suppressing various genes. miR-145 
inhibits cell invasion and tumor metastasis in 
various cancers. 
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expression of extra cellular matrix genes, while allowing 
the expression of smooth muscle specific differentiation 
genes (84). Overexpression of miR-145 decreases serpine1 
(PAI1), N-RAS and SMAD7, which are downstream genes 
of the TGF-B pathway. TGF-B1 is also known to activate 
the Rho GTPase, which is an important intermediate in 
the expression of smooth muscle differentiation genes 
Acta2 and Tagln. The downstream effector of RhoA and a 
known direct target of miR-145 in cancer, ROCK, is known 
to modulate the expression of several genes such as PAI-
1 (85). Taken together, TGF-B1 is a well characterized 
inducer of the miR-143/145 cluster in the vasculature 
and miR-145 suppresses different TGF-B pathway genes. 
Comparing its role in cancer and cardiovascular system, 
miR-145 facilitates the maintenance of vascular smooth 
muscle cell differentiation and contractility and inhibits 
cancer cell invasion and migration by regulating various 
targets in the TGF-B pathway.

Since, miR-143/145 gene cluster is critical in 
regulation of vascular smooth muscle cell contractility 
and differentiation, it is not surprising that they play an 
important role in smooth muscle cell driven pathologies 
of cardiovascular diseases. miR-143/145 is not essential 
for cardiovascular development in vivo, as miR-143/145 
knockout mice are viable. However, smooth muscle 
cells from miR-143/145 null mice acquire a synthetic 

phenotype (less contractile) resulting in thin and 
distended vessels (6, 9). These mice displayed decreased 
vascular tone and reduced blood pressure. Proliferative 
vascular smooth muscle cell driven neointima lesion 
formation is an important step after vascular damage. 
miR-143/145 double knock out mice had neointima 
formation in the femoral artery compared to wild type 
mice even without any injury. This suggests that these 
miRNAs play an important role in vascular smooth muscle 
cell phenotypic switch during injury and disease (6). TGF-
B1 activates multiple intermediate signaling molecules 
such as SMAD, MAPK, Rho/ROCK that control genes 
involved in various cardiovascular pathologies such as 
fibrosis, atherosclerosis, and thrombosis. miR-145 but not 
miR-143 plays a pivotal role in suppressing cardiac and 
perivascular fibrosis by attenuating TGF-B1 by directly 
targeting Tgf-br2 (84). This study showed that miR-145 
overexpression decreases PAI-1, a known prominent 
player in arteriosclerosis and perivascular fibrosis. This 
study also demonstrated that miR-145 null mice show 
an increase in TGF-B1 signaling with a marked increase 
in ACTA2 expression and increase in phosphorylation of 
p38 MAPK in aortic vascular smooth muscle cells, thus, 
highlighting the important role of miR-145 is controlling 
TGF-B1 signaling (84). In the context of cancer, miR-145 
directly targets multiple players in the TGF-B1 and MAPK 

Figure 2
Roles of miR-145 in different cardiovascular cell 
types. (A) In the cardiovascular system, miR-145 
plays various roles in smooth muscle cells (SMCs), 
endothelial cells, fibroblasts, and cardiomyocytes. 
(B and C) The role of miR-145 in SMCs and 
endothelial cells is highlighted in detail. In SMCs, 
miR-145 expression is regulated by TGFβ-1 
signaling and SRF/Myocd complex. It represses 
KLF4 and promotes the differentiation of SMCs. In 
endothelial cells, miR-145 is induced by KLF2 in 
response to sheer stress. Subsequently, miR-145 
is exported in exosome-like vesicles to SMCs to 
regulate SMC phenotypes. SRF, serum response 
factor; KLF4, Kruppel-like factor 4; SBE, SMADs 
binding element.
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pathway to suppress cell proliferation, angiogenesis and 
migration. Thus, by drawing commonalities to its role in 
cancer, miR-145 most likely targets multiple downstream 
players in the TGF-B1 pathway, in vascular smooth 
muscle cells to regulate vascular diseases such as fibrosis 
and atherosclerosis.

It is known that during the development of 
atherosclerosis, vascular smooth muscle cells undergo 
de-differentiation (or phenotypic switching) resulting 
in loss of smooth muscle cell marker genes and increase 
in proliferation and migration. The embryonic stem cell 
core factor OCT4 plays an important role in modulating 
the de-differentiation of vascular smooth muscle cells 
during atherosclerosis. OCT4 acts as an atheroprotective 
agent during plague development in mouse model of 
atherosclerosis (Apoe−/− mice) by regulating smooth 
muscle cell phenotype (86). Another study showed 
that OCT4 plays an important role in perivascular cell 
migration during angiogenesis. Perivascular cell knockout 
of Oct4 significantly reduced perivascular cell migration, 
delayed endothelial cell migration and thus decreased 
angiogenesis following injury (87). OCT4 has already 
been established as a miR-145 target in embryonic 
stem cells and cancer stem cells and therefore, could 
potentially be regulated by miR-145 to control smooth 
muscle cells differentiation during atherosclerosis. 
Another pluripotency factor, NANOG, is highly expressed 
in vascular smooth muscle cells and in aortic wall 
during thoracic aortic dissections. NANOG enhances the 
proliferation and migration of vascular smooth muscle 
cells (88). Knowing that NANOG is a target of miR-145 
and that miR-145 plays an anti-proliferative role in cancer 
stem cells, it would be interesting to decipher the interplay 
between miR-145 and NANOG during aortic dissections.

In endothelial cells

miR-145 is upregulated in endothelial cells in response to 
shear stress and is exported to regulate vascular smooth 
muscle cell phenotype to combat atherosclerosis (15). In 
human aortic arterial endothelial cells, shear-responsive 
transcription factor Krüppel-like factor 2 (KLF2) induces 
expression of miR-143/145 in response to shear stress. 
Subsequently, both miR-145-5p and 3p decrease the 
expression of junctional adhesion molecule-A (JamA), 
thereby reducing the monocyte recruitment into arterial 
wall and limiting atherosclerotic lesion formation in 
atherosclerosis mouse models (15, 89). miR-143/145 can 
transfer from endothelial cells to vascular smooth muscle 
cells through exosome-like vesicles (15). In addition to 

extracellular vesicles, the transfer of miR-143/145 is also 
mediated by membrane protrusions between smooth 
muscle cells and endothelial cells (15). miR-145 targets 
JamA to prevent migration of monocytes in atherosclerosis 
mouse models. In addition, JAMA and FSCN1, direct 
targets of miR-145, also promote migration and invasion 
in breast cancer (71). FSCN1, an important cell adhesion 
regulator, is highly expressed in endothelial cells (90). 
MUC1 is a well-established cancer metastasis gene and a 
target of miR-145 in lung cancer (61). It is also expressed 
in vascular endothelial cells (91). Thus, in the context of 
endothelial cells, it is possible that miR-145 may target 
these genes, JAMA, FSCN1, and MUC1 and control the 
migration of endothelial cells. The pluripotency factor 
SOX2, which is a target of miR-145 in cancer stem 
cells, induces endothelial mesenchymal transition that 
contributes to vascular calcification in atherosclerotic 
mice (92). Taken together, miR-145 may target Sox2 in 
endothelial cells to prevent calcification.

In the context of cancer, miR-145 inhibits cell 
proliferation and tumor growth by inhibiting the 
activation of RAS/ERK/MAPK pathway. In cancer, miR-145 
directly targets PAKs, which are known to activate ERK 
and p38 MAPK pathways (55, 67). Paks play an important 
role in the cardiovascular development and function and 
are expressed in endothelial cells and cardiomyocytes (93, 
94). PAK1 has been linked to regulating contractility and 
Ca2+ entry during heart development. It also regulates 
endothelial cell adhesion in blood vessels. PAK4 plays a 
major role in heart development during embryogenesis. 
Pak4 deletion in mice is embryonically lethal with most 
embryos dying by E11.5, mostly due to heart defects. 
Pak4 null mice display larger blood vessel with lesser 
branching (93). Thus, it seems plausible that similar to 
miR-145 regulating PAKs in cancer, PAKs could be targeted 
by miR-145 in the cardiovascular system to regulate heart 
development.

Angiogenesis is a complex process in which 
cytokines, growth factors, etc. control endothelial cell 
migration and proliferation. When endothelial-lined 
tubes are formed, the structures are stabilized by smooth 
muscle cells and pericytes. miR-143/145 cluster regulates 
endothelial growth properties upon direct contact with 
smooth muscle cells during vessel formation. In vitro and 
in vivo studies showed that miR-143 and miR-145 can 
transfer from smooth muscle cells to endothelial cells to 
modulate endothelial cell angiogenesis and proliferation 
by directly binding hexokinase II and integrin-B 8, 
respectively (83). VEGFA and its receptors are required 
to maintain vascular homeostasis, regulate endothelial 
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cell function and are important for developmental and 
pathological angiogenesis (95, 96). In the cancer context, 
VEGFA is a direct target of miR-145 (30), and regulates 
angiogenesis. Another study showed that miR-145 
regulates VEGF signaling by directly targeting N-RAS and 
IRS1 in colorectal cancer (54). RAS signaling is important 
in endothelial cell specification during development 
(97). IRS1 overexpression in endothelial cells leads to 
expression of VEGF and an improvement in angiogenesis 
and wound healing in diabetic mice (98). 

Collectively these data suggest that miR-145 may 
regulate angiogenesis during vascular development and 
cancer progression through VEGF and RAS pathways. 

In cardiomyocytes and fibroblasts

Similar to its role in differentiation of vascular smooth 
muscle cells, miR-145 plays a role in differentiation of 
lung fibroblasts and cardiac fibroblasts (14, 76). After 
injury to the heart, fibroblasts cells get activated to 
myofibroblasts and deposit extracellular matrix proteins 
such as collagens and contribute to scar tissue formation 
called fibrosis (99). miR-145 is expressed in cardiac 
fibroblast cells (14). Absence of miR-145 leads to an 
increase in TGF-B-associated cardiovascular fibrosis in vivo 
(84). SMAD3 is a well-known mediator of intracellular 
signaling of TGF-B. Smad3 activation in myofibroblasts in 
the heart plays a pivotal role in repair after myocardial 
infarction while SMAD3 signaling in cardiomyocytes after 
injury, triggers nitrosative stress and activates remodeling 
of myocardium and promotes cardiomyocyte death (100, 
101). SMAD3 is a direct target of miR-145 in the regulation 
of invasiveness of nasopharyngeal cancer (63) and could 
potentially be a target of miR-145 in cardiomyocytes or 
fibroblast cells. Thus, during cardiovascular diseases there 
is an interplay between miR-145 and TGF-β pathway 
which is reminiscent of miR-145 and TGF-β interaction 
during tumorigenesis (75). 

ADAM17 is expressed in endothelial cells, smooth 
muscle cells and fibroblasts. It has been found to be 
overexpressed in ruptured coronary plaques from 
infarcted patients and in atherosclerotic plaques in mouse 
models (102). Being a direct target of miR-145 in cancer, 
it could be interesting to study the potential interplay 
between ADAM17 and miR-145 in the vascular system 
during vascular disease progression. 

c-Myc is upregulated in cardiomyocytes in response 
to hypertrophic signals. Inhibition of c-MYC alleviates 
cardiac hypertrophy in rat hearts (103). miR-145 targets 
c-MYC in a variety of cancers and inhibits tumor growth 

(47). Thus, miR-145 could possibly target c-Myc in 
cardiomyocytes in order to regulate myocyte size.

Hoxa1 is expressed in precursors of cardiac neural crest 
cells (NCCs) which eventually populate the heart. Hoxa1 
null mice have major defects in the aortic arch, subclavian 
artery and demonstrate Tetralogy of Fallot, highlighting 
the requirement for Hoxa1 in early embryogenesis for 
patterning of arteries and the outflow tract (104). Since 
Hoxa1 is a direct target of miR-145 during cancer migration 
and invasion, it may also be targeted by miR-145 early in 
embryogenesis to control vascular development. 

Conclusions

miR-145 has been extensively studied in the context of 
cancer, with multiple gene targets being identified that 
regulate tumor progression in an array of cancer cell types 
(Fig. 1 and Table 1, 2). miR-145 is downregulated in various 
cancers and the overexpression of miR-145 in different 
cancer cells inhibits tumor growth, angiogenesis, invasion 
and metastasis. miR-145 directly targets core pluripotency 
factors thereby controlling stem cell characteristics of 
embryonic stem cells and cancer stem cells. miR-145 
regulates many direct targets in several cellular pathways 
(16). Overall, miR-145 acts as an important modulator of 
these well-documented pathways such as the ERK/MAPK, 
mTOR/p70S6K1 and TGF-β which are often disrupted in 
cancer. Thus, in summary, miR-145 serves as a potent 
tumor suppressor in the progression of various cancers. 

Fibroblasts in the tumor microenvironment get signals 
from localized tissue such as TGF-B1 and transdifferentiate 
to a heterogenous cell type called cancer-associated 
fibroblasts (CAFs) which have characteristics of tumor cell 
invasion and metastasis. When normal human fibroblasts 
are exposed to TGF-B1, they acquired a myofibroblast CAF-
like phenotype. Overexpression of miR-145 inhibited the 
induced myofibroblastic differentiation and reverted the 
cancer-associated fibroblasts to a more normal fibroblast 
phenotype (105). miR-145 acts by downregulating 
numerous target genes induced by TGF-B1 such as ACTA2 
thereby inhibiting the development of cancer- associated 
myofibroblast phenotype. However, miR-145 is known 
to promote differentiation in smooth muscle cells and 
embryonic stem cells. These examples highlight the tissue- 
specific role of miR-145 and its targets. The type of cancer, 
stage of cancer dictates the function miR-145 in cancer and 
adds a layer of complexity. Thus, in depth study of the tissue-
specific roles of miR-145 and its interaction with targets is 
crucial for the development of miR-145 therapeutics.
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In the cardiovascular system, miR-145 is expressed in 
vascular smooth muscle cells and plays an important role 
in smooth muscle cell differentiation (8, 9). miR-145 is 
also expressed in fibroblasts, endothelial cells, and plasma, 
thus, highlighting the diverse functions of miR-145 in the 
cardiovascular system. miR-145 has unique targets that 
have been identified in the cardiovascular system such 
as angiotensin (ACE), myocardin related transcription 
factor-B (MRTF), slit-Robo GTPase-activating protein 1 
(Srgap1), Srgap2 (9). However, due to the limited number 
of studies carried out in the cardiovascular system, there 
is potential for many other cardiovascular targets of miR-
145 to be discovered. Some of the direct targets of miR-145 
in cancer summarized in Tables 1 and 2, are also expressed 
in different cell types of the cardiovascular system. 
The action of miR-145 on smooth muscle phenotypic 
modulation is through the inhibition of KLF4 while in 
cancer miR-145 targets KLF4 to regulating tumor growth 
(8, 42). Other pluripotency factors SOX2 and OCT4 are 
known miR-145 targets in cancer. They are expressed 
in endothelial and smooth muscle cells and have the 
potential of being miR-145 targets in the cardiovascular 
system. The major pathways regulated by miR-145 in 
cancer such as the RAS/MAPK and TGF-β pathways also 
play crucial roles in cardiovascular function and disease 
(84, 93). Thus, there is a strong possibility that miR-145 has 
multiple targets in these pathways in the cardiovascular 
system. miR-145 regulates tumor growth and metastasis 
by targeting PAI1 and JAMA1 in cancer (50, 72). During 
cardiovascular diseases, miR-145 regulates JAMA during 
atherosclerosis and PAI1 during cardiovascular fibrosis 
(15, 84), highlighting some common targets in cancer 
and cardiovascular system. Not surprisingly, genes and 
pathways that are targets of miR-145 are shared between 
these biological systems and many other targets are likely 
yet to be discovered.

miR-145 is widely described as a tumor-suppressor 
and is highly expressed in the heart and blood vessels. 
It is interesting to speculate whether the high expression 
of miR-145 contributes to the low incidence of cancer in 
the heart and vascular walls. The heart being resistant to 
tumor formation is most likely due the cardiomyocytes 
being terminally differentiated. On one hand, they cannot 
reenter the cell cycle and repair damaged heart tissue and 
thus avoid any cell cycle related mutations. This property 
may make them more resistant to tumor formation. miR-
145 is protective against sheer stress on endothelial cells 
and is required for maintenance of the smooth muscle cell 
phenotype. There is no doubt that miR-145 has important 
functions in blood vessels. However, based on the limited 

clinical studies and almost no mechanistic studies on 
angiosarcoma (cancer of blood vessels), any role miR-
145 may play in preventing cancer of the blood vessels is 
purely speculative.
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