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Parkinson’s disease (PD) is a multisystem neurological condition affecting different

neurotransmitter pathways characterized by aberrant functional connectivity (FC) and

perfusion alteration. Since the FC, measuring neuronal activity, and cerebral blood flow

(CBF) are closely related through the neurovascular coupling (NVC) mechanism, we aim

to assess whether FC changes found in PD mirror perfusion ones. A multimodal MRI

study was implemented by acquiring resting state functional MRI (rsfMRI) and arterial

spin labeling (ASL) datasets on a group of 26 early PD (66.8 ± 8 years, 22 males,

median [interquartile range] Hoehn and Yahr = 1.5 [1]) and 18 age- and sex-matched

healthy controls (HCs). In addition, a T1-weighted MPRAGE was also acquired in the

same scan session. After a standard preprocessing, resting state networks (RSNs) and

CBF maps were extracted from rsfMRI and ASL dataset, respectively. Then, by means

of a dual regression algorithm performed on RSNs, a cluster of FC differences between

groups was obtained and used to mask CBF maps in the subsequent voxel-wise group

comparison. Furthermore, a gray matter (GM) volumetric assessment was performed

within the FC cluster in order to exclude tissue atrophy as a source of functional changes.

Reduced FC for a PD patient with respect to HC group was found within a sensory-motor

network (SMN, pFWE = 0.01) and visual networks (VNs, primary pFWE = 0.022 and lateral

pFWE = 0.01). The latter was accompanied by a decreased CBF (primary pFWE = 0.037,

lateral pFWE = 0.014 VNs), while no GM atrophy was detected instead. The FC alteration

found in the SMN of PD might be likely due to a dopaminergic denervation of the

striatal pathways causing a functional disconnection. On the other hand, the changes

in connectivity depicted in VNs might be related to an altered non-dopaminergic system,

since perfusion was also reduced, revealing a compromised NVC. Finally, the absence

of GM volume loss might imply that functional changes may potentially anticipate

neurodegeneration. In this framework, FC and CBFmight be proposed as early functional

biomarkers providing meaningful insights in evaluating both disease progression and

therapeutic/rehabilitation treatment outcome.

Keywords: Parkinson’s disease, resting state fMRI, arterial spin labeling, functional connectivity, cerebral blood

flow, neurovascular coupling
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INTRODUCTION

Parkinson’s disease (PD) is one of the most frequent
neurodegenerative disorders affecting over four million
people worldwide (1). PD is clinically characterized by
both motor symptoms, such as tremor, bradykinesia, and
rigidity, and non-motor ones, including cognitive impairment,
neuropsychiatric symptoms, and autonomic dysfunction
(2, 3). From a neuropathological point of view, PD can be
considered as a multisystem brain disorder (4, 5) affecting
different neurotransmitter pathways. The dopaminergic
denervation of striatal pathways is considered the cardinal
signature of PD, and it is often linked to motor symptoms (5).
The other pathophysiological feature of PD is the progressive
deposition of α-synuclein in cholinergic and monoaminergic
brain neurons, concurrent with the evolution of Lewy body
pathology (6).

The scientific community has shown a great interest in trying
to identify non-invasive imaging biomarkers that may improve
our understanding of the mechanisms underlying PD. In this
framework, both resting state functional magnetic resonance
imaging (rsfMRI) and arterial spin labeling (ASL) have provided
considerable insights into the neural correlates of PD, detecting
functional connectivity (FC) and cerebral blood flow (CBF)
alterations, respectively.

FC alterations in PD have been extensively reported both in
terms of increased and decreased connectivity (7, 8). Increased
blood oxygen level dependent (BOLD) signal was found in
primary and secondary motor cortices and the middle frontal
gyrus of PD patients (9). On the other hand, decreased FC
was observed in the supplementary motor area (SMA) (10) and
between temporal regions and left occipital cortex and left lingual
gyrus (11). Furthermore, reduced FC in posterior cortical regions
has been associated with global cognitive decline (12), while
the disruption of anticorrelation patterns between the occipito-
parietal areas and the default mode network correlated with
visuospatial deficits in PD (13).

Besides FC changes, perfusion alterations were also observed
in PD (14, 15). Perfusion was found to be reduced in pre-
SMA (16). Reduced CBF was also reported in occipital and
parietal cortices (14, 17), precuneus and cuneus (17), and
frontal cortex (16) bilaterally. Hypoperfusion was hypothesized
to be related to the alteration of cholinergic, serotoninergic,
and noradrenergic neurotransmitter pathways in PD (16, 18,
19). Although several studies reported no perfusion changes
in PD (18, 20, 21), in Pelizzari et al. (21), the resulting CBF
correlated with symptoms severity, while Al-Bachari et al. (18)
revealed a prolonged arterial arrival time confirming an aberrant
neurovascular status of PD.

Since BOLD signal reflects changes in the venous oxygenation
level (22), rsfMRI contrast is closely dependent on CBF (23). The
neuronal activity and cerebral perfusion are strictly related by
means of the physiological mechanism known as neurovascular
coupling (NVC), which enables the prompt adaptation of brain
perfusion to the (local) metabolic demand. Evidence of injury
to both neural innervations and capillaries were reported in
idiopathic PD (19), suggesting that the neurovascular unit is

affected at different levels in PD. For these reasons, cross-talk
between observed FC and CBF alterations in PD cannot
be excluded.

In order to better understand the relationship between
neural activity and perfusion alterations in PD, we conducted a
multimodal MRI study by concurrently assessing FC and CBF by
means of rsfMRI and ASL, respectively. We aimed to investigate
whether the FC changes found in PD reflect perfusion alterations.
Gray matter (GM) volume was also assessed to exclude atrophy
as a confounding factor of functional and perfusion changes.

METHODS

Demographic and Clinical Evaluation
Twenty-six PD patients and 18 age and sex-matched healthy
controls (HC) were enrolled in this study. The inclusion criteria
for the PD patients were as follows: (1) a diagnosis of idiopathic
PD according to the Movement Disorder Society Clinical
Diagnostic Criteria for PD (24); (2) absence of neuropsychiatric
disorders beside PD diagnosis at clinical evaluation; (3) absence
of neurovascular diseases at clinical evaluation, documented also
with previous MRI/CT examination; (4) Positive DaTscan; (5)
mild to moderate stage of the disease with a scoring between
stages 1 and 3 of the Modified Hoehn and Yahr (H&Y) Scale
(25); (6) stable drug therapy with either L-Dopa or dopamine
agonists; (7) freezing assessed with UPDRS part II lower than 2;
and (8) time spent with dyskinesias assessed with UPDRS part
IV lower than 2. HC were included after assessing the absence
of any neurological and/or neuropsychiatric disorder and/or
neurovascular diseases.

All participants were right-handed.
For PD patients, the clinical evaluation included the

quantification of the disease stage with H&Y and the assessment
of the symptom severity with UPDRSmotor part III (UPDRS III)
performed by an experienced neurologist. Moreover, PD patients
were classified as either tremor dominant or akinetic-rigid (26).
Drug administration was recorded, and levodopa equivalent daily
dose (LEDD) was calculated as suggested in Tomlinson et al. (27).

The global cognitive level of all the participants was assessed
with the Montreal Cognitive Assessment (MoCA) test.

The study was performed in accordance with the principles
of the Helsinki Declaration and by previous approval from
the IRCSS Fondazione Don Carlo Gnocchi Ethics Committee.
Written informed consent was signed by each participant.

MRI Acquisition
All the subjects underwent a magnetic resonance imaging (MRI)
examination performed on a 1.5T Siemens Avanto scanner
(Erlangen, Germany) equipped with a 12-channel head coil. The
acquisition comprised: (1) a 3D high-resolution magnetization-
prepared rapid gradient echo (MPRAGE) T1-weighted image
[repetition time (TR) = 1,900ms, echo time (TE) = 3.3ms,
inversion time (TI) = 1,100ms, matrix size = 192 × 256 × 176,
resolution = 1 mm3 isotropic]; (2) a multi-echo resting state
fMRI (ME-rsfMRI) sequence (TR= 2,570ms, TE= 15/34/54ms,
matrix size = 64 × 64 × 31, resolution = 3.75 × 3.75 × 4.5
mm3, 200 volumes); (3) a double-echo GRE field map (TR =
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FIGURE 1 | MRI analysis pipeline. The figure shows the pipeline of MRI analyses. Briefly, the preprocessing is shown in each panel for the different modalities. The

functional results of the comparison between healthy control (HC) and Parkinson’s disease (PD) groups were used as masks of the statistical analysis of perfusion and

gray matter maps.

528ms, TE = 4.76/9.52ms, matrix size = 100 × 100 × 42,
resolution = 3.2 × 3.2 × 3.3 mm3); and (4) a 3D gradient
and spin echo (GRASE) multidelay pseudo-continuous arterial
spin labeling (pCASL) with background suppression sequence
[TR/TE = 3,500/22.58ms, labeling duration = 1,500ms, 5 post-
labeling delays (PLD) = 700/1200/1700/2200/2700ms, 12 pairs
of tag/control volumes, matrix size= 64× 64× 32, resolution=

3.5× 3.5× 5 mm3, distance between the center of imaging slices
and labeling plane= 90 mm].

MRI Analysis
The image processing was performed by means of FMRIB
Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl) toolboxes
5.0.6 if not otherwise specified.

The pipeline of MRI processing is schematized in Figure 1.

Pre-processing of MRI Data

3D-T1 MPRAGE
The MPRAGE, which was used as an anatomical reference
for registration purposes, was skull-stripped by means of bet
toolbox (28), then the SIENAX algorithm (29) was run in order

to segment the brain tissues in GM, white matter (WM), and
cerebrospinal fluid. A voxel-based morphometry (VBM) analysis
(30) was then carried out. Specifically, a symmetrical study-
specific template was created in MNI standard space; then, using
a non-linear registration, individual GM images were aligned to
the study-specific template. Finally, the GM images were spatially
smoothed with σ = 3.

rsfMRI Dataset
Movement parameters were estimated for each subject-specific
ME-rsfMRI dataset by means of FEAT (31). Subjects presenting
with relative movement <0.5mm were excluded from the study.
The first 10 volumes (out of 200) were discarded to allow for
magnetization stabilization.

The rsfMRI dataset was then preprocessed with the ME-
Independent Component Analysis (ICA) algorithm (32, 33).
After standard preprocessing comprising motion correction and
realignment, the MEICA algorithm performed the estimation
of an optimal combination of the three echoes together with
a denoising step, based on the TE dependencies, of the ICA-
derived components. The denoised volume was then aligned
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with the subjects’ MPRAGE by means of a linear transformation
performed using a Boundary-Based registration (BBR) (34, 35).
The BBR simultaneously performed the registration and the
distortion correction using the acquired field map.

MPRAGE images were normalized to the Montreal
Neurological Institute (MNI) atlas using the advanced
normalization tools (ANTs; http://stnava.github.io/ANTs)
(36) and subsequently used to align the functional data to
standard space.

ASL Dataset
The preprocessing of the pCASL dataset included realignment
and motion correction of the original tag and control volumes,
using ANT’s software package. The group of 12 tag and control
volumes acquired with the same delay was then separately
averaged. The estimation and calibration of cerebral blood flow
maps were performed by means of oxford_asl and asl_calib
tools (37) respectively, by setting the required parameters as
follows: T1 of brain tissue = 1.2 s, T1 of blood = 1.36 s, tagging
efficiency = 0.8 accordingly (38, 39). Partial volume correction
was performed using GM and WM masks derived from the
MPRAGE and registered to the ASL space and considering GM
perfusion as 2.5 that of WM, as described in Marshall et al.
(40). Then, corrected CBF maps were non-linearly registered
to the MNI standard space and smoothed with a Gaussian
kernel (σ = 3).

Group Level Analyses
For group analysis, the rsfMRI datasets were then decomposed in
spatial independent components (IC) bymeans of theMELODIC
toolbox (41) setting the dimensionality to 20. The derived IC
were visually classified in order to detect the well-defined Smith’s
resting state networks (RSN) described in Smith et al. (42).
Dual regression (43, 44), one on the group spatial maps and
one on the subject’s time series, was run on the group ICA
derived from the functional dataset and allowed to derive subject-
specific spatial maps. Then the comparison between the PD and
HC groups was implemented through a randomize tool (45)
using threshold-free cluster enhancement (TFCE) with 5,000
permutations. Furthermore, in the PD patient group, a partial
correlation (age and sex as covariates) between z-values extracted
from the clusters of significant FC differences and UPDRS III
was performed.

In order to understand if the FC changes were accompanied
by perfusion or volumetric alterations, we also performed a
voxel-wise analysis of CBF and GM volume, comparing PD and
HC in the areas of FC differences. The statistics were carried
out by means of the randomize tool with 5,000 permutations
and cluster detection with TFCE (45), and were restricted
within the cluster of significant FC difference between the two
groups (Figure 1), using them as masks. The percentage of
the altered FC cluster that reported CBF differences was also
computed. Finally, in the PD group patients, to test the effect
of levodopa treatment on our perfusion results, we assessed the
correlation between the CBF values of the significant cluster
and LEDD.

TABLE 1 | Demographic characteristic of HC and PD groups.

HC (n = 18) PD (n = 26) p-value

Males n (%) 11 (61%) 22 (85%) 0.077a

Age in years, mean

(SD)

65.6 (8.25) 66.85 (8.0) 0.62b

Disease duration in

years, median (IQR)

– 3 (2) –

UPDRS III, mean (SD) – 21.92 (13.2) –

Tremor-

dominant/Akinetic-rigid

n (%)

– 14 (54%)/12 (46%) –

H&Y, median (IQR) – 1.5 (1) –

LEDD, mean (SD) – 228.2 (139.5) –

MoCA, median (IQR) 26.43 (3.94) 24.84 (3.73) 0.025c

Visuo-spatial 3.9 (0.72) 3.3 (1.32) 0.002*c

Executive 3.77 (1) 2.91 (1.46) 0.015*c

Memory 5 (1) 3 (3) 0.0004*c

Attention 5.76 (0.89) 5.71 (0.46) 0.892*c

Language 5.9 (1.34) 5.27 (0.825) 0.037*c

Orientation 6.04 (0.07) 5.99 (0.31) 0.026*c

a = chi-squared test; b = independent sample t-test; c = Mann–Whitney test. *MoCA

subscores were corrected for multiple comparison using Bonferroni correction resulting

in α = 0.008. MoCA scores were adjusted for age and education when required. SD,

standard deviation; IQR, interquartile range; UPDRS III, Unified Parkinson’s Disease Rating

Scale—Part III; H&Y, Hoehn and Yahr; LEDD, levodopa equivalent daily dose; MoCA,

Montreal Cognitive Assessment. Significant p-values are highlighted in bold.

RESULTS

Sample Demographic and
Neuropsychological Evaluation
Demographic data and neuropsychological scores are reported
in Table 1 for the two groups. PD patients and HCs were age-
and sex-matched at the group level; the clinical phenotype of
patients was tremor-dominant in 54% and akinetic-rigid in 46%.
Five patients were treated with antidepressant (mirtazapine or
escitalopram or duloxetine), and only three patients were taking
low dose of benzodiazepine (prazepam or alprazolam). The
overall cognitive performance was in the range of normality for
both HC and PD. However, the comparison between the MoCA
total score of HC and PD revealed a significant reduction in PD
(26.4 vs. 24.8, p = 0.025) and in the subscores of visuospatial (p
= 0.002) and memory (p < 0.001) functions (Table 1). None of
the enrolled subjects was excluded for excessive movements.

Functional Connectivity Results
Eleven ICs out of 20 were classified as RSN according
to Beckmann et al. (46) and are reported in
Supplementary Figure 1.

Significantly lower FC was observed for PD patients within
the sensory-motor network (pFWE = 0.01) and within the
primary (pFWE = 0.022) and lateral (pFWE = 0.01) visual
RSNs (Figure 2A). The maximum peak, the extension, and
the localization of the clusters of significant FC difference are
reported in Table 2.
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FIGURE 2 | MRI results. The results of functional and perfusion MRI analyses are reported in the figure. (A) The functional changes (FC HC > FC PD in green) within

the resting state networks (red-yellow). (B) The perfusion changes (CBF HC > CBF PD in red) overlapped to the functional network (red-yellow). (C) The overlap

between functional (green) and perfusion (red) clusters of significant differences. All the reported p-values are FWE corrected.

Furthermore, the partial correlation showed a negative trend
(p = 0.06, r = −0.38) between the z-values of the sensory-motor
network and the UPDRS III score for PD patients.

Perfusion Results
Perfusion alterations were found both within primary (pFWE

= 0.037) and lateral (pFWE = 0.014) visual networks, whereas
no difference in CBF was detected in the sensory-motor
one (Figure 2B). The maximum peak, the extension, and the
localization of the clusters of CBF significant difference are
reported inTable 3. The percentage of the overlap resulted in 46%
and 74% of voxels for primary and lateral visual components,
respectively (Figure 2C). The alteration in CBF did not correlate
with any clinical variable, and no significant relationship between
the CBF values of the significant CBF clusters and LEDD
variables was found (r = 0.063, p = 0.763 for primary visual
network and r = 0.141, p= 0.502 for the lateral visual one).

VBM Results
No GM atrophy was found concurrent with the functional
alteration for our cohort of early PD patients when compared
to HC.

DISCUSSION

The present work aimed to study the relationship between
changes in FC and altered perfusion reported in PD. To do so,
we concurrently assessed FC and CBF in a cohort of early PD

patients and HC by means of rsfMRI and ASL, respectively. FC
changes were found in the sensory-motor and visual cortices of
our PD patients. Interestingly, the FC alterations within the visual
cortex were also accompanied by altered CBF.

The significant FC reduction that we observed in the SMN
extended between pre- and post-central gyri and also comprised
part of the middle frontal gyrus. Consistently, other studies
using an ICA-based approach had previously evidenced changes
in FC specific to the SMN in resting conditions. Canu et al.
showed a decreased connectivity within the SMA and primary
motor cortex, belonging to the SMN, in PD compared to
HC (47), confirming previous findings of reduced SMA FC
(48). Moreover, the aberrant FC pattern that we detected in
our sample was linked to symptom severity measured using
MDS-UPDRS III. We hypothesized that the altered SMN FC
might be related to a disconnection of the striatal pathways
following dopaminergic denervation. In fact, paralleling the
neuropathological progression of PD, decreased FC between
cortical and subcortical motor areas involving the dopaminergic
corticostriatal loop has been reported (49).

In this study a significant FC decrease was also observed
in primary (lingual gyrus and intracalcarine cortex) and lateral
(inferior lateral occipital cortex, specifically occipital pole, and
fusiform gyrus) VNs. The key regions of the primary visual areas
are related to visual awareness, whereas the secondary visual
network is involved in visual experience (50). Our findings point
to dysfunction not only of the primary visual system but also
of higher visual processing areas in the extrastriate cortex. The
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TABLE 2 | Functional connectivity differences.

RSN Dimension [voxels] Harvard–oxford atlas Position (COG) Minimum p-value Peak

x[mm] y[mm] z[mm] x[mm] y[mm] z[mm]

Primary visual 605 Lingual G., intracalcarine C. 2.88 −78.1 3.84 0.022 0 −80 −4

Lateral visual 459 Occipital pole −21.5 −95.7 −1.99 0.018 −20 −102 −8

302 Occ. fusiform G. −25.6 −78.8 −14.7 0.01 −30 −78 −18

Sensory motor 968 Post/Pre-central G. −48 −12.3 36.8 0.01 −64 0 20

304 Post/Pre-Central G. 61.3 −3.18 22.5 0.02 64 2 20

103 Post-central G. 50.9 −15.3 49.3 0.03 52 −20 52

51 Central opercular C., hescl G. −50.9 −11.8 8.12 0.032 −50 −14 6

18 Post/Pre-Central G. −26.7 −27.2 60.3 0.024 −26 −26 60

13 Inferior frontal G. −40 25.2 22.1 0.028 −40 24 20

11 Post/Pre-central G. 37.6 −20 57.5 0.04 98 −20 58

10 Precentral G, middle frontal G. −39.4 −3.2 57.2 0.02 −38 −4 56

Cluster of significant differences (HC > PD) in functional connectivity within resting state networks. Only the cluster with an extension ≥10 voxels are shown in the table. The coordinates

reported refer to MNI standard space. RSN, resting state network; COG, center of gravity; G, gyrus; C, cortex.

TABLE 3 | Perfusion differences.

RSN Dimension [voxels] Harvard–oxford atlas Position (COG) Minimum p-value Peak

x[mm] y[mm] z[mm] x[mm] y[mm] z[mm]

Primary visual 279 Lingual G., intracalcarine C. −1.15 −77.5 3.23 0.037 −6 −88 −4

Lateral visual 328 Occipital pole −24.5 −95.4 −0.58 0.014 −22 −104 0

247 Occipital fusiform G. −27.4 −78.6 −15.6 0.019 −34 −78 −16

Cluster of significant differences (HC > PD) of perfusion within the cluster of functional connectivity changes. Only the cluster with an extension ≥10 voxels are shown in the table. The

coordinates reported refer to MNI standard space. RSN, resting state network; COG, center of gravity; G, gyrus; C, cortex.

decreased activity of the primary visual network is probably due
to specific PD-associated retinopathy targeting the striate visual
areas (51). The functional alteration of the extrastriate visual
pathways is supported by the significantly lower visuospatial
performances (as assessed using MoCA subscales) that were
found in our PD patients with respect to HC.

Similar FC changes have already been reported in literature
(11, 52). Interestingly, the decreased connectivity within the
primary and lateral VNs was accompanied by a significant CBF
reduction. Our perfusion results are in line with previous studies
quantitatively investigating vascular alteration in PD by means
of ASL (16, 17, 53) or other modalities (14). Specifically, Melzer
and colleagues reported preserved perfusion in post- and pre-
central gyri, while perfusion was reduced in the posterior parieto-
occipital cortex, similarly to Syrimi et al. (53). Abe et al. (14) also
found reduced CBF in the same region bymeans of single-photon
emission computed tomography.

The functional and perfusion changes were extensively
concurrent in the visual RSN, with an overlap ranging from 46%
to 74% in our PD sample. The hypoperfusion that we found in
occipital areas concurrently to a decrease in FCmay be indicative
of a possible impairment of the NVC mechanism in PD. It
has been previously proposed that CBF reductions might be
due to modifications of non-dopaminergic transmitter systems
(specifically cholinergic, serotoninergic, and noradrenergic) and
their neurovascular innervation of the neocortex (16, 18, 19, 54).
Contextually, Shimada et al. (55) reported an alteration of the

cholinergic system in PD patients without dementia, which was
most significant in the medial occipital cortex. According to
Braak staging (56), neuronal cholinergic degeneration occurs
at the same stage of nigral pathology, which characterizes
relatively early phases of the disease. Thus, we hypothesize that
structural and microstructural changes in the noradrenergic and
cholinergic system nuclei at this stage of the pathology may be
the cause of the alteration of the coupling between neural activity
and blood flow observed in visual areas of our early PD patients
[H&Y median (IQR), 1.5 (1)].

Furthermore, the FC and CBF alterations in VNs were not
accompanied by local GM atrophy, suggesting that functional
changes occur prior to tissue loss. Evidence from recent studies
reporting CBF reductions at the early stage of the disease
in cortical regions without manifested pathology (16, 57)
supports this hypothesis. Moreover, Fernandez-Seara et al. (16)
demonstrated that there is not a direct correspondence between
GM atrophy and hypoperfusion, with the latter being more
extensive throughout the brain.

One of the main drawbacks regarding FC studies in PD
is the heterogeneity of the results presented in the literature,
likely due to clinically variegated samples of patients and
different methodological approaches. For these reasons, in the
present study, we used a well-established data-driven ICA-
approach together with a dual regression analysis. This method
investigates all the GM voxels and exploits the simultaneous
analysis of several subjects, thus increasing the signal-to-noise
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ratio (58). This study is not without limitations. First, a 1.5T
field scanner was employed for data acquisition. Despite being
extensively used in the clinical setting, 1.5T MRI has relatively
low signal-to-noise ratio. For this reason, both the rsfMRI
and ASL sequences were set to partially mitigate this problem.
Specifically, a multi-echo rsfMRI sequence was employed to
improve the image contrast and to reduce image distortions
by means of an optimal combination of the volumes acquired
at three different echo times (32). For what concerns the ASL
sequence, a pseudocontinuous acquisition scheme was used,
together with a background suppressed 3D gradient and spin
echo readout, aiming to enhance both SNR and signal tagging
efficiency, as recommended by international guidelines (59).
Another limitation of the study is the relatively small size of the
sample, which may have prevented us from showing significant
correlations between clinical and neuroimaging parameters.
Furthermore, levodopa and benzodiazepines/antidepressants
may interfere with fMRI (60, 61) and CBF analysis (62, 63).
However, a group of clinically homogeneous patients, under
stable pharmacological treatment, was considered, and when we
tested the effect of levodopa treatment on our perfusion results,
no significant relationship between the variables was found.
Finally, only MoCA scores and subscales were available for our
sample, so the addition of more precise neuropsychological tests
should be considered.

Altogether, our results suggest that MRI-derived measures,
such as FC and CBF, may constitute valuable biomarkers
to detect early neurovascular dysfunction occurring in PD
prior to structural modification in terms of GM atrophy.
Since FC and CBF provide complementary information about
the neurovascular unit physiology, concurrently assessing
both of them is crucial. Multimodal longitudinal studies are
warranted to better understand the evolution of neurovascular
dysfunction along with PD disease progression and to monitor
treatment-related changes due to pharmacological and/or
rehabilitative interventions.
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