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In silico bone mechanobiology:
modeling a multifaceted
biological system
Mario Giorgi,1† Stefaan W. Verbruggen2† and Damien Lacroix3*

Mechanobiology, the study of the influence of mechanical loads on biological
processes through signaling to cells, is fundamental to the inherent ability of
bone tissue to adapt its structure in response to mechanical stimulation. The
immense contribution of computational modeling to the nascent field of bone
mechanobiology is indisputable, having aided in the interpretation of experi-
mental findings and identified new avenues of inquiry. Indeed, advances in com-
putational modeling have spurred the development of this field, shedding new
light on problems ranging from the mechanical response to loading by individual
cells to tissue differentiation during events such as fracture healing. To date, in
silico bone mechanobiology has generally taken a reductive approach in attempt-
ing to answer discrete biological research questions, with research in the field
broadly separated into two streams: (1) mechanoregulation algorithms for pre-
dicting mechanobiological changes to bone tissue and (2) models investigating
cell mechanobiology. Future models will likely take advantage of advances in
computational power and techniques, allowing multiscale and multiphysics
modeling to tie the many separate but related biological responses to loading
together as part of a larger systems biology approach to shed further light on
bone mechanobiology. Finally, although the ever-increasing complexity of com-
putational mechanobiology models will inevitably move the field toward patient-
specific models in the clinic, the determination of the context in which they can
be used safely for clinical purpose will still require an extensive combination of
computational and experimental techniques applied to in vitro and in vivo appli-
cations. © 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodi-

cals, Inc.
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INTRODUCTION

Mechanobiology is a rapidly emerging field of
scientific inquiry at the intersection of engi-

neering and biology, and explores the role of
mechanical loads in regulating biological processes
through signaling to cells. Tissue adaptation in
response to changing mechanical loading has been
observed in multiple different tissue types and ana-
tomical locations. While new examples of this phe-
nomena are being regularly discovered, such as
increased arterial thickness in response to abnormally
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high blood pressure,1 the natural adaptation of bone
to mechanical loading has been apparent and studied
for over a century.2

At its core, mechanobiology is governed by the
response of cells within tissue to mechanical forces. It
has been shown that most eukaryotic cells exert force
on their surrounding tissues even in the absence of
any external mechanical stimulus,3,4 and that force is
essential for basic cellular functions like mitosis and
migration.5,6 Indeed, it has been proposed that all
cells are mechanosensitive.7 This occurs through the
use of specific molecule or protein complexes known
as mechanosensors, broadly organized into three
types3: (1) attachments between the individual cells,
such as stretch-activated gap junctions, (2) structures
on the cell membrane that can deform under fluid
flow, such as primary cilia, and (3) attachments
between membrane and the extracellular matrix,
such as focal adhesions. In each of these cases, a
mechanical stimulus is transmitted from the whole-
bone level down to an external cellular feature, and
thus into the cytoskeleton or cytoplasm, with the
potential to induce a biochemical cascade. This proc-
ess is known as mechanotransduction, and is the
method by which macroscale biological structures
and processes can adapt in response to mechanical
stimulation.8

The study of mechanobiology is particularly
significant for bone, which is an adaptive material
that employs a complex biological system to remodel
itself in response to mechanical stimulation. How-
ever, while it is known that these changes are driven
by cellular response to loading, it has proven
extremely difficult to investigate and predict adapta-
tion in bone experimentally. Thus, researchers have
turned to in silico modeling techniques in order to
elucidate the stimulation these cells experience
in vivo and to establish mechanobiological rules for
these adaptive responses. Advances in computational
modeling have spurred the development of this field,
shedding new light on problems ranging from the
mechanical response to loading by individual cells to
predicting tissue differentiation during events such as
fracture healing. Therefore, this review will survey
the field of in silico bone mechanobiology, placing
these disparate studies in the broader context of bone
mechanobiology and identifying future directions for
computational research.

BONE MECHANOBIOLOGY

Mechanobiology is crucial to the adaptive and regen-
erative nature of bone. The central question of this

field of study is how external muscle loads are trans-
ferred to skeletal tissues, how bone cells sense these
loads, and how these signals are translated into a cas-
cade of biochemical reactions to produce cell expres-
sion or differentiation, ultimately resulting in
macroscopic changes to bone structure.9 Therefore,
bone mechanobiology research must span multiple
scales, as bone is a tissue with a complex hierarchical
structure that is organized into functional units over
multiple dimensions, with the microarchitecture opti-
mized at smaller scales to bear larger scale macro-
scopic loads.

There is much experimental evidence of bone
adapting its mass and structure to different loading
conditions, with net bone resorption occurring at
low strains and net bone formation occurring at high
strains.10–20 Moreover, mechanical forces are also
known to play a key role in processes such as tissue
differentiation21 and tissue shape changes.22–24 For
example, axial micro-interfragmentary movements
(micro-IFMs, small movements in the fragments of
bone in a fracture callus) have been shown to reduce
the fracture healing time in humans,25 and they have
also shown mechanical healing improvements by
increasing callus stiffness.26 In addition, load timings
have been shown to be critical for a correct healing
process.27,28 Indeed, early daily periods of cyclic
micro-IFMs have been shown to improve the healing
process,27 while an immediate application of loading
postsurgery have been shown to have a negative
effect on it.28 Tissue shape changes have also been
linked with mechanical factors. Indeed, it is known
that reduced or restricted movements in utero
increase the risk of bone shape abnormalities in
humans. For example, fetal breech position has been
shown to increase the risk of hip instability and
dysplasia,29 ligamentous laxity or malpositioning has
been hypothesized to encourage bone deformities,30

and studies on the growth plate progression showed
abnormal shape development when the angle of the
hip joint reaction force changed.23,31 Moreover, ani-
mal studies have shown abnormal growth under
immobilized conditions, further reinforcing evidences
that growth and shape changes are dependent on
their mechanical environments.22,24,32–34 Despite the
obvious ability of bone to adapt to changing loading
conditions, surprisingly little is known about the
mechanisms that regulate these changes, and the
interplay between them and the manner in which
they are stimulated remain to be illuminated.

These adaptive mechanobiological processes
are governed by the osteoblasts, osteoclasts, and
osteocytes cells working in concert, all capable of
transducing mechanical strain signals into
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biochemical cues for osteogenesis.35 At the micro-
scopic scale, most of the cells in the osteogenic line-
age [osteoblasts, mesenchymal stem cells (MSCs),
osteoclasts, osteoprogenitors, and bone lining cells]
are found on the surfaces of bone tissue, and are thus
exposed to deformation of the tissue and pressure
and fluid flow changes in the surrounding interstitial
fluid. Separately, osteocytes are embedded within
bone tissue in spaces known as lacunae, which are
interconnected by channels known as canaliculi.
Macroscopic loading of bone results in strains within
the bone matrix, which drives interstitial fluid flow
around the lacunar–canalicular network. Therefore,
bone cells are exposed to multiple different physical
stimuli and at varying magnitudes. Additionally,
in vitro studies have shown that osteoblastic cells
respond with osteogenic signals to both direct matrix
strain36,37 and to fluid flow in vitro.38–40 This sug-
gests that bone cells can indeed respond to the multi-
ple types of stimulation to which they are exposed
in vivo. However, it is difficult to determine the mag-
nitude of these stimuli, and how they are transmitted
across multiple scales from the whole-bone level to
the level of mechanosensors.

Osteocytes in particular have been shown
in vitro to be the most mechanosensitive bone cell
type, demonstrating a higher intrinsic sensitivity to
loading than other osteogenic cells.41–43 They have
also recently been shown to direct osteogenesis in
other bone cell types,44 reinforcing the theory that
osteocytes sense mechanical loading in the bone
matrix and then orchestrate the adaptive bone
remodeling response.45–47 Owing to their presence
deep within bone matrix, direct experimental obser-
vation of osteocytes in vivo has proven extremely
challenging. As such, the precise mechanical stimuli
which they experience in vivo, and the mechanisms
whereby they sense these stimuli, remain unknown.

The prevalence of in vitro culture studies in the
field of bone mechanobiology is partly due to the dif-
ficulty in experimentally observing mechanosensation
by bone cells in their native environment, and is evi-
dent in the precious few studies that have investi-
gated these phenomena in vivo. High-resolution two-
dimensional (2D) imaging of lacunae under mechani-
cal loading on an exposed optical microscopy plane
demonstrated experimentally that applied strains at
the whole-bone level are amplified in the lacunar
matrix.48 Separately, as loading-induced fluid flow is
thought to be highly stimulative to osteocytes
in vivo, fluorescent tracer studies have been per-
formed to examine the fluid flow through the
lacunar–canalicular network under mechanical
loading.49–51 Significantly, a recently developed

ex vivo imaging platform demonstrated intracellular
calcium signaling in live osteoblasts and osteocytes,
both autonomously and in response to fluid shear
mechanical stimulation.52,53 Additionally, recently
developed techniques have allowed investigation of
strain stimulation within ex vivo osteocytes on a 2D
confocal microscopy plane.54

Despite the important in vitro and in vivo
experimental insights outlined above, mechanisms
that drive mechanobiological responses, the mechani-
cal environment of bone cells, and the transmission
of mechanical loading from higher scales are still
poorly understood (Box 1).

COMPUTATIONAL BONE
MECHANOBIOLOGY

Computational modeling has grown in prevalence in
bone mechanobiology research, and is now recog-
nized as a powerful tool both for probing mechanical
interactions at the cellular scale and for predicting
important resulting tissue-level phenomena, such as
cell proliferation and differentiation, tissue growth,
adaptation, and maintenance. Therefore, research in

BOX 1

MECHANOBIOLOGY

Mechanobiology is a nascent interdisciplinary
area of research that has recently emerged
from the closely related field of traditional bio-
mechanics. While biomechanics is largely con-
cerned with the physical interactions between
the body and its surrounding environment,
mechanobiology explores the biological
responses by tissues and cells when exposed to
mechanical stimulation. As mechanobiology
involves cell-driven responses by tissues and
organs to loading it is an inherently multiscale
field of study, required translation of loading
that occurs at the whole-organ scale down to
mechanical stimulation of individual cells. The
resulting changes in cell activity are then mani-
fested back up through the scales, causing
adaption at the tissue or organ level. Similarly,
as biological tissues contain, and are sur-
rounded by, interstitial fluid, mechanical stimu-
lation of cells often comprises a combination of
solid and fluid stimulation. Thus, the multiscale
and multiphysics nature of mechanobiology
provides both challenges and opportunities for
this field of frontier science.
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this field can be broadly separated into two streams
(Figure 1): (1) mechanoregulation algorithms for pre-
dicting mechanobiological changes to bone tissue
and (2) models investigating cell mechanobiology.
This dichotomy reflects the current limits of experi-
mental techniques, whereby it is possible to mechani-
cally stimulate bone and quantify the tissue-level
changes that occur, but it is extremely challenging to
simultaneously delineate the cellular and molecular
mechanisms that give rise to these changes. Compu-
tational mechanobiology has endeavored to investi-
gate this gap in our knowledge by either developing
increasingly advanced mechanoregulation algorithms
to try and predict the observed response to mechani-
cal stimulation, or by modeling individual bone cells
to better characterize the manner in which they are
stimulated (Box 2).

While these in silico methods have provided
new insight into both biomechanics and mechano-
biology, mechanobiology is an inherently multiscale
and multiphysics problem. Therefore, recent
advances that have allowed coupling of FE solutions
at different scales, and coupling of FE and finite vol-
ume simulations through the use of fluid–structure
interactions (FSIs), provide fresh opportunities to
study mechanobiology and open up new avenues of
enquiry.

Mechanoregulation Algorithms
That mechanical stimulation and bone adaptation
are inherently linked has been apparent for centuries,
though with discoveries of an ever-increasing multi-
tude of interrelated physical and biochemical factors
influencing bone formation and remodeling, quanti-
tatively predicting tissue response has proven diffi-
cult. Initially focused on mechanical stimulation
alone, modeling techniques have grown progressively
more complex, attempting to bridge the gap between
experimentally applied loading and observed
response (as summarized in Table 1).

Tissue Differentiation Algorithms
Bone, like all musculoskeletal tissues, originates as
tissue formed by MSCs and ultimately arises through
the process of tissue differentiation. The first theory
to propose differentiation into various tissues based
on mechanical stimulation was developed by
Pauwels,21 suggesting that cartilage and bone were
promoted by local hydrostatic pressure and shear
strain, respectively. This was followed by Perren and
Cordey,67 who proposed a model based on upper
limits of interfragmentary strain to predict fracture
gap closure. While this model relied only on axial
interfragmentary strains, it predicted that tissue

Experimental
evidence:

Applied bone
loading

Mechanoregulation
algorithms

Tissue
differentiation

algorithms

Computational
mechanobiology:

Future
perspective:

Tissue
growth

algorithms

Multiphysics modelling of tissue adaptation response

CFD and FE
models

Multiscale and
multiphysics

models

Cell mechanobiology
models

Bone adaption
response

?

FIGURE 1 | The dichotomy that has developed in computational bone mechanobiology research, as researchers endeavor to understand the
adaptive nature of bone.

Advanced Review wires.wiley.com/sysbio

488 © 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. Volume 8, November/December 2016



differentiation and associated gap closure would
occur if the interfragmentary strain reduced. This
resulted in a gradual stiffening of the fracture callus,
and they suggested that rigid fixation could slow the
onset of fracture healing. Goodship and Kenwright27

provided experimental evidence suggesting that inter-
fragmentary motion could accelerate healing, leading
to a large body of research attempting to delineate
the effects of different types of interfragmentary load-
ing as described in detail elsewhere.68

Based on Pauwel’s theory, Carter69 introduced
a novel approach to understand the influence of
cyclic multiaxial stresses on endochondral growth
and ossification. In this model, the peak multiaxial
stress tensor in a loading cycle was represented by
the peak values of two scalar stress invariants, the
hydrostatic and octahedral shear stresses. The
mechanoregulation algorithm developed suggested
that intermittent hydrostatic pressure inhibits growth
and ossification of cartilage, while intermittent strain
or shear stresses accelerated both processes. By
applying this model as a single solid phase using an

FE analysis (Figure 2(a)), they investigated fracture
healing, as well as joint development and tissue dif-
ferentiation around implants.70

Later, a novel mechanoregulation theory was
proposed by Claes and Heigele.71 As in the theory
proposed by Carter,69 this algorithm was based on
local strain and hydrostatic pressure to predict path-
way of different cellular reactions and tissue differen-
tiation (Figure 2(b)). However, the novelty of this
theory relied on an interdisciplinary study where data
from animal experiment, cell cultures, and FE analy-
sis were used to evaluate aspects of the process of
bone healing.73,74 This study allowed them to iden-
tify threshold boundaries for the formation of differ-
ent tissues. Local strains less than 5% in conjunction
with values of hydrostatic pressure between �0.15
MPa were attributed to intramembranous bone for-
mation, while endochondral ossification was pro-
moted by compressive hydrostatic pressure higher
than 0.15 MPa and strain lower than 15%.

Given the developing consensus around fluid
flow as a stimulus bone cells adaptive
response,42,75,76 a FE model of a bone–implant inter-
face was developed by Prendergast et al.55,77 to
explore the influence of mechanical loading on cell
differentiation. They showed that the biophysical sti-
muli experienced by the tissue at the implant inter-
face were not only generated by the tissue matrix but
also by the drag force from interstitial fluid flow.
Thus, they proposed a biphasic FE model of poroe-
lastic connective tissues comprised of both a fluid
and solid phase, where octahedral shear stress and
fluid velocity were used as biophysical stimuli,
respectively. Lacroix et al. applied this mechanoregu-
lation approach (Figure 2(c)) to investigate tissue dif-
ferentiation during fracture healing based on a 2D
axisymmetric and three-dimensional (3D) FE
model.56,72,78 Their adaptive poroelastic model was
able to simulate direct periosteal bone formation,
endochondral ossification in the external callus
(Figure 2(d)), stabilization when bridging of the
external callus occurs, and resorption of the external
callus.56 The model was able to predict slower heal-
ing with increasing gap size and increased connective
tissue production with increased interfragmentary
strain. This model has later been used for successful
predictions of tissue differentiation in a rabbit bone
chamber57 and during osteochondral defect
healing.79

Tissue Growth/Morphology Algorithms
While musculoskeletal tissues adapt by differentia-
tion, changes in mass and shape also occur. In spite
of this, bone growth in response to mechanical

BOX 2

IN SILICO MODELING

In silico modeling comprises interdisciplinary
methods that apply mathematics, physics, and
computer science to replicate and analyze the
behavior of complex systems through the use
of computer simulation. By characterizing a sys-
tem using numerous variables, the simulation
can adjust these variables and predict the
resulting effects on the system. In silico model-
ing has developed into a powerful engineering
tool to assess the mechanical behavior of physi-
cal structures, mechanical systems, and, more
recently, biological processes. The primary
methods by which this is achieved are finite ele-
ment (FE) method and finite volume method,
whereby the system is broken down into a
mesh of smaller, simpler regions, allowing mod-
eling of solid or fluid behaviors, respectively.
While FE modeling involves treating these ele-
ments like simple structures obeying physical
laws, finite volume modeling calculates the
change in flow of a fluid through the simple
volume and into the next discrete volume. The
standard physical equations solved in the ele-
ments or volumes are then assembled into a lar-
ger system of equations, allowing modeling
and analysis of the entire problem.
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TABLE 1 | Material Properties, Applied Mechanical Stimuli, and Resulting Findings From Selected Mechanoregulation Studies

Authors Application Material Properties Stimuli Outcome

Huiskes et al.55 Tissue
differentiation

Bone: E = 4590, k = 3.7e−13; fibrous tissue (initial cond.):
E = 2, k = 1.0e−14

Fluid/solid
velocity,
shear strain

Tissue differentiation
sequences in
agreement with
those found
experimentally

Lacroix and
Prendergast56

Tissue
differentiation

Granulation tissue: E = 0.2, k = 1e−14, ν = 0.167,
Sbm = 2300, Fbm = 2300, n = 0.8;
fibrous tissue: E = 2, k = 1e−14, ν = 0.167, Sbm = 2300,
Fbm = 2300, n = 0.8;
cartilage: E = 10, k = 5e−15, ν = 0.167, Sbm = 3400,
Fbm = 2300, n = 0.8;
marrow: E = 2, k = 1e−14, ν = 0.167, Sbm = 2300,
Fbm = 2300, n = 0.8;
immature bone: E = 1000, k = 1e−13, ν = 0.3,
Sbm = 13920, Fbm = 2300, n = 0.8;
mature bone: E = 6000, k = 3.7e−13, ν = 0.3,
Sbm = 13920, Fbm = 2300, n = 0.8;
cortical bone: E = 20,000, k = 1e−17, ν = 0.3,
Sbm = 13920, Fbm = 2300, n = 0.04

Fluid/solid
velocity,
shear strain

Cell diffusion rate is
a key parameter
for healing speed

Geris et al.57 Tissue
differentiation

Granulation tissue: E = 1, ν = 0.17, k = 1e−14;
cartilage: E = 10, ν = 0.17, k = 5e−15; bone: E = 1000,
ν = 0.3, k = 1e−13

Fluid/solid
velocity,
shear strain

Successful prediction
of tissue
differentiation in a
rabbit bone
chamber

Heegaard
et al.58

Joint
morphogenesis

Cartilage: E = 1.0, ν = 0.4;
tendons: EL = 3.0, ET = 0.1, νL = νT = 0.2, G = 1.0

Hydrostatic
stress

Prediction of
congruent surfaces
within the joint
region

Shefelbine and
Carter59

Growth front
progression

Newly formed bone: E = 500, ν = 0.2;
cartilage: G = 2, ν = 0.49

Hydrostatic
stress,
octahedral
shear

Successful prediction
of normal and
abnormal loadings
on growth front
progression

Isaksson
et al.60

Bone
regeneration

Cortical bone: E = 15,750, k = 1e−17, ν = 0.325,
Sbm = 17,660, Fbm = 2300, n = 0.04;
marrow: E = 2, k = 1e−14, ν = 0.167, Sbm = 2300,
Fbm = 2300, n = 0.8;
granulation tissue: E = 1, k = 1e−14, ν = 0.167,
Sbm = 2300, Fbm = 2300, n = 0.8;
fibrous tissue: E = 2, k = 1e−14, ν = 0.167, Sbm = 2300,
Fbm = 2300, n = 0.8;
cartilage: E = 10, k = 5e−15, ν = 0.167, Sbm = 3400,
Fbm = 2300, n = 0.8;
immature bone: E = 1000, k = 1e−13, ν = 0.325,
Sbm = 17660, Fbm = 2300, n = 0.8;
mature bone: E = 6000, k = 3.7e−13, ν = 0.325,
Sbm = 17660, Fbm = 2300, n = 0.8

Fluid/solid
velocity,
shear strain

Prediction of spatial
and temporal
tissue distributions
observed in
distraction
osteogenesis
experiments

Garcia-Aznar
et al.61

Tissue growth/
differentiation

Periosteum (initial cond.): E = 35.3, ν = 0.048;
endosteum (initial cond.): E = 35.3, ν = 0.048;
gap: E = 8.2, ν = 0.048

Second
invariant of
the
deviatoric
strain
tensor

Correct prediction of
callus size in the
presence of
interfragmentary
movements
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TABLE 1 | Continued

Authors Application Material Properties Stimuli Outcome

Giorgi et al.62 Joint
morphogenesis

Cartilage: E = 1.1, ν = 0.49;
synovial capsule: E = 0.287 kPa, ν = 0.4

Hydrostatic
stress

Prediction of
interlocking
surfaces for hinge
and ball and
socket joints

Giorgi et al.63 Hip Joint
morphogenesis

Cartilage: E = 1.1, ν = 0.49 Hydrostatic
stress

Importance of
movements to
maintain
acetabular depth
and femoral head
sphericity

Isaksson
et al.64

Cell and tissue
differentiation

Cortical bone: E = 15,750, k = 1e−17, ν = 0.325,
Sbm = 17,660, Fbm = 2300, n = 0.04;
marrow: E = 2, k = 1e−14, ν = 0.167, Sbm = 2300,
Fbm = 2300, n = 0.8;
granulation tissue: E = 1, k = 1e−14, ν = 0.167,
Sbm = 2300, Fbm = 2300, n = 0.8;
fibrous tissue: E = 2, k = 1e−14, ν = 0.167, Sbm = 2300,
Fbm = 2300, n = 0.8;
cartilage: E = 10, k = 5e−15, ν = 0.167, Sbm = 3400,
Fbm = 2300, n = 0.8;
immature bone: E = 1000, k = 1e−13, ν = 0.325,
Sbm = 17,660, Fbm = 2300, n = 0.8;
mature bone: E = 6000, k = 3.7e−13, ν = 0.325,
Sbm = 17,660, Fbm = 2300, n = 0.8

Fluid/solid
velocity,
shear strain

Spatial and temporal
predictions of
fibrous tissue,
cartilage, and
bone. Correctly
describe fracture
healing and
disrupted healing

Pérez and
Prendergast65

Cell and tissue
differentiation

Granulation tissue: E = 0.2, k = 1e−14, ν = 0.167,
Sbm = 2300, D = 0.8;
fibrous tissue: E = 2, k = 1e−14, ν = 0.167, Sbm = 2300,
D = 0.1;
cartilage: E = 10, k = 0.5e−14, ν = 0.3, Sbm = 3700,
D = 0.05;
immature bone: E = 1000, k = 0.1e−14, ν = 0.3,
Sbm = 13,940, D = 0.01;
cortical bone: E = 17,000, k = 0.001e−14, ν = 0.3,
Sbm = 13,920

Fluid/solid
velocity,
shear strain

Qualitative
agreement with
experimental data
on bone tissue
distribution at the
bone–implant
interface

Burke and
Kelly66

Cell
differentiation

Granulation tissue: E = 0.2, k = 1e−11, ν = 0.167, μ =
1e−9, n = 0.8;
fibrous tissue: E = 2, k = 1e−11, ν = 0.167, μ = 1e−9,
n = 0.8;
cartilage: E = 10, k = 5e−15, ν = 0.167, μ = 1e−9,
n = 0.8;
marrow: E = 2, k = 1e−14, ν = 0.167, μ = 1e−9,
n = 0.8;
immature bone: E = 1000, k = 1e−13, ν = 0.3, μ =
1e−9, n = 0.8;
mature bone: E = 6000, k = 3.7e−13, ν = 0.3, μ = 1e−9,
n = 0.8;
cortical bone: E = 20,000, k = 1e−17, ν = 0.3,
μ = 1e−9, n = 0.04

Substrate
stiffness,
oxygen
tension

Good agreement with
results in fracture
repair experiments

E is Young’s modulus (MPa), k is permeability (m4/N s), G is shear modulus (MPa), μ is fluid dynamic viscosity (N s/m2), Sbm is solid bulk modulus (MPa),
Fbm is fluid bulk modulus (MPa), D is diffusion coefficient (mm2/iter), n is porosity, and υ is Poisson’s ratio.
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loading has been much less studied. The first compu-
tational study to investigate this was developed by
Heegaard et al.,58 who generated a model to explore
how the stresses generated by joint motion may mod-
ulate the growth of the cartilaginous rudiments, and
lead to the development of a congruent articular sur-
face (Figure 3(a)). They developed a planar biome-
chanical model of the proximal interphalangeal joint
to simulate, using FE analysis, the joint kinematics
resulting from muscles contraction, as well as the
corresponding stress distribution. Growth, which
was predicted by using a variant of the mechanoregu-
lation algorithm proposed by Carter et al.,69,81

assumed cyclic hydrostatic compression and tension
to inhibit or promote growth, respectively. The
model predicted the development of congruent sur-
faces within the joint region showing consistency
with experimental observations80 (Figure 3(b)).

Shefelbine and Carter59 developed a 3D FE
model of the proximal femur to predict the rate of
progression of the growth front under normal and
abnormal loading conditions. The aim was to link
growth front progression with the formation of coxa
valga in developmental dysplasia of the hip. The
mechanobiological principle used to model growth

front changes derived from Carter’s theory,69,81

where intermittent hydrostatic compressive stresses
and intermittent octahedral shear stresses inhibit and
promote growth and ossification, respectively. Their
simulations predicted a convex growth front shape
under assumed normal loading conditions, while
growth was promoted on the medial side when
abnormal loadings were simulated. The growth front
predictions compared well with clinical and histologi-
cal observation.82,83

Another instance in which shape changes as
well as tissue changes are known to occur is the frac-
ture callus although, despite the many computational
studies of fracture healing described above, most
have neglected volumetric growth. By expanding on
the algorithm of Prendergast et al.77 to include volu-
metric growth, Isaksson et al.60 accurately predicted
spatial and temporal tissue distributions observed in
distraction osteogenesis experiments. By modeling
growth of separate tissue types, it successfully pre-
dicted alterations that occurred due to changes in
rate and frequency of the distraction. By modeling
the matrix production rates of each tissue type using
a biphasic swelling model,84 growth similar to that
observed experimentally was predicted.60
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A significantly more complex model of callus
volumetric growth was proposed by Garcia-Aznar
et al.,61 which included cellular parameters such as
migration, proliferation, differentiation, and cell
death. Variables for the creation and degradation of
individual tissues were also incorporated, as well as
for tissue damage, calcification, and remodeling.
While tissue differentiation was regulated by the sec-
ond invariant of the deviatoric strain tensor, the vol-
umetric growth was modeled separately using a
thermal expansion in FE analysis and controlled
according to the amount of tissue production. While
anomalies were observed at the boundary conditions
of the simulation, increased callus size with interfrag-
mentary movements were correctly predicted61

(Figure 3(c)), along with representative changes due
to alterations in gap size and fixator stiffness.85,86

This model was further adapted by Reina-Romo
et al.87 to better account for load history, more suc-
cessfully simulating distraction osteogenesis. In a sub-
sequent study, they demonstrated that by considering
pretraction stresses that arise during distraction oste-
ogenesis, changes in both distraction rate and result-
ing reaction forces can be accurately predicted.88

The most recent study to investigate mechano-
biological tissue growth explored how movements

and position could impact upon the shape of the
developing hip joint,63 based on the mechanoregula-
tion algorithm proposed by Giorgi et al.62 This algo-
rithm focused on understanding the very early phases
of bone development based on the idea that the
mechanical stimuli for growth and adaptation of epi-
physeal cartilage are different than those that influ-
ence endochondral growth and ossification.62 They
proposed a theory based upon experimental data
showing that cyclic hydrostatic compression stimu-
lates matrix production, while static compression
inhibits the synthesis of cartilage. When this algo-
rithm was applied to an idealized 2D geometry of a
simplified hip joint, they showed that physiological,
symmetric movements help to maintain some of the
acetabular depth and femoral head sphericity, while
reduced or completely absent movements lead to
decreased sphericity and acetabular coverage of the
femoral head.63 The results presented showed con-
sistency with experimental observations.89

Modeling of Biological Aspects
While computational mechanobiology has developed
precisely to address the question of tissue adaptation
in response to mechanical loading, accounting for the
biological factors that mediate this presents a
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FIGURE 3 | Mechanoregulation models of growth: (a) Prediction of tissue growth in a finger joint developed by Heegaard et al.58 provided a
good prediction of (b) experimental outcomes.80 (c) Growth in a fracture callus under loading predicted by Garcia-Aznar et al.61
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significant challenge. While it is known that cellular
proliferation, vascularisation, and nutrient supply are
critical for bone regeneration, the mechanisms that
link mechanical stimulation to these processes are
poorly understood. This is largely due to the diffi-
culty in obtaining in vivo experimental data and the
resulting reliance upon observations in significantly
different in vitro conditions, which in turn makes val-
idation of biological assumptions particularly
problematic.

The first attempt to model these factors was
made by Lacroix and Prendergast56 to model migra-
tion, proliferation, and differentiation of cells using a
diffusion mechanism. The resulting predictions deter-
mined that the cell diffusion rate was the most criti-
cal to healing speed. Kelly and Prendergast79

developed this model further to include multiple cell
phenotypes, allowing for individual elements to rep-
resent multiple tissue types (Figure 4(a)). However,
the actual rates at which each of these variables
occur vary significantly for each tissue that develops
during differentiation and healing. While multiple
mechanoregulation algorithms have attempted to
model bone regeneration (reviewed extensively else-
where91), better characterisation of these rates
in vivo and incorporation of them into models would
likely give greater insight into bone healing rates.92

Growth factors, biochemical signals dispatched
from cells in response to mechanical stimulation,

were chosen as the focus of a mathematical study on
fracture healing by Bailon-Plaza and van der Meu-
len.93 Using a finite difference methodology, cell dif-
ferentiation was regulated by growth factors, rather
than mechanical loading. They used this to quantify
changes in cell density, matrix density, and growth
factor concentrations, as well as characterizing
matrix synthesis and growth factor diffusion.

The first model to link cell phenotype directly
to mechanical stimulation was developed by Isaksson
et al.,64 and included four distinct cell types: MSCs,
fibroblasts, chondrocytes, and osteoblasts (Figure 4
(b)). Cells were capable of migrating, proliferating,
differentiating, or dying, based on both mechanical
stimulation and the behavior of adjacent cells. This
allowed for spatial and temporal predictions of
fibrous tissue, cartilage, and bone, and was shown to
correctly describe fracture healing, as well as dis-
rupted healing due to excessive loading or pathol-
ogy.64 For example, alterations due to periosteal
stripping or impaired cartilage remodeling (endo-
chondral ossification) compared well with experi-
mental observations.64 Parametric data for the study
were taken from literature where possible, with a fac-
torial analysis performed to determine key factors
and their magnitudes.94 Bone healing was predicted
to be sensitive to factors involved in fibrous tissue
and cartilage formation, with too much or too little
soft tissue having a negative effect on the progression
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of healing.94 However, in these studies, all cell activ-
ities were modeled on an element basis and anisot-
ropy in the cell movement was not accounted for.

This problem was overcome by Pérez and
Prendergast,65 who designed a ‘random walk’ model
for cell spreading in the callus (Figure 4(c)). This
allowed for anisotropic proliferation and migration
of cells with a preferential direction. This study built
on the mechanoregulation model by Prendergast
et al.,77 improving on the predictions of that study to
include a more irregular distribution of tissue at the
bone–implant interface. Comparison of this model to
experimental data from a bone chamber showed
qualitative agreement,95 although the full variability
could not be accounted for until individual-specific
cell activity rates were included.96 This study demon-
strates the importance of identifying cell mechano-
sensitivity, emphasized by improved predictions
compared to clinical outcomes when this model was
applied using more realistic 3D loading.97

Given the importance of vascular supply to pro-
vide nutrients and oxygen to bone cells, some fracture
healing models have been based purely on biological
factors. A model that accounted for angiogenesis
through regulation of cell diffusion and growth fac-
tors alone93 was further developed to include mechan-
ical stimulation and compared favorably with
experimental fracture healing data.98,99 Recent devel-
opments of these models have focused solely on more
realistic representations of angiogenesis.100–102

Separately, Shefelbine et al.103 proposed a mod-
ified version of the theory presented by Claes and
Heigele71 using a 3D μFE model of a fracture gap to
simulate trabecular fracture healing, with particular
focus on woven bone formation. To determine tissue
differentiation over time they used a fuzzy logic con-
troller consisting of a set of 21 linguistic rules. In
addition to the mechanical stimuli, the biological fac-
tors involved during healing were also included by
implementing three changes in the fuzzy rules, each
of which represented three different phases of the
healing process. With this linear elastic simulation,
they were able to simulate the major events of bone
regeneration, determining that nutrient supply was
the critical factor in bone development and that bone
would only form with vascular supply.

Angiogenesis was also the subject of further
development of the stochastic cell model by Pérez
and Prendergast,65 predicting similar capillary net-
works to those observed experimentally under shear
loading. By including mechanical stimulation, they
demonstrated that higher loading would slow vascu-
lar development resulting in delayed bone formation.
The model has also been applied to investigate the

discrepancy in bone healing rates between large and
small animals,104 and has been implemented in a
model of a bone tissue engineering scaffold,105,106

demonstrating the potential of computational meth-
ods to guide regenerative therapies. However, these
studies could not account for differences in cell
behavior or mechanosensitivity, which are ultimately
required to provide a more accurate insight into the
cell-driven mechanobiology of bone.104

Most recent developments have modeled the
effect of vasculature and loading indirectly, where
Burke and Kelly66 advanced the methods of Lacroix
and Prendergast56 to include oxygen tension due to
vascular diffusion that occurs in areas where deviato-
ric strain is lower than 6% (Figure 4(d)). With tissues
then differentiating based on the local oxygen tension
and the stiffness of the surrounding tissues, good
agreement was found with the results in fracture
repair experiments.90

Cell Mechanobiology Models
A key limitation of the mechanoregulation algo-
rithms described above is that they remain at the
macroscale level of loading and neglect the mechano-
sensitivity of bone cells themselves.91 Modeling cell
mechanobiology is particularly challenging owing to
the small scales involved and technical limitations of
imaging and experimental techniques (as summarized
in Table 2). However, this has also provided a win-
dow of opportunity for in silico modeling to glean
new information from experimental observations.

Initially, mathematical models were developed
and treated bone as a biphasic continuum, with the
application of Biot’s poroelastic theory,118,119 with
these studies asserting that pressure gradients result-
ing from mechanical loading could generate fluid
flow around the osteocyte.120 The development of
analytical models of idealized osteocyte canaliculi
under loading-induced fluid flow led to predictions of
the in vivo range for shear stress (0.8–3 Pa) and
resulting deformation of osteocyte cell
membranes.121–124 In concert with tracer transport
experiments,125 mathematical models were developed
to explain the movement of solute across bone tissue
despite cyclic fluid flow under loading,126 spawning
much debate about the primary mechanisms of
loading-induced fluid flow through the lacunar–
canalicular network.127,128 Similarly, early attempts
to explore strain transfer to the osteocyte cell pro-
cesses from the surrounding bony matrix applied the-
oretical modeling techniques.129 These models were
developed over time to include an internal actin
cytoskeleton,123 tethering elements anchoring the
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TABLE 2 | Material Properties, Applied Mechanical Stimuli, and Resulting Findings From Selected Cell Mechanobiology Studies

Authors Application Material Properties Stimuli Outcome

Mak et al.107 Canalicular flow Bone (extracellular matrix):
E = 15,000, ν = 0.25, k = 0.13e−15

2000 με
compression

Abrupt changes in drag forces as
canaliculus approaches a
microporosity (~8e8 Pa/m)

Anderson
et al.108

Lacunar–
canalicular flow

Idealized geometry, μ = 0.000855 Pi = 300 Pa,
Po = 150,
0 Pa

Cell body primarily exposed to
hydrodynamic pressure (~150 Pa),
cell processes primarily exposed to
shear stress (1.8–7 Pa)

Anderson and
Knothe Tate109

Lacunar–
canalicular flow

Gap size = 0.01–0.2 μm, μ = 0.001 Max Vi:
3.28e−5 m/s

Physiologically representative
localized variations in canalicular
geometry increase shear stress
stimulation to osteocyte (0.58)

Rath Bonivtch
et al.110

Lacunar strain Bone (extracellular matrix):
E = 25,000, ν = 0.3;
pericellular matrix:
E = 15,000–35,000, ν = 0.3

2000 με
compression

Strain amplification in the lacuna
(2957 με), increasing with
inclusion of canaliculi (6036 με)

Verbruggen
et al.111

Osteocyte strain Realistic geometry (confocal
microscopy): bone (extracellular
matrix): E = 16,000, ν = 0.38;
pericellular matrix: E = 0.04,
ν = 0.4;
osteocyte: E = 0.00447, ν = 0.3

3000 με
compression

Strain amplification in osteocyte due
to realistic geometry (24,333 με),
and due to ECM projections
(12,000 με)

Varga et al.112 Osteocyte strain Realistic geometry (synchrotron X-ray
nano-tomography): bone
(extracellular matrix): E = 16,000,
ν = 0.38;
pericellular matrix: E = 0.04,
ν = 0.4;
osteocyte: E = 0.00447, ν = 0.3

1000 με
compression

No relationship between
morphological parameters and
localized strain. Amplification of
strain in the lacuna (~10,000 με)
and in the osteocyte (~70,000 με)

Verbruggen
et al.113

Multiphysics
osteocyte stimuli

Realistic geometry (confocal
microscopy): bone (extracellular
matrix): E = 16,000, ν = 0.38;
pericellular matrix: E = 0.04,
ν = 0.4;
osteocyte: E = 0.00447, ν = 0.3;
μ = 0.000855

3000 με
compression,
Pi = 300 Pa,
Po = 0 Pa

Multiphysics predictions of
interstitial fluid velocity
(~60.5 μm/s) and maximum shear
stress stimulation (~11 Pa), and
osteocyte strain amplification
(~10,000 με)

Barreto et al.114 Strain stimulation
of cytoskeleton

Cytoplasm: E = 0.00025, ν = 0.49;
nucleus: E = 0.001, ν = 0.3;
microtubules: E = 2000, ν = 0.3;
actin cortex: E = 0.002, ν = 0.3;
actin bundles: E = 0.341, ν = 0.3

0.25 μm
compression

Cell stimulation is highly dependent
on the thickness, Young’s
modulus, and rigidity of the actin
cortex

Khayyeri et al.115 Primary cilia
stimulation

Cytoplasm: E = 0.00025, ν = 0.49;
nucleus: E = 0.001, ν = 0.3;
microtubules: E = 2000, ν = 0.3;
actin cortex: E = 0.002, ν = 0.3;
actin bundles: E = 0.341, ν = 0.3;
primary cilia: E = 0.178, ν = 0.3;
μ = 0.001

Vi = 1 mm/s,
Vo = 0 mm/s

Multiphysics model predicts length
and stiffness of primary cilium are
responsible for transmission of
mechanical stimuli to
cytoskeleton. Highest strains were
found at the base of the primary
cilium (~100,000 με)

Vaughan et al.116 MSC strain
stimulation in
bone marrow

Adipocyte: E = 0.0009, ν = 0.4; MSC:
E = 0.0025, ν = 0.4;
plasma: E = 0.000001, ν = 0.49;
trabecular bone: E = 10,000,
ν = 0.3; trabecular bone marrow:
E = 0.001, ν = 0.49

3000 με
compression

Osteogenic strain stimulation occurs
under normal conditions (~24,000
με), with reduced bone volume
fraction leading to increased
stimulation (~48,000 με).
Increased adipocyte content

Advanced Review wires.wiley.com/sysbio

496 © 2016 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. Volume 8, November/December 2016



cytoskeleton to the surrounding matrix,121 and dis-
crete focal attachments to projections of the matrix
into the canalicular channel.130 These models pre-
dicted significant amplification of macroscopic strain
loads at the cellular level, and reignited debate about
whether interstitial fluid flow or bone matrix strain

was the primary mechanical stimulus for osteocytes
in vivo.131

Computational Fluid Dynamics and FE Models
Rapid advances in computational power over the
past two decades have brought computational

TABLE 2 | Continued

Authors Application Material Properties Stimuli Outcome

during osteoporosis reduced MSC
stimulation via a shielding effect
(~41,000 με)

Vaughan et al.117 Multiphysics
models of
in vitro and
in vivo bone cell
mechanosensors

Cytoplasm: E = 0.00447, ν = 0.4;
nucleus: E = 0.01788, ν = 0.4;
primary cilium: E = 0.178, ν = 0.4;
trabecular bone: E = 10,000,
ν = 0.3;
trabecular bone marrow: E = 0.001,
ν = 0.49, μ = 0.001, ρ = 997

Vi = 34.7 mm/s
(in vitro),
Vi = 14.8
μm/s (in vivo)

Cells highly stimulated in vitro by
both integrin attachments
(>200,000 με) and primary cilium
(~220,000 με). In vivo cells also
highly stimulated by integrin
attachments (~270,000 με), while
primary cilium was only
stimulatory when attached to
lacunar bone (~110,000 vs 2000
με)

E is Young’s modulus (MPa), k is permeability (m4/N s), μ is fluid dynamic viscosity (N s/m2), ρ is fluid density (kg/m3), υ is Poisson’s ratio, Pi and Po denote
pressure at inlet and outlet, and Vi and Vo denote velocity at inlet and outlet.
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modeling to the fore as a key tool to test prevailing
theories or develop entirely new ones. Early compu-
tational models were developed of an idealized
lacunar–canalicular system, predicting abrupt
changes in the drag forces within the canaliculi aris-
ing from changes in geometry or proximity to bone
microporosity and the Haversian canals.107 Similar
techniques have characterized loading-induced fluid
flow across whole bones.132 One study used compu-
tational fluid dynamics (CFD) techniques on an idea-
lized model of an osteocyte, predicting high shear
stresses within the canaliculi, in contrast to primarily
hydrodynamic pressure in the lacunae108 (Figure 5
(d)). More recently, CFD studies have demonstrated
the importance of local geometry on fluid flow in the
pericellular space. Models generated 3D approxima-
tions of realistic 2D geometries taken from transmis-
sion electron microscopy (TEM) images have
suggested that localized projections of the bony
matrix amplify the fluid shear stimulus to the osteo-
cyte.109 Highly detailed 3D geometries of short (80-
nm long) sections of canaliculi have been recon-
structed from scans using ultra-high-voltage electron
microscope, with these models further supporting the
theory that 3D geometry greatly affects the velocity
of the fluid flow around osteocyte cell processes
in vivo.133 Additionally, numerical models have
explored the effect of the pericellular matrix on flow
through the canaliculus, investigating the
permeability,134–136 fluid movement,137,138 and electro-
chemo-mechanical effects.137,139

In contrast to CFD, the first complete 3D idea-
lized FE model of a whole osteocyte lacuna was
developed later, and predicted that strains in the
lacunar walls are amplified by a factor of 1.26–1.52
for an applied global strain of 2000 με, increasing to
a factor of 3 with the inclusion of canaliculi in the
simulations110 (Figure 5(a)). While these studies
employed idealized geometries, recent FE studies gen-
erated accurate 3D geometries of whole osteocytes
using confocal laser scanning microscopy, predicting
that geometry alone can amplify strain transfer to the
osteocyte in vivo, both in healthy111 and osteoporotic
bone.140 This was further corroborated by highly
detailed FE models generated with geometries of the
lacunar–canalicular network captured with synchro-
tron X-ray nano-tomography, which predicted strain
amplification of up to a factor of 70112 (Figure 5(b)).
Some evidence of strain amplification within the lacu-
nar bone matrix under mechanical loading was
demonstrated experimentally by Nicolella et al.48

However, it was not until very recently that studies
validated this computational line of inquiry, using
confocal microscopy to directly observe ex vivo

amplification of applied macroscopic loading when
transferred to both osteocytes and osteoblasts live in
a rat model54 (Figure 5(c)). FE models have also been
applied to investigate mechanosensation of bone cells
in vitro, allowing for direct comparison with cell
behavior in a controlled mechanical environment.
These have allowed for the exploration of the stimu-
latory effects of cell morphology, focal attachment
density,141 and substrate material properties,142 as
well as the translation of mechanical stimulation to
the nucleus via the cytoskeleton.114

Multiscale and Multiphysics Models
Mechanobiology in vivo occurs across multiple
scales, and so recent studies have applied multiscale
modeling techniques alongside periodic boundary
conditions to determine that the strain experienced
by osteocytes under the same macroscopic loading
varies significantly, and strongly depends on their
location relative to microstructural porosities.143 Fur-
thermore, it was found that lamellar orientation can
have a significant effect on strain experienced at the
cellular level.143 A similar multiscale FE approach
has been applied to cells suspended in bone marrow,
demonstrating the importance of cell–cell attach-
ments for mechanosensation within the bone marrow
under macroscopic bone loading.116

As has been discussed, bone cells are exposed
to various types of interrelated physical stimuli and
therefore reside in a multiphysics environment. Mul-
tiphysics modeling is a novel and developing array of
methods that couple the effects of several physical
phenomena in a single simulation. An example of
these are FSI techniques, which couple classic CFD
and FE modeling by relaying results between solvers
in an iterative manner until a solution to both is con-
verged upon. These new methods have been applied
to models of in vitro systems, allowing determination
of the mechanical stimulation applied to cells by
experimental settings,144 as well as the stimulation
experienced by individual bone cells at different loca-
tions in a tissue engineering scaffold.145,146 FSI mod-
els have also elucidated the function of the primary
cilia as a mechanosensor on bone cells, determining
the importance of cilia length.115 Moreover,
researchers have begun to apply FSI to the complex
multiphysics environments within bone, recently pre-
dicting that stimulatory magnitudes of velocity and
shear stress result from macroscopic loading-induced
fluid flow in accurate 3D models of osteocytes113

(Figure 5(e)). These results compared favorably with
experimental tracer experiments of solute transport
in the lacunar–canalicular network51 (Figure 5(f )). In
an attempt to definitively compare these various
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mechanosensors, a comprehensive study of bone cell
mechanosensation both in vitro and in vivo used FSI
to predict that both integrin attachments and primary
cilia are highly stimulated in vitro, but that the pri-
mary cilia is less stimulated in vivo unless embedded
in the surrounding matrix.117 These multiphysics
models in particular demonstrate the value of compu-
tational bone cell mechanobiology models for provid-
ing information on biophysical parameters that
cannot be measured experimentally, as well as the
localized effects of multiple types of mechanosensors
and complex patterns of physiological loading.

CONCLUSION AND FUTURE
DIRECTIONS

In conclusion, the contribution of in silico modeling
to the nascent field of bone mechanobiology is indis-
putable, having aided in the interpretation of experi-
mental findings and identified new avenues of
inquiry. The field has progressed from simple 2D
models of whole bones with simple material proper-
ties to complex 3D models of anatomical bone archi-
tecture with more physiological mechanical behavior.
Indeed, models have been constructed that can adapt
their microarchitecture and mechanical behavior in
response to both loading and biological conditions.
Similarly, models have been developed of bone at
ever smaller scales down to the level of subcellular
components. However, despite expanding experimen-
tal capabilities, computational modeling has taken a
reductive approach in attempting to answer discrete
biological research questions. While much has been
learned from the notable dichotomy in the computa-
tional approaches between mechanoregulation algo-
rithms and cell mechanobiology models, future
models must take a more holistic approach to this
complex biological system. Advances in computa-
tional power are facilitating the development of new
computational techniques, allowing coupling of

simulations across multiple scales and between multi-
ple physical phenomena.

Indeed, multiscale and multiphysics modeling
will play key roles in future efforts to tie the many
separate but related biological responses to loading
together as part of a larger systems biology
approach to shed further light on bone mechano-
biology. We have seen early applications of these
techniques to mechanobiological problems, and a
concerted effort should be made in the next genera-
tion of computational models to include information
from cell-level stimulation in mechanobiological
algorithms.

These methods will reinforce the initial
attempts to apply computational mechanobiology in
a therapeutic or clinical setting, in the same manner
that computational biomechanics models have aided
implant design. Models developed to predict patho-
logical fracture healing have been used to test the
spatial and temporal effects of injecting MSCs and
growth factors.147,148 Moreover, many mechanore-
gulation algorithms are readily applicable to bone tis-
sue engineering scaffolds, and have aided in the
design of various parameters (reviewed in Ref 149).
However, one of the key aspects of the development
of those algorithms is their validation. They all use
different parameters as input or as mechanoregula-
tors and therefore it is difficult to validate each
parameter for a specific or a range of clinical applica-
tions. The increase in the number of parameters and
rules implemented in the algorithms hinder their vali-
dation and the ability to falsify them. Therefore,
although the ever-increasing complexity of computa-
tional mechanobiology models will inevitably move
the field toward patient-specific models in the clinic,
the determination of the context in which they can
be used safely for clinical purpose will still require an
extensive combination of computational and experi-
mental techniques applied to in vitro and in vivo
applications.
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