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Purpose: To develop a fully automatic method, based on deep learning algorithms,
for determining the locations of cone photoreceptors within adaptive optics scanning
laser ophthalmoscope images and evaluate its performance against a dataset of
manually segmented images.

Methods: A fully convolutional network (FCN) based on U-Net architecture was used
to generate prediction probability maps and then used a localization algorithm to
reduce the prediction map to a collection of points. The proposed method was
trained and tested on two publicly available datasets of different imaging modalities,
with Dice overlap, false discovery rate, and true positive reported to assess
performance.

Results: The proposed method achieves a Dice coefficient of 0.989, true positive rate
of 0.987, and false discovery rate of 0.009 on the first confocal dataset; and a Dice
coefficient of 0.926, true positive rate of 0.909, and false discovery rate of 0.051 on the
second split detector dataset. Results compare favorably with a previously proposed
method, but this method provides quicker (25 times faster) evaluation performance.

Conclusions: The proposed FCN-based method demonstrates that deep learning
algorithms can achieve accurate cone localizations, almost comparable to a human
expert, while labeling the images.

Translational Relevance: Manual cone photoreceptor identification is a time-
consuming task due to the large number of cones present within a single image;
using the proposed FCN-based method could support the image analysis task,
drastically reducing the need for manual assessment of the photoreceptor mosaic.

Introduction

Cone photoreceptors are vital for human vision.
Specifically, these cells serve daylight and color vision.
Diseases such as Stargardt’s disease,1 retinitis pig-
mentosa,2 choroideremia,3 and macular degeneration4

are characterized by the loss of photoreceptors
leading to impaired vision. A way to image the
photoreceptor array is using an adaptive optics
scanning laser ophthalmoscope (AOSLO). Two com-
mon variants of the AOSLO imaging modality are

confocal and split detector, each providing slightly

different information on photoreceptor structure.5,6

Regardless of the method use to acquire the

images, the cones must be located within the image

to create quantifiable information and extract met-

rics, such as cone density and spacing and packing

arrangements. Given the high density of cones within

the image, manual cone identification can be time-

consuming and inconsistent. Several automatic or

semi-automatic methods have been proposed to

create a faster and more consistent cone detection
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process. Some methods are based on standard image
analysis techniques: image histogram analysis,7 multi-
scale modelling and normalized cross-correlation,8 a
circular Hough transform,9 and multiscale circular
voting.10 In recent years, machine learning methods
have also been applied to this problem. Cunefare et
al.11 proposed a so-called ‘‘patch-based’’ method
involving generating a probability map through a
sliding window convolutional neural network (CNN)
and then postprocessing this probability map to
locate cone positions. The CNN, which works on a
small window of the entire image, generates a binary
(two-class) classification of the image as either the
patch centered on a cone or not centered on a cone.
By moving the window along different sections of the
image, the probability map is obtained. The post-
processing method, which is needed to extract peaks
from the probability map (cone locations), contains
several steps and several tunable parameters. Heisler
et al.12 investigated the use of transfer learning on the
network of Cunefare et al.11 to enable classifications
of previously unseen data collected from a different
imaging modality (AO scanning laser ophthalmo-
scope). Davidson et al.13 proposed a method using a
multidimensional Recurrent Neural Network (RNN),
which generates a probability map for the entire
image in a single set of computations.

Patch-based and CNNs have commonly been
applied to ophthalmic medical images, such as retinal
segmentation or classification, and provide state-of-
the-art performance in these areas.14–16 Fully Convo-
lutional Networks (FCNs) are an extension of
CNNs.17 The main benefit of an FCN is the ability
to process the entirety of an image at once and
provide a per-pixel probability map. FCNs are
commonly used for object segmentation, region
labeling, or other per-pixel operations17 and have
been used for geographic atrophy segmentation in
retinal tomography images.18 FCNs have been
commonly used in medical image processing for
problems such as retinal layer segmentation,19 seg-
mentation of neuronal structures,20 and cell detec-
tion.21 For per-pixel operations, FCNs are commonly
quicker than a patch-based CNN or RNN, as the
FCN only passes over the data once, whereas data are
repeatedly evaluated in the case of a patch-based
CNN and multiple recurrent loops increase the
number of operations in the case of an RNN.22

In this work, we propose the application on a FCN
for cone detection in confocal and split detector
AOSLO images. We use a previously published
method, based on a patch-based technique,11 as a

baseline to assess the benefit that a FCN approach
may have in this particular problem.

Methods

The method for finding cones consists of two steps.
The first step is the generation of a probability map
through an FCN, and the second step is postprocess-
ing the probability map to a collection of cone
locations. Training of the neural network and
parameter selection of the postprocessing are done
separately. The FCN was trained on the given
training images for the dataset (details below), for
50 epochs. After training was complete, the training
images were processed through the FCN and then
generated probability maps were used to optimize the
detection parameters of the cone location postpro-
cessing according to a parameter sweep. This trained
combination of FCN and detection parameters was
then used to segment the test images giving the final
performance.

Datasets

The FCN method was trained and evaluated on
two publicly available datasets, namely, one consist-
ing of confocal samples, acquired by Garrioch et al.,5

and one consisting of split detector samples acquired
by Cunefare et al.6; data associated with this
publication and used here for testing of the proposed
methods were obtained online (https://github.com/
DavidCunefare/CNN-Cone-Detection).

The confocal set consists a total of 840 images,
split into a testing set of 640 images and a training set
of 200 images. Full acquisition parameters are given
in Garrioch.5 Given some images had different
dimensions and this would complicate setting the
network, all images were cropped to a common pixel
size, using the central 144 3 144-pixel region,
corresponding to an area ranging from 62 to 74
lm2. The split detector set consists of 264 images, split
into a testing set of 80 images and a training set of 184
images. Full acquisition parameters are given in
Cunefare et al.6 Like the confocal set, all images were
cropped to a central 144 3 144-pixel region, corre-
sponding to an area ranging from 56 to 68 lm2. Both
sets were independently trained and evaluated, with
independent networks and detection parameters.

Preprocessing and Augmentation

Given the relative sparseness of the pixels identi-
fied as being ‘‘cone location’’ in a single image, several
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modifications to create the ground truth maps (cone
labels) were tested. A number of pixels from 0 to 3
were added in a diamond shape around each positive
sample to give a larger number of positive samples to
aid learning and assess if bias in the sample had an
effect on performance. A size of 0 indicates a single
pixel used as a mask, as shown in Figure 1.

Additionally, in the case of the confocal dataset,
rotational augmentation in steps of 90 degrees was
used because the confocal modality is rotation

invariant. It is worth noting that split detector images
are not rotation invariant due to the scan being
created from the difference of two offset channels,
and preliminary testing confirmed adding rotational
augmentation to the training data reduced perfor-
mance while testing on nonrotated images.

Fully Convolutional Network

The network used for this method was a modified
U-net (Fig. 2) to have only a single convolutional-

Figure 1. (a–d) Confocal image samples and (e–h) split detector image samples. (a, e) 0-pixel padding. (b, f) 1-pixel padding. (c, d) 2-
pixel padding. (d, h) 3-pixel padding.

Figure 2. Proposed modified U-Net architecture.
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ReLU-batch norm block per pooling layer, zero
padding to maintain input-output size parity, and a
dropout of 0.5 at the bottleneck. All images used as
inputs to the network were normalized on a per-image
basis to be between 0 and 1 inclusive. A detailed
explanation of the original network can be found
elsewhere,20 for completeness; only a brief summary
of the method is provided here. The network has a
contracting path (encoder) followed by an expanding
path (decoder), both of which contain a large number
of feature channels giving the network greater
capacity to propagate contextual information. To
improve pixel-wise localization, ‘‘skips’’ were added to
concatenate each feature map in the expanding path
(decoder) with the corresponding feature map at the
same level in the contracting path (encoder).20

Figure 2 shows the exact structure of the network.
Convolutional layers are the main learnable operation
within the network, where an input feature map is
convolved by a filter of size W3H3F, where W
indicates width, H indicates height, and F indicates
the number of filters. Rectified linear units provide
activations, only allowing an output if the input is
above zero. Batch norm layers are used to normalize
training, keeping inputs bounded between 0 and 1.
Max pooling layers subsample the input feature map
by taking the largest value within a W3H region every
S pixels in either dimension. Dropout layers com-
monly improve generalization and prevent overfitting
to the training data and randomly turn off individual
input pixels in the feature map at rate P. Transposed
convolutional layers increase the size of the input
feature map by S with a kernel of size W3H3F.
Concatenation layers join two or more other layers
together by adding extra channels. Softmax layers
output the relative probabilities for each channel in
the input feature map.

Cone Localization

The output from the FCN is a probability map of
the same size as the input image, with a gradient from
background prediction to cone prediction over a width
of several pixels in practice. In order to reduce this
probability map to a list of cones positions, the
detection scheme used by Cunefare et al.11 was applied
to the probability maps. This allows the direct
comparison of the methods (patch-based versus FCN).

The first step of this method is smoothing the
probability map with a Gaussian filter of standard
deviation r. The second step is extended-maxima
transform to find maximal regions where the maxi-
mum intraregion height difference is less than H. The

third step is to filter the maximal regions based on the
original probability map against a minimal threshold
T. Finally, the centroids of the remaining clusters are
taken as the cone locations. The parameters r, H, and
T were tested over 0 to 2 in steps of 0.1, 0 to 1 in steps
of 0.1, and 0 to 0.3 in steps of 0.05, followed by 0.4
and 0.5, respectively.

Testing

To compare the performance of the proposed
method to existing methods in the literature the true
positive rate (TPR), false detection rate (FDR), and
Dice overlap (Dice) are given for all methods. These
are based on the number of true positives (Tp), where
both automatic methods and truth indicate a cone;
false positives (Fp), where the automatic methods
indicate a cone, but there is no corresponding cone in
the truth; and false negatives (Fn), where a cone is
indicated by truth, but is not predicted by an
automatic method. The equations for these metrics
are shown below in Equations 1.1 to 1.3.

TPR ¼ Tp

Tp þ Fn
ð1Þ

FDR ¼ Fp

Fp þ Tp
ð2Þ

Dice ¼ 23Tp

23Tp þ Fp þ Fn
ð3Þ

Given the cropping of the original images and the
possible confusion around borders where positive
samples may lie outside the area of the image, a
padding of 2 pixels around the inside of each border
was added to a ‘‘free zone,’’ with the remainder of the
image serving as a ‘‘testing area.’’ In the event that a
prediction in the testing area had no corresponding
true positive in the testing area but it did in the free
zone, this was treated as a positive prediction. Positive
samples in the free zone that had no corresponding
prediction in the testing area were not treated as
negatives (Fig. 3).

Patch-based methods can be trained on images of
different sizes if a consistent size patch is extracted.
However, to ensure a fair comparison between
methods, the same central region used for the FCN
was extracted from the full segmentation. To assess
the effects of the different architectures on perfor-
mance, a repeated measures analysis of variance was
performed to examine the statistical significance of
the different metrics associated with these factors.
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Results

All proposed methods were trained and tested in
MATLAB 2018b (MathWorks, Natick, MA) by using
the first party deep learning libraries, on a computer
with a Xeon E5-2620v4 and an Nvidia Titan Xp. The
patch-based networks11 were taken directly from an
open source implementation for comparison purposes
and were trained and tested on MATLAB 2018b with
MatConvNet 1.0-beta25, on a computer with a Xeon
E5-2620v4 and an Nvidia Titan Xp.

Regarding the computational time, the proposed
FCN method generates a probability map for a 1443

144-pixel image in 0.03 seconds, compared to 0.85
seconds for the patch-based CNN approach with an
identical image. As both methods use the same cone
location algorithm, both methods have the same
running time added. The cone location step took
0.008 seconds on average, so the total for the FCN
method is 0.038 seconds, and the total for the patch-
based CNN is 0.858 seconds.

To assess the performance and the repeatability of
the method, each network was trained from scratch
and tested four times, with identical testing and
training data sets and with results recorded indepen-
dently, and the average of three metrics (and their

standard deviation) across all networks is presented.
No transfer learning is performed. Instead, each
network is trained from scratch with weights initial-
ized using small random values. Given the inherent
randomness with neural networks, this serves to
control for instabilities during initialization and
training and gives a more accurate idea of what
performance window is to be expected if training this
network independently. Tables 1 and 2 summarize the
performance on the confocal dataset and split
detector dataset, respectively, and provide a compar-
ison with existing methods. Figure 4 provides a visual
comparison on the two different imaging modalities.
In this work, we present the performance as the mean
(and standard deviation) of the four runs to assess
both performance and consistency of the network.
The small standard deviation across the different
tested conditions ensures the mean values provide a
representative picture of performance.

Discussion

Across both datasets, the proposed FCN method
with the three-wide padded data provides the best
performance, in terms of the mean value of the
different evaluated metrics. On comparison to the

Figure 3. Visualization of cone matching and free zone. (a) raw image and (b) corresponding annotated version of the image. Yellow
denotes true positives, red denotes false positives, and blue denotes a false negative (not present in this plot). The free zone is delineated
by the cyan border. Inside this zone, magenta denotes excluded truths and green disregarded predictions.
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Table 2. Mean and (Standard Deviation) Performance for the Split Detector Dataseta

Method True Positive Rate False Discovery Rate Dice Coefficient

Patch-based11 0.898 (0.095) 0.056 (0.062) 0.916 (0.065)
FCN 0 Wide 0.881 (0.083) 0.063 (0.069) 0.905 (0.065)
FCN 1 Wide 0.888 (0.078) 0.066 (0.065) 0.908 (0.055)
FCN 2 Wide 0.903 (0.074) 0.061 (0.060) 0.918 (0.055)
FCN 3 Wide 0.909 (0.076) 0.051 (0.051) 0.926 (0.052)

a The best result for each performance metric is highlighted in bold text.

Figure 4. Visualization of model performance on (a) confocal image and (b) split detector image. Yellow denotes true positives, red
denotes false positives, and blue denotes a false negative. The free zone is delineated by the cyan border. Inside this zone, magenta
denotes excluded truths and green denotes disregarded predictions.

Table 1. Mean and (Standard Deviation) Performance for the Confocal Dataseta

Method True Positive Rate False Discovery Rate Dice Coefficient

Patch-based11 0.984 (0.014) 0.007 (0.011) 0.988 (0.010)
FCN 0 wide 0.984 (0.016) 0.009 (0.014) 0.987 (0.013)
FCN 1 wide 0.984 (0.015) 0.008 (0.013) 0.987 (0.011)
FCN 2 wide 0.985 (0.015) 0.008 (0.012) 0.988 (0.011)
FCN 3 wide 0.987 (0.013) 0.009 (0.013) 0.989 (0.011)

a The best result for each performance metric is highlighted in bold text.
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previously proposed patch-based technique,11 the
margin between existing patch based and the FCN
methods is greater in the split detector dataset where
the three-wide FCN exhibited the best performance
across the three measured parameters. However, none
of the three parameters were statistically significantly
different to the Cunefare (P . 0.01). For the confocal
dataset, all three metrics were statistically significantly
different to the Cunefare (P , 0.01); although the
differences were small in magnitude, the FCN shows
superior performance for Dice and True positive rate.
The network was also evaluated against the multidi-
mensional RNN proposed by Davidson and col-
leagues.13 However, because this particular network
was designed to segment cones in the split detector
image, the performance between datasets showed a
big disparity and was not compared with the
proposed method. The split detector had a good
performance (true positive rate ¼ 0.775, false discov-
ery rate ¼ 0.042, Dice ¼ 0.849), whereas the confocal
presented poor metrics (true positive rate ¼ 0.233,
false discovery rate¼ 0.007, Dice¼ 0.376). Changes in
the network architecture may be needed to improve
performance.

A limitation of the proposed method is the two-
step approach. It is likely that better performance
could be achieved by evaluating the FCN on the exact
metric used for performance in the training stages.
Finding a way to change the network to directly
output a collection of cone positions would be ideal;
however, this is not a trivial problem and should be
considered in future studies.

Cone photoreceptor imaging modalities can have a
small depth of focus, so blur can be present in the
image.23 Understanding how the different models deal
with this blur and the impact on performance should
be considered in future studies. Also, future studies
should evaluate the proposed method on datasets
from pathological eyes, as many diseases can change
the mosaic structure significantly,1–4 as well as with
other imaging modalities such as dual split and
confocal.24 Whether similar performance can be
achieved with datasets from pathological eyes remains
to be seen.

Conclusion

FCNs have proven useful for a number of image
analysis tasks. In this work, the proposed end-to-end
FCN method is able to provide a fast detection of
cones in two different image modalities. The overall
performance of the method is comparable or superior
to previously proposed methods that are patch-based

but with the added advantage that it runs in a fraction
of the time.

Acknowledgments

The Titan Xp used for this research was donated
by the NVIDIA Corporation. The software will be
made available for research purposes upon request to
the corresponding author.

Supported by Rebecca L. Cooper 2018 Project
Grant (DAC), Telethon – Perth Children’s Hospital
Research Fund (DAC, DMS, and FKC), and
NHMRC Career Development Fel lowship
(APP1142962) (FKC).

Disclosure: J. Hamwood, None; D. Alonso-Can-

eiro, None; D.M. Sampson, None; M.J. Collins,
None; F.K. Chen, None

References

1. Chen Y, Ratnam K, Sundquist SM, et al. Cone
photoreceptor abnormalities correlate with vision
loss in patients with Stargardt disease. Invest
Ophthalmol Vis Sci. 2011;52:3281–3292.

2. Makiyama Y, Ooto S, Hangai M, et al. Macular
cone abnormalities in retinitis pigmentosa with
preserved central vision using adaptive optics
scanning laser ophthalmoscopy. PLoS One. 2013;
8:e79447.

3. Morgan JIW, Han G, Klinman E, et al. High-
resolution adaptive optics retinal imaging of
cellular structure in choroideremiaadaptive optics
imaging in choroideremia. Invest Ophthalmol Vis
Sci. 2014;55:6381–6397.

4. Qin J, Rinella N, Zhang Q, et al. OCT
angiography and cone photoreceptor imaging in
geographic atrophy. Invest Ophthalmol Vis Sci.
2018;59:5985–5992.

5. Garrioch R, Langlo C, Dubis AM, Cooper RF,
Dubra A, Carroll J. Repeatability of in vivo
parafoveal cone density and spacing measure-
ments. Optom Vis Sci. 2012;89:632–643.

6. Cunefare D, Cooper RF, Higgins B, et al.
Automatic detection of cone photoreceptors in
split detector adaptive optics scanning light
ophthalmoscope images. Biomed Opt Express.
2016;7:2036–2050.

7 TVST j 2019 j Vol. 8 j No. 6 j Article 10

Hamwood et al.



7. Xue B, Choi SS, Doble N, Werner JS. Photore-
ceptor counting and montaging of en-face retinal
images from an adaptive optics fundus camera. J
Opt Soc Am A Opt Image Sci Vis. 2007;24:1364–
1372.

8. Turpin A, Morrow P, Scotney B, Anderson R,
Wolsley C. Automated identification of photore-
ceptor cones using multi-scale modelling and
normalized cross-correlation. International Con-
ference on Image Analysis and Processing. Spring-
er: Berlin, Heidelberg; 2011:494–503.

9. Bukowska DM, Chew AL, Huynh E, et al. Semi-
automated identification of cones in the human
retina using circle Hough transform. Biomed Opt
Express. 2015;6:4676–4693.

10. Liu J, Jung H, Dubra A, Tam J. Automated
photoreceptor cell identification on nonconfocal
adaptive optics images using multiscale circular
voting. Invest Ophthalmol Vis Sci. 2017;58:4477–
4489.

11. Cunefare D, Fang L, Cooper RF, Dubra A,
Carroll J, Farsiu S. Open source software for
automatic detection of cone photoreceptors in
adaptive optics ophthalmoscopy using convolu-
tional neural networks. Sci Rep. 2017;7:6620.

12. Heisler M, Ju MJ, Bhalla M, et al. Automated
identification of cone photoreceptors in adaptive
optics optical coherence tomography images
using transfer learning. Biomed Opt Express.
2018;9:5353–5367.

13. Davidson B, Kalitzeos A, Carroll J, et al.
Automatic cone photoreceptor localisation in
healthy and Stargardt afflicted retinas using deep
learning. Sci Rep. 2018;8:7911.

14. Fang L, Cunefare D, Wang C, Guymer RH, Li S,
Farsiu S. Automatic segmentation of nine retinal
layer boundaries in OCT images of non-exudative
AMD patients using deep learning and graph
search. Biomed Opt Express. 2017;8:2732–2744.

15. Hamwood J, Alonso-Caneiro D, Read SA,
Vincent SJ, Collins MJ. Effect of patch size and
network architecture on a convolutional neural
network approach for automatic segmentation of
OCT retinal layers. Biomed Opt Express. 2018;9:
3049–3066.

16. Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y.
Deep learning-based automated classification of
multi-categorical abnormalities from optical co-
herence tomography images. Transl Vis Sci
Technol. 2018;7:41.

17. Long J, Shelhamer E, Darrell T. Fully convolu-
tional networks for semantic segmentation. Pro-
ceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. IEEE; 2015:3431–
3440.

18. Ji Z, Chen Q, Niu S, Leng T, Rubin DL. Beyond
retinal layers: a deep voting model for automated
geographic atrophy segmentation in SD-OCT
images. Transl Vis Sci Technol. 2018;7:1.

19. Roy AG, Conjeti S, Karri SPK, et al. ReLayNet:
retinal layer and fluid segmentation of macular
optical coherence tomography using fully convo-
lutional networks. Biomed Opt Express. 2017;8:
3627–3642.

20. Ronneberger O, Fischer P, Brox T. U-Net:
convolutional networks for biomedical image
segmentation. International Conference on Medi-
cal Image Computing and Computer-Assisted
Intervention. Cham, Switzerland: Springer; 2015:
234–241.

21. Xie W, Noble J, Zisserman A. Microscopy cell
counting and detection with fully convolutional
regression networks. Computer Methods in Bio-
mechanics and Biomedical Engineering: Imaging &
Visualization. 2018;6:283–292.

22. Kugelman J, Alonso-Caneiro D, Read SA,
Vincent SJ, Collins MJ. Automatic segmentation
of OCT retinal boundaries using recurrent neural
networks and graph search. Biomed Opt Express.
2018;9:5759–5777.

23. Alonso-Caneiro D, Sampson DM, Chew AL,
Collins MJ, Chen FK. Use of focus measure
operators for characterization of flood illumina-
tion adaptive optics ophthalmoscopy image
quality. Biomed Opt Express. 2018;9:679–693.

24. Cunefare D, Langlo CS, Patterson EJ, Blau S,
Dubra A, Carroll Jand Farsiu S. Deep learning
based detection of cone photoreceptors with
multimodal adaptive optics scanning light oph-
thalmoscope images of achromatopsia. Biomed
Opt Express. 2018;9:3740–3756.

8 TVST j 2019 j Vol. 8 j No. 6 j Article 10

Hamwood et al.


	Introduction
	Methods
	f01
	f02
	e01
	e02
	e03
	Results
	Discussion
	f03
	t02
	f04
	t01
	b01
	b02
	b03
	b04
	b05
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24

