
plants

Article

Effects of Salinity on the Growth and Nutrition of Taro
(Colocasia esculenta): Implications for Food Security

Georgia R. Lloyd 1 , Akane Uesugi 1,2 and Roslyn M. Gleadow 1,*

����������
�������

Citation: Lloyd, G.R.; Uesugi, A.;

Gleadow, R.M. Effects of Salinity on

the Growth and Nutrition of Taro

(Colocasia esculenta): Implications for

Food Security. Plants 2021, 10, 2319.

https://doi.org/10.3390/

plants10112319

Academic Editor: Alessandra Cona

Received: 1 September 2021

Accepted: 20 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia;
georgia.lloyd@monash.edu (G.R.L.); akane.uesugi@rmit.edu.au (A.U.)

2 School of Biosciences and Food Technology, RMIT, Bundoora Campus, 264 Plenty Road,
Mill Park, VIC 3082, Australia

* Correspondence: ros.gleadow@monash.edu

Abstract: Taro (Colocasia esculenta (L.) Schott) is a staple food crop in the Asia-Pacific region in areas
where rising sea levels are threatening agricultural production. However, little is known about its
response to salinity. In this study, we investigated the effects of salinity on the growth, morphology,
physiology, and chemical traits of taro to predict the impacts of rising sea levels on taro production
and nutritional value in the Pacific. We grew taro (approximately 4 months old) with a range of
NaCl treatments (0–200 mM) for 12 weeks. Full nutrient, micronutrient, and secondary metabolite
analyses were conducted, including measures of calcium oxalate (CaOx), an irritant that reduces
palatability. Significant reductions in growth and biomass were observed at and above 100 mM NaCl.
Concentrations of macro- and micronutrients, including sodium, were higher on a per mass basis in
corms of plants experiencing salt stress. Foliar sodium concentrations remained stable, indicating
that taro may utilize a salt exclusion mechanism. There was a large amount of individual variation in
the concentrations of oxalate and phenolics, but overall, the concentrations were similar in the plants
grown with different levels of salt. The total contents of CaOx and phenolics decreased in plants
experiencing salt stress. Taro’s ability to survive and produce corms when watered with a 200 mM
NaCl solution places it among the salt-tolerant non-halophytes. The nutritional quality of the crop is
only marginally affected by salt stress. Taro is, therefore, likely to remain a useful staple in the Pacific
region in the future.

Keywords: calcium oxalate; sea level; secondary metabolites; plant defence; tuberous crops; Pacific
Islands; salinity

1. Introduction

Rising sea levels pose a major challenge for the food security and livelihood of commu-
nities around the world, particularly in low-lying regions, such as the Pacific [1,2]. Salinity
can have deleterious effects on plant growth and productivity, and nutritional quality, and
as such, is a major environmental constraint to crop production [1,3,4]. With sea levels in
the Pacific rising by as much as 10 mm each year [2], it is important to assess the tolerance
of major crop plants in the region to salinity in order to prepare for the future.

Root and tuber crops are important staples throughout the world. This is particularly
true in the Pacific Islands, where, aside from bananas and breadfruit, the main staples
are yams, taro, cassava, and sweet potato [5]. Root and tuber crops are thought to be pre-
dominately salt-sensitive, with significant reductions in growth and yield under moderate
salinity [1,6,7]. The starchy underground corms of taro (Colocasia esculenta (L.) Schott) are a
staple food for over 200 million people in the Indo-Pacific region and are the main source
of carbohydrates in the Pacific Islands [8–11]. Taro is also consumed widely in Africa [12].
However, despite its regional importance, taro is a neglected crop, and little is known about
taro physiology or how it responds to environmental stresses of any kind [11,13].
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Plants respond to salinity (NaCl) in multiple ways. Some minimize the deleterious ef-
fects through ion exclusion, which prevents Na+ and Cl− transport to, and accumulation in,
above-ground tissues, particularly the leaves. Other plants exhibit tissue tolerance, which
prevents cell damage by the compartmentalization of Na+ and Cl− in vacuoles [14–17].
The sodium concentration in plant tissues can be used to evaluate the mechanisms of
tolerance; plants grown with high salinity and that have low concentrations of NaCl in
their tissues may possess mechanisms to exclude NaCl and are classed as ‘excluders’ [3,18].
Conversely, if plants grown with high salinity are found to have high concentrations of
NaCl in healthy organs, such as the leaves, that would indicate that there is tolerance at the
tissue level, referred to as ‘tissue tolerance’ [16].

Salinity is known to affect plant nutritional quality and palatability by altering the
levels of secondary metabolites, protein, and micronutrients [19]. Salt stress has been found
to increase some secondary metabolites in non-tuberous crops [19,20]. However, little is
known about the effects of salinity on tuberous crops. Gleadow, Pegg, and Blomstedt [1]
found that there was generally an increase in the concentrations of cyanogenic glucosides
in the tuberous roots of cassava in response to salinity, although the amount depended on
the age of the plant and the degree of stress. Taro contains several chemical compounds
that reduce its palatability and increase its toxicity. Taro is one of the aroid lilies (Araceae), a
group notable for storing CaOx crystals. CaOx crystals make the leaves and corms highly
acrid and can cause irritation and damage to the mouth, throat, and gut unless thoroughly
washed and cooked before consumption [9,11,21]. Some taro cultivars also contain the
cyanogenic glycoside triglochinin, a nitrogen-based phytoanticipin that breaks down to
release toxic hydrogen cyanide on tissue disruption [22,23]. To ensure taro will continue to
be suitable for human consumption in areas affected by rising sea levels, it is important
to investigate the impact of salinity on these anti-nutritional factors, particularly calcium
oxalate production, for which the effect of stress is completely unknown. Only a handful
of studies have examined the salinity tolerance of taro, giving widely divergent results in
terms of growth, and none of them measured the effect on CaOx [13,24].

We tested the impact of salinity on the growth and nutritional value of taro plants
by watering with five different concentrations of NaCl (0, 50, 100, 150, and 200 mM) for
12 weeks. We found that taro was relatively salt-tolerant in that while high salt concen-
trations negatively affected growth and plant biomass, plants survived salinities up to
200 mM, with minimal effects on palatability. We conclude that taro is likely to continue to
be a suitable food security option in the Pacific region in the future.

2. Results
2.1. Plant Growth and Biomass

Salt significantly reduced the growth rate of taro, but plants were not killed (Figure 1).
Overall, plants were smaller (height, biomass) and had lower RGRs with increasing con-
centrations of NaCl (Table 1, Figures 2 and 3a). However, even plants subjected to 200 mM
NaCl were still alive at the end of the 12-week treatment. While total plant biomass was
lower (25–66%) in all salt treatments (50, 100, 150, and 200 mM NaCl) compared to the
control, the impact on plant growth parameters was minimal at 50 mM (Figure 2c). This
reduction in biomass was the result of significant declines in both above- and below-ground
biomass across all plant parts (Table 1, Figure 2c). Corm mass was significantly reduced
across salt treatments, with a 38–43% reduction in the mean corm mass in plants in the
200 mM NaCl treatment group compared to the control (Table 1, Figure 2b). Despite this,
the root/shoot ratio of plants in the 200 mM NaCl treatment group was higher than in the
control plants (Table 1), primarily due to the decrease in the above-ground biomass.

There were significant interactions between the salt treatments and the length of the
treatments for height, leaf area, and number (p ≤ 0.001), but no clear effect of salt was
shown until week 3 (Figure 3). The leaf area was lower in plants in the 150 and 200 mM
NaCl treatment groups compared to the other salt treatments (Figure 3b). These plants also
had more senescent leaves over the course of the experiment than those in other treatment
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groups (Figure 3d). There was no significant difference in the leaf area ratio (LAR) between
treatments, but the net assimilation rate (NAR) was significantly higher in plants in the
200 mM NaCl treatment group (Table 1).

Plant suckers (side shoots) were analysed separately from the main plants to determine
whether their formation or biomass was influenced by the salt treatments. The number of
suckers per plant, the total sucker biomass, the percentage of the total biomass in suckers,
and the ratio of sucker corm mass-to-main corm mass did not differ significantly between
the salt treatments (Supplementary Table S1).

2.2. Photosynthetic Parameters

The photosynthetic rate (i.e., the carbon assimilation rate) of the control plants was
nearly four-fold greater than that of plants grown with the highest 200 mM NaCl salt
treatment (Table 1; Figure 4a). The stomatal conductance and transpiration rate appeared
to have a similar response to the salt treatments, with a significant reduction with 200 mM
NaCl compared to the controls (Table 1; Figure 4b,c). There was no significant difference
in the gas exchange parameters (assimilation, conductance, and transpiration) between
plants grown with the three lower levels of salt. No significant differences in dark-adapted
chlorophyll fluorescence (Fv/Fm) or chlorophyll concentrations were detected between salt
treatments either (Table 1), although we note that these measurements were taken on the
second fully expanded leaf, which appeared to be unaffected by the salt treatment.

2.3. Minerals and Micronutrients

The most striking observation was of the effect of the salt treatments on sodium
concentrations. In corms, sodium concentrations increased with the salt treatments, with
the sodium concentration ~70% higher in the 150 mM treatment group compared to the
control (Table 2, Figure 5b). In the leaves, there were no significant differences in the
sodium concentrations among the salt treatments, and 0.01 mg g−1 was the median sodium
concentration in all the treatments (Table 2, Figure 5a). Six outliers were identified across
the treatment groups, but these were not significant (Table 2). The remaining 26 plants all
had a consistent sodium level of 0.01 mg g−1. The findings for sodium were consistent
when nutrients were examined as both concentrations (mg g−1) and total contents per
plant measures (Table 2, Supplementary Table S2).
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Figure 1. Representative 30-week-old taro plants at the time of harvest after being supplied with five different concentrations
of salt (0, 50, 100, 150, and 200 mM NaCl) for 12 weeks.
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Table 1. Summary of the mean values and ANOVA results for growth (n = 18) and photosynthetic (n = 4) variables in taro
plants grown with five salt concentrations (0, 50, 100, 150, and 200 mM NaCl) for 12 weeks.

Growth Parameter 0 mM 50 mM 100 mM 150 mM 200 mM df F p

Total biomass (g) 32.05 ± 3.60 a 24.04 ± 2.35 b 17.44 ± 1.50 bc 10.93 ± 0.94 c 14.10 ± 2.10 bc 4 14.54 0.001 *
Leaf mass (g) 3.26 ± 0.52 a 2.70 ± 0.35 ab 1.83 ± 0.17 b 0.91 ± 0.15 c 0.35 ± 0.05 c 4 21.03 0.001 *

Petiole mass (g) 5.72 ± 1.14 a 4.84 ± 0.66 ab 2.75 ± 0.31 bc 1.28 ± 0.19 cd 0.60 ± 0.12 d 4 19.32 0.001 *
Root mass (g) 2.77 ± 0.18 a 2.34 ± 0.38 ab 1.66 ± 0.14 bc 1.20 ± 0.19 c 1.05 ± 0.11 c 4 12.39 0.001 *
Corm mass (g) 20.31 ± 2.41 a 14.19 ± 1.56 b 11.20 ± 1.32 b 7.55 ± 0.74 b 12.11 ± 1.98 b 4 8.21 0.001 *

Above-ground mass (g) 8.97 ± 1.64 a 7.53 ± 1.00 ab 4.58 ± 0.47 bc 2.19 ± 0.33 c 0.95 ± 0.16 d 4 20.57 0.001 *
Below-ground mass (g) 23.08 ± 2.46 a 16.51 ± 1.80 b 12.86 ± 1.38 b 8.74 ± 0.79 b 13.15 ± 2.01 b 4 9.76 0.001 *

Plant height (cm) 69.06 ± 3.14 a 59.58 ± 5.58 b 57.58 ± 1.97 ab 40.32 ± 3.16 c 28.50 ± 3.06 c 4 21.40 0.001 *
Leaf number 3.67 ± 0.16 a 3.00 ± 0.29 ab 3.28 ± 0.20 ab 2.71 ± 0.27 bc 1.72 ± 0.14 d 4 10.41 0.001 *
No. senescent 3.22 ± 0.15 a 2.72 ± 0.30 a 2.83 ± 0.20 a 1.18 ± 0.21 b 0.94 ± 0.17 a 4 5.66 0.001 *

No. fully expanded 0.11 ± 0.08 a 0.22 ± 0.10 a 0.11 ± 0.08 a 0.82 ± 0.15 b 0.33 ± 0.11 b 4 23.16 0.001 *
Leaf area (cm2) 1007.07 ± 144.03 a 821.67 ± 108.30 ab 511.18 ± 53.77 b 143.73 ± 22.83 c 79.86 ± 15.90 c 4 31.06 0.001 *

Root/shoot ratio 3.38 ± 0.57 a 5.19 ± 2.30 a 3.37 ± 0.51 a 5.70 ± 0.96 a 20.71 ± 3.55 b 4 11.28 0.001 *
RGR (g g−1 day−1) 0.003 ± 0.00 a 0.001 ± 0.00 ab 0.000 ± 0.00 bc −0.002 ± 0.00 c −0.002 ± 0.00 c 4 13.40 0.001 *

LAR (cm2 g−1) 32.31 ± 2.57 36.47 ± 3.70 31.00 ± 3.06 14.93 ± 3.32 6.56 ± 1.75 4 1.60 0.181
NAR (g cm2 day−1) 0.0002 ± 0.00 a 0.0002 ± 0.00 ab 0.0002 ± 0.00 a 0.0003 ± 0.00 ab 0.0004 ± 0.00 b 4 4.791 0.002 *

A (µmol CO2 m−2 s−1) 9.36 ± 1.06 a 7.25 ± 0.94 ab 4.59 ± 1.41 ab 5.84 ± 1.12 ab 2.60 ± 1.00 b 4 4.99 0.012 *
gs (mmol H2O m−2 s−1) 0.10 ± 0.03 a 0.06 ± 0.01 ab 0.04 ± 0.01 ab 0.05 ± 0.01 ab 0.02 ± 0.01 b 4 4.99 0.028 *
T (mmol H2O m−2 s−1) 2.29 ± 0.72 a 1.28 ± 0.35 ab 0.66 ± 0.13 ab 1.00 ± 0.14 ab 0.38 ± 0.17 b 4 3.84 0.012 *

Fv/Fm 0.88 ± 0.01 0.87 ± 0.00 0.84 ± 0.05 0.79 ± 0.04 0.67 ± 0.11 4 1.24 0.367
Total Chlorophyll (mg g−1) 12.33 ± 1.06 9.46 ± 1.33 10.08 ± 0.44 10.41 ± 0.87 10.30 ± 0.98 4 1.95 0.210

Table footer: * RGR = relative growth rate, LAR = leaf area ratio, NAR = net assimilation rate, A = carbon assimilation rate, gs = stomatal
conductance, T = transpiration. Values are means ± 1 SE. Comparisons that are significantly different (p < 0.05) are indicated with an
asterisk (*). Means with the same letter are not significantly different at p < 0.05.
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Figure 2. (a) Relative growth rate, (b) corm mass (g dry weight), and (c) total above- and below-ground biomasses (g dry
weight) of 30-week-old taro plants grown for 12 weeks with five different concentrations of sodium chloride. Box plots
show the medians of 18 replicates, range, and upper and lower quartiles. Bars are the means of 18 replicates ± 1 SE. Boxes
and columns for the same parameter with the same letter are not significantly different at p < 0.05.
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SE. The same plants were measured each week. Points for the same parameter with the same letter are not significantly
different at p < 0.05. Pairwise differences were significant for weeks 4–12 of treatment.
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Figure 4. Gas exchange parameters of taro plants grown for 12 weeks with five different concentra-
tions of salt. (a) A, Assimilation; (b) gs, stomatal conductance; (c) T, transpiration. Figures show the
medians of four replicates, range, and upper and lower quartiles. Boxes for the same parameter with
the same letter are not significantly different at p < 0.05.



Plants 2021, 10, 2319 7 of 17

Table 2. Macro and micronutrients of oven-dried leaves and corms of taro plants supplied with five different concentrations
of salt (0, 50, 100, 150, and 200 mM NaCl) for 12 weeks. Values are the means of six replicates ± 1 SE in mg g−1. Comparisons
that are significantly different (p < 0.05) are indicated with an asterisk (*). Means with the same letter are not significantly
different at p < 0.05.

Leaf

0 mM 50 mM 100 mM 150 mM 200 mM df F p

Nitrogen 37.00 ± 1.64 43.35 ± 2.59 43.03 ± 2.56 44.45 ± 3.53 43.42 ± 3.63 4 1.13 0.367
Phosphorus 4.07 ± 0.41 4.82 ± 0.70 4.55 ± 0.33 5.02 ± 0.44 4.23 ± 0.50 4 0.61 0.658
Potassium 35.40 ± 2.24 33.10 ± 2.63 32.28 ± 2.10 35.82 ± 2.63 33.67 ± 3.78 4 0.24 0.915

Sulphur 2.10 ± 0.08 2.47 ± 0.15 2.48 ± 0.12 2.52 ± 0.23 2.42 ± 0.22 4 1.09 0.385
Carbon 431.17 ± 3.13 425.83 ± 1.92 430.50 ± 4.25 424.83 ± 10.35 419.67 ± 10.49 4 0.12 0.975
Calcium 16.15 ± 0.89 15.22 ± 1.06 15.43 ± 1.53 17.63 ± 3.38 14.37 ± 4.08 4 0.29 0.880

Magnesium 4.28 ± 0.23 3.73 ± 0.28 3.52 ± 0.20 4.03 ± 0.41 3.93 ± 0.75 4 0.46 0.768
Sodium 0.03 ± 0.02 0.01 ± 0.00 0.06 ± 0.03 0.04 ± 0.03 0.07 ± 0.05 4 0.78 0.549
Copper 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 4 2.79 0.052

Zinc 0.03 ± 0.01 a 0.04 ± 0.01 ab 0.07 ± 0.01 ab 0.07 ± 0.01 ab 0.08 ± 0.01 b 4 4.06 0.013 *
Manganese 0.12 ± 0.01 0.12 ± 0.01 0.11 ± 0.01 0.12 ± 0.02 0.10 ± 0.02 4 0.20 0.933

Iron 0.16 ± 0.03 0.06 ± 0.01 0.06 ± 0.02 0.06 ± 0.02 0.04 ± 0.01 4 2.01 0.128

Corm

0 mM 50 mM 100 mM 150 mM 200 mM df F p

Nitrogen 3.38 ± 0.47 a 6.05 ± 1.10 ab 5.38 ± 2.03 ac 20.75 ± 4.06 b 20.05 ± 7.40 bc 4 5.47 0.003 *
Phosphorus 1.87 ± 0.15 a 1.78 ± 0.24 a 2.03 ± 0.48 a 6.82 ± 1.00 b 5.50 ± 1.47 b 4 9.06 0.001 *
Potassium 10.22 ± 1.18 10.62 ± 1.20 12.15 ± 2.01 8.95 ± 1.04 9.13 ± 0.99 4 0.92 0.472

Sulphur 0.37 ± 0.06 0.53 ± 0.10 0.47 ± 0.13 1.55 ± 0.21 1.57 ± 0.56 4 1.06 0.399
Carbon 437.50 ± 14.92 417.67 ± 21.87 424.17 ± 2.98 414.67 ± 2.93 416.33 ± 4.15 4 0.58 0.684
Calcium 1.28 ± 0.26 a 2.13 ± 0.48 ab 1.90 ± 0.35 ab 4.28 ± 0.88 b 3.03 ± 0.74 ab 4 3.76 0.019 *

Magnesium 1.13 ± 0.11 a 1.07 ± 0.17 a 0.93 ± 0.14 a 2.50 ± 0.24 b 1.82 ± 0.43 ab 4 6.68 0.001 *
Sodium 0.06 ± 0.02 a 3.82 ± 2.08 ab 2.55 ± 0.79 ab 9.58 ± 2.62 b 6.58 ± 2.34 ab 4 4.05 0.013 *
Copper 0.003 ± 0.00 a 0.005 ± 0.00 a 0.003 ± 0.00 a 0.010 ± 0.00 b 0.006 ± 0.00 ab 4 5.70 0.003 *

Zinc 0.04 ± 0.01 0.0676 ± 0.0143 0.06 ± 0.010 0.18 ± 0.07 0.07 ± 0.02 4 2.38 0.080
Manganese 0.01 ± 0.00 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 4 2.25 0.097

Iron 0.03 ± 0.01 a 0.08 ± 0.01 ab 0.11 ± 0.02 ab 0.18 ± 0.04 b 0.11 ± 0.02 b 4 5.72 0.004*
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There were significant differences in the concentrations of other leaf nutrients among
the treatment groups, except for Zn, which was much more highly concentrated in plants
growing in the 200 mM NaCl group compared to the controls (Table 2). By contrast, in the
corms, the concentrations of most nutrients increased with the salt treatments (Table 2).
For example, the concentrations of nitrogen and phosphorus were greater in plants in the
150 and 200 mM NaCl groups (Table 2). Importantly, for this study, in relation to calcium
oxalate, the concentrations of Ca in the corms were approximately 30% higher in plants in
the 150 mM NaCl treatment group than in the control plants (Figure 6).
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Figure 6. Concentrations of secondary metabolites and anti-nutritional factors in the leaves (a–d) and
corms (e,f) of 30–week-old taro plants grown for 12 weeks at five different concentrations of sodium chlo-
ride. (a) Relative phenolic acid concentration (mAU mg g−1, n = 18); (b) relative flavonoid concentration
(mAU mg−1, n = 18); (c) foliar calcium concentration (mg g−1, n = 6); (d) foliar oxalate concentra-
tion (mg ml−1, n = 18); (e) corm calcium concentration (mg g−1, n = 6); (f) corm oxalate concentration
(mg ml−1, n = 18). Boxes for the same parameter with the same letter are not significantly different at
p < 0.05.
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In order to test whether the increases in concentrations of the corm and leaf nutrients
in the plants with the higher salt treatments were the result of the reduced biomass of these
plants, the total mass of each nutrient was calculated on a whole plant basis by multiplying
the nutrient concentrations (mg g−1) by the corresponding corm and leaf mass. When the
corm nutrients were examined as the total corm nutrients per plant, the eight nutrients that
had increased in concentration were no longer significantly different between treatments
(Supplementary Table S2). Only the corm carbon and sodium contents were significantly
different among the treatments, with the carbon content decreasing with increasing salt
concentrations, and total salt content increasing (Supplementary Table S2). Thus, the
increases in nutrient concentrations per gram were the result of a smaller tissue mass with a
similar overall amount of the various ions. When leaf nutrients were examined as total leaf
nutrients per plant, all measured nutrients were actually lower in plants with the various
salt treatments than in the control, aside from zinc and sodium (Supplementary Table S2).

2.4. Oxalate Determination

The concentrations of oxalate and calcium in leaves and corms were determined as a
proxy for calcium oxalate (Figure 6; Table 2; Supplementary Tables S2 and S3). There were
no significant differences in oxalate concentrations in the corms, whereas leaf oxalate con-
centrations were greater in the control plants than in plants in the 100 mM NaCl treatment
group, and were lower in plants in the 100 and 50 mM NaCl treatment groups com-
pared to those in the 200 mM NaCl treatment group (Figure 6; Supplementary Table S3).
Higher degrees of variability were observed in the higher salinity treatment groups (i.e.,
150 mM and 200 mM NaCl). For example, oxalate concentrations ranged between 0.051
and 0.212 mg ml−1 in the control treatment group, with a median value of 0.104 mg ml−1,
compared to a range of 0.027–0.41 mg ml−1 and a median value of 0.028 mg ml−1 in
the 200 mM treatment group. When leaf oxalates were examined as the total leaf oxalate
content on a per plant basis, oxalate contents were lower in the salt treatment groups
compared to the control (Supplementary Table S3). Similarly, leaf calcium contents were
lower in the 150 and 200 mM NaCl plants compared to the control and in the 200 mM NaCl
plants compared to the 50 mM NaCl plants (Supplementary Table S2).

2.5. Specialised Metabolites

Cyanogenic glycosides were detected in the leaf samples, but the concentrations
were very low. The mean foliar cyanide concentrations of plants on a dry mass basis
were 0.32 ± 0.10 µg HCN g−1, with values ranging from 0 to 1.46 µg g−1. There were no
significant differences in the concentration of foliar cyanide or the total foliar cyanide
content per plant (i.e., concentration × leaf mass) between salt treatments (Figure 6a;
Supplementary Table S3).

Phenolic acid concentrations decreased with increasing salt concentrations and were
lower in plants with 200 mM NaCl compared to those in the control and those with lower
salt treatments (Figure 6c). By contrast, flavonoid concentrations were greater in plants
with 200 mM NaCl than in those with 100 mM NaCl (Figure 6d). The relative effects
of salinity on phenolics and flavonoids in leaves and corms were also significant when
represented on a whole plant basis (Supplementary Table S3). The phenolic acid and
flavonoid contents were greater in the control compared to the salt treatment groups, in
the 50 mM NaCl groups compared to the 150 and 200 mM NaCl treatment groups, and in
the 100 mM group compared to the 200 mM NaCl treatment group.

3. Discussion

We measured the effects of salt on the composition and growth of taro watered with
different concentrations of salt. The key effects of salinity on taro were a reduction in
biomass and photosynthetic rate. There were increases in the concentrations of several key
corm nutrients due to reduced biomass, although the total content of mineral nutrients per
plant organ did not increase.
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3.1. Sodium Excluded from Upper Parts of Plant but Not Corms

The tissue sodium concentration increased in the corms with increasing salinity but
not in the leaves (Table 2). This suggests that while salt may gain entry to the plant in the
transpiration stream, it is excluded from the leaves. These observations are consistent with
those of Hill et al. [13], who found that leaf sodium concentrations in taro grown hydropon-
ically remained reasonably constant with increasing salt concentrations (0–80 mM NaCl),
whereas the sodium concentration in the petioles and roots increased with increasing
salt concentrations.

Sodium exclusion from upper plant parts has more generally been associated with salt
tolerance in several plant species [3,18], including durum wheat and Indica rice cultivars,
which can exclude sodium up to ~100 mM NaCl [25,26]. Low leaf sodium concentrations
are often characteristic of non-halophytic species (i.e., those that are not adapted to growing
in highly saline environments), with 200 mM considered the limit of growth for such
species [16]. A modest degree of sodium exclusion has also been observed in the leaves
of cassava [1]. However, the breakdown of this exclusion mechanism at relatively low
concentrations (40 mM NaCl) suggests that the sodium exclusion mechanism present in
taro is more effective [1]. Here, while taro was able to continue to grow and exclude sodium
from transpiring leaves with 200 mM NaCl, an increase in senescent leaves, marginal leaf
chlorosis, and scorching were observed in the highest salt treatment groups at harvest. This
suggests that taro’s ability to exclude sodium from leaves may break down in the oldest
leaves of the 150 and 200 mM NaCl plants after long-term exposure to saline conditions.
The oldest leaves display the effects of salt toxicity first, probably because they have been
transpiring for longer, and thus, have accumulated Na+ for longer [27,28].

3.2. Growth and Photosynthesis Are Reduced in Plants Grown at Moderate Salinity

Taro exhibited significant reductions in growth and biomass with increasing salinity,
although the concentrations of salt at which the effects were manifested differed between
the various parameters (between 50 mM and 200 mM). These results are broadly consistent
with those from the in vitro studies on taro by Nyman and others who reported significant
growth reduction and necrosis in taro cell cultures grown with 175 mM NaCl [24,29]. These
results are also consistent with field observations made in Tuvalu of giant swamp taro
(Cyrtosperma merkusii), a related edible aroid; plants grew well in locations where salt was
~100 mM NaCl and tolerated levels up to ~200 mM NaCl, but salt levels above 300 mM
NaCl could be lethal [30].

The Fv/Fm decreased with increasing salinity, but the difference was not significant.
The net carbon assimilation also decreased significantly with increasing salinity, with a
significant decrease in all gas exchange parameters in plants grown with 200 mM NaCl.
That the growth was impacted to a greater extent than the net carbon assimilation is not
surprising; a small change in photosynthesis over time can result in highly significant
reductions in biomass. It is also possible that the plants were expending more energy on
other metabolic activities, such as ion exclusion at the level of the leaves (Table 2, Leaf).
Reductions in growth and photosynthesis may be the result of physiological drought caused
by osmotic stress rather than any direct toxic effects of sodium and chloride ions [14,31].
This conjecture is supported by the observed decrease in the rate of transpiration and
stomatal conductance in the plants grown with higher levels of salt. Both salt exclusion and
osmotic adjustment impose a high metabolic cost, which requires the diversion of assimilate
from growth processes [27]. Nevertheless, while the photosynthetically active leaves stayed
healthy, there was a higher rate of senescence of the older leaves in plants grown with high
levels of salt, resulting in the loss of photosynthetic area. Thus, while tolerance mechanisms
appear to allow for the continued survival of taro in saline conditions, the operation of
these mechanisms may contribute to salinity-induced reductions in biomass, suggesting
the existence of a trade-off between the yield and survival of taro [32].

Corm growth was more sensitive to salt than other plant parts, with reductions in
biomass of approximately 30% observed in plants grown with the lowest concentration
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of 50 mM NaCl. This is not surprising, given the reduction in photosynthesis and the
availability of carbohydrates for storage [32]. Other plants with underground storage
organs, such as potato [33] and cassava [1], also exhibit significant yield reductions of
42–59%, at 70–80 mM NaCl. The effects of salinity on the biomass of the tuberous roots
of cassava are particularly severe if the saline conditions coincide with the periods of
tuber initiation and development [1]. The present study was conducted during the critical
period when the storage organs were forming (4–7 months after planting), and this may
explain the large reductions in corm yield observed [11]. Given that sodium concentrations
were found to increase in corms with higher salt treatments, it is possible that the growth
reductions observed in taro corms are the result of both osmotic and ionic effects, which
culminate in the significant stunting of growth [28,31]. Our findings place taro among
the salt-tolerant non-halophytes, plants that exhibit moderate salt tolerance while relying
exclusively on salt exclusion [15,16]. The current study suggests that taro is significantly
more tolerant to salinity than other regionally important tuberous crops, such as cassava
and sweet potato, which both exhibited significant reductions in biomass at much lower
concentrations of NaCl than shown here for taro [1,7,34].

3.3. Mineral Nutrient Uptake Decreased with Increasing Salinity

The concentrations of mineral nutrients recorded in taro corms in this study are
broadly comparable to those recorded in previous studies [35,36]. The total amount of key
mineral nutrients taken up overall in the corms (on a per mass basis) was lower in plants
with the highest salt treatments (i.e., grams per total mass), even though the concentrations
were higher. This can be attributed to the lower overall mass, that is, a concentration effect,
as well as the lower transpiration rates in plants growing in the saline soil [37]. Foliar
concentrations of macronutrients were also in the expected range for taro [38], except for
Ca and K, which approached limiting levels for growth [39]. The high levels of Na+ and Cl-

ions in the soil may compete directly with the uptake of essential nutrients, such as Ca2 +,
K+, and NO3

− [31,37]. This effect is thought to be more pronounced in taro because the
mechanisms to exclude sodium from transpiring leaves may also restrict the movement of
other essential nutrients through the plant [37].

3.4. Calcium Oxalate Crystal Formation and Remobilisation May Increase Survival at High Levels
of NaCl

Concentrations of oxalate and calcium were measured as a proxy for calcium oxalate.
Foliar oxalate and calcium concentrations decreased both on a per mass and a per organ
basis with increasing salinity despite the decrease in plant biomass. The lower concentra-
tions could be due to either a decrease in available Ca due to competition with sodium at
the root, reduced transportation of Ca to the leaves as a result of reduced transpiration, or
a reduction in oxalate formation. Evidence to support the latter hypothesis regarding Ca2+,
salinity, and reduced CaOx accumulation comes from the study performed by Hunsch
et al. [40], who found that a decrease in Ca2+ accumulation in the leaves of Grewia tenax
(a salt-tolerant tropical tree) in response to high salinity resulted in the production of
fewer CaOx crystals. In the same study, they included another tropical tree that does not
accumulate CaOx crystals (Tamarindua indica), but in this case, they did not detect any
difference in foliar Ca2+ levels. Thus, decreases in CaOx crystals are likely to be driven by
a reduction in oxalate formation.

Alternatively, it is possible that any crystals in the leaves were remobilized. Remobi-
lization would have the benefit of releasing oxalate back into the primary metabolism [41].
It is possible that the release of carbon dioxide from the breakdown of oxalate could make
up for the reduction in gas exchange, allowing photosynthesis to continue for longer in
stressed plants despite the partial closure of the stomata, both mitigating the impact on
growth and consuming excess energy from the electron transport chain, and thus, limiting
the accumulation of reactive oxygen species [42]. The finding that there was a reduction in
the electron transport in the leaves of the tree that accumulated CaOx crystals (G. tenax)
but not in the tree without this capacity supports this hypothesis [40]. If this mechanism
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operates in taro under salt stress, it could explain why, in our study, taro was able to
maintain its growth rate with the 50 mM NaCl treatment and continue to photosynthesize
up to 150 mM NaCl.

3.5. Secondary Metabolites in Plants Grown with Higher Concentrations of Salt

There was a significant reduction in phenolic acids and an increase in flavonoids
in the taro leaves in response to increased salinity. This is in direct contrast to previous
research on the response of secondary metabolites to stress, which have been observed to
increase in concentrations in a wide range of crop plants, including rice, red pepper, and
cassava [1,19,20,43]. The difference may be due, in part, to the length and magnitude of
the stress imposed. Stress induces the upregulation of a variety of genes and protective
systems to minimize plant damage, such as the salt exclusion mechanism observed in our
study. However, these processes require a large energy expenditure [41] and may not be
advantageous in the long term or with high levels of stress [41,42,44,45].

This study confirms that taro is cyanogenic, but the cyanide levels recorded are
very low (1 µg g−1). Our results are broadly consistent with those previously recorded
for taro by [46], who reported foliar cyanide levels of 0–3 mg HCN/100 g fresh weight.
Other cyanogenic crops plants, such as cassava and sorghum, have much higher foliar
cyanide concentrations, ranging from 0.2 to 20 mg g−1 [47,48]. There was no significant
difference found in the HCN concentrations of taro plants among the salt treatments.
This is in contrast to prior studies on other cyanogenic species, such as cassava and
white clover, which reported significant increases in foliar cyanide concentrations at salt
concentrations up to 40 mM NaCl in both species, and a subsequent decrease at 80 mM
NaCl in cassava [1,49].

3.6. Conclusions and Implications for Food Security

The increasing demand for food due to population growth, together with declining
yields, poses a significant threat to food security in the Pacific region, particularly given the
salt-sensitive status of other regionally important crops, such as cassava and sweet potato.
Taro is moderately tolerant to salt, with little impact on size and morphology when grown
with up to 100 mM NaCl, and can survive with up to 200 mM NaCl. Taro will continue
to be nutritious, however, significant reductions in growth and biomass are of concern
to the future of taro production in regions subject to rising sea levels and ground water
salinization. Breeding for more salt-tolerant varieties may be necessary for taro to continue
its role as a staple in the Pacific under future saline conditions.

4. Materials and Methods
4.1. Plant Material, Glasshouse Conditions, and Treatment Groups

A glasshouse experiment was conducted at the School of Biological Sciences, Plants
Sciences Complex, Monash University, Clayton. Taro plantlets (Colocasia esculenta (L.)
Schott cv. Samoan Pink), approximately 20 cm in size and sourced from El Arish Tropical
Exotics (Queensland, Australia), were grown in 20 L pots containing commercial Debco
potting mix and Osmocote® controlled-release fertilizer (Scotts, Marysville, Ohio, USA;
containing NPK 19.4:1.6:5 and micronutrients) under natural light. The plants were watered
with a complete nutrient solution (Searles®, Winya, Queensland, Australia; 10 mL l−1 H2O)
at 0, 30, and 60 days after transplanting (DAT). The temperature in the greenhouse was
maintained at 26 and 20 ◦C during the day and night, respectively, with a range of 22 ◦C to
30 ◦C and humidity between 55 and 65%, consistent with the optimal conditions for taro
reported in the literature [11]. The plants were rotated once a week around the greenhouse
to minimize vagaries in the microenvironment.

After 18 weeks of growth (12 December 2016 to 20 March 2017), the taro plants were
classified into three groups based on height (small: approximately 20–35 cm; medium:
approximately 35–45 cm; large: approximately 45–60 cm), and 18 plants within each group
were randomly allocated to one of 5 salt treatments (0, 50, 100, 150, or 200 mM NaCl;
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n = 18), such that each treatment group had an equal number of plants from the small,
medium, and large groups. Seawater has a concentration of approximately 500 mM NaCl.
The salt concentrations were determined based on the studies of Nyman and Arditti [24]
and Hill, Abaidoo, and Miyasaka [13], which indicate a maximum survivable concentration
of between 80 mM and 175 mM. In order to avoid a shock response, the salt concentrations
were increased gradually over two weeks, starting at 25 mM and increasing by 25 mM every
3 days until the final concentrations were reached, following the methods of Gleadow, Pegg,
and Blomstedt [1]. The final concentrations were maintained for 10 weeks, and the plants
were watered with 500 mL of the appropriate salt solution three times a week. The pots
were flushed weekly to prevent salt build-up in the pots. The salt concentrations of leachate
from a subset of samples (n = 3) were measured halfway through the treatment period
(6 weeks) using a portable refractometer to confirm that the allocated salt concentrations
were not exceeded (Supplementary Table S4).

4.2. Phenology, Harvesting, and Sampling Protocol

Plant height, leaf number, stage of leaf development, and width and length of the
third fully expanded leaf blade were recorded weekly from the first application of the salt
treatment for the duration of the experiment (12 weeks). The leaves were classified as peep-
ing, rolled, expanded, or senescent following Lu et al. [50], as modified by Crimp et al. [51]
(Supplementary Table S5).

The initial plant biomass was measured at the start of the study by harvesting a group
of plants 18 weeks after transplanting (n = 15, equally distributed between height groups).
The plants were grown under treatment conditions for 12 weeks before being destructively
harvested when they were 7 months old. This time period was chosen because, at this age,
plants typically have a well-developed and mature corm, but side shoot development is
limited. The plants were separated into the leaves, petioles, roots, and corm. The leaves
were further separated into the five classes described above (Supplementary Table S5). The
leaf area was measured for expanded and expanding leaves using an LI-3000 Portable
Leaf Area Meter (Li-Cor, Lincoln, NE, USA). The fresh weight was recorded for all plant
parts (petioles, roots, corms) and leaves from each class. The second fully expanded leaf
from each plant was freeze-dried for secondary metabolite and chlorophyll analyses. The
remaining plant parts were oven-dried at 60 ◦C for 7 days and re-weighed for dry weight
determination. Where present, side shoots (‘suckers’) were separated from the main stem,
their plant parts sorted into roots, leaves, and petioles, as above, and the dry mass measured
separately from the main plant. Growth indices were calculated, including the relative
growth rate [51], the net assimilation rate (NAR), and the root/shoot ratio, following the
methods of [1] (Supplementary Table S6).

4.3. Photosynthetic Parameters

The photosynthetic parameters were measured on four representative plants from
each treatment group in the week prior to the final harvest. The photosynthetic rate,
transpiration, conductance, and internal CO2 concentration were measured using a Li-Cor
6400 portable photosynthesis machine (Li-Cor, Lincoln, NE, USA). Measurements on the
second fully expanded leaf from each plant (n = 5) were made at 800 µmol quanta m−2

s−1 PAR, 400 ppm CO2, 25 ◦C, and approximately 50% relative humidity. Dark-adapted
chlorophyll fluorescence, Fv/Fm, was measured on the second fully expanded leaf (n = 4)
using a Pulse-Amplitude Modulated PAM-210 Chlorophyll Fluorometer (Walz, Effeltrich,
Germany). The Fv/Fm ratio is an indicator of the degree of potential photosynthetic ability
and nutrient stress, where 0.8–0.9 is indicative of a healthy, unstressed plant [52].

4.4. Chemical Analysis of Primary and Secondary Metabolites

The chlorophyll concentrations were measured using the method of Gleadow et al. [53],
as modified by Burns et al. [54]. Briefly, ground freeze-dried leaf tissue (0.020 g) was
extracted twice in 80% acetone and the supernatants from the two extractions were pooled.
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The absorbance of the supernatant was measured at 450, 647, 665, and 750 nm using a
spectrophotometer (Varian Cary© 50 Bio UV-Visible), and the concentrations of chlorophyll
and carotenoids were calculated using the equations of Jaspars [55].

Micro- and macronutrient analysis of finely ground freeze-dried tissue (0.2 g) was
conducted on a subset of leaf and corm samples (Table 2; n = 6 per plant part) using induc-
tively coupled plasma mass spectrometry (ICPMS) (Environmental Analysis Laboratories,
Southern Cross University, NSW).

Phenolics and oxalates were measured on finely ground freeze-dried corm and leaf
tissue for each individual (n = 18) using reverse-phase high-performance liquid chromatog-
raphy (HPLC) following the methods of Uesugi and Kessler [56]. For extraction, 1 mL of
Milli-Q water (Milipore®, North Ryde, New South Wales, Australia) was added to 0.02 g of
tissue. The samples were heated at 80 ◦C for 15 min, centrifuged for 30 min, and filtered
through a 0.45 µm size pore membrane. Chromatographic analysis was carried out using
an Agilent Technologies HPLC 1260 Infinity (Agilent Technologies, Waldbronn, Germany)
using a reverse-phase Poroshell 120 column (particle size of 4.6 × 50 mM, 2.7 µm). Two
solvents were used—0.25% H3PO3 in MQ H20 (A) and acetonitrile (B), starting with 0% B
and using a gradient to obtain 12% B at 2 min, 18% B at 3 min, 58% B at 10 min, and 0%
B at 20 min. The flow rate was 0.5 mL/min, and the injection volume was 2 µL. Phenolic
acids and flavonoids were identified to compound classes using UV spectra, and oxalates
were identified based on the retention time and the UV spectra of the standard (Sigma©
analytical standard, CAS Number: 144-62-7). Compounds were quantified at 210 nm for
oxalates, 320 nm for phenolic acids, and 360 nm for flavonoids. The relative concentration
of each compound was expressed as the peak intensity relative to the tissue mass of each
sample, and the totals of each compound class were calculated. The concentrations of
oxalic acid were quantified using a standard curve of 0.1–0.02 mg ml−1 oxalic acid.

A subset of plants in the experiment (n = 5) were tested for the presence of cyanogenic
glycosides using the evolved cyanide and capture method [48,57]. Triglochinin, the
cyanogenic glucoside in taro [22], is an aliphatic cyanogenic glucoside and is unlikely
to be catalysed by commercially available β-glucosidases that are particularly effective
against aromatic amino acids [58]. To ensure the hydrolyzation of all cyanogenic glyco-
sides present in taro tissues, β-glucosidase emulsion (β-D-glucoside glucohydrolase; EC
3.2.1.21) from almond (Prunus amygdalis (L.) Benth. Hook.) and a solution of latex from
cassava (Manihot esculenta Cranz), previously shown to be effective against aliphatic amino
acids [1,59], were used. The β-glucosidase (200 µL) and latex solution (200 µL suspended
in 0.1 M of phosphate buffer with a pH of 6.0) were combined with freeze-dried tissue
(0.1 g) in sealed vials. Separate tubes containing 200 µL of 1 M NaOH were inserted
into the vials to act as a trap for the evolved hydrogen cyanide (HCN). The vials were
frozen and thawed at room temperature to disrupt the cells and allow the cell contents
to mix, and then incubated for 16 h at 37 ◦C [60]. Hydrogen cyanide in the NaOH was
assayed colorimetrically in 96-well titre plates using a FLUOstar Galaxy plate reader (BMG,
Australia) with NaCN in 0.1 M of NaOH as the standard. One gram of HCN is equivalent
to 13.3 g of triglochinin.

4.5. Statistical Analysis

Data analysis was performed using R version 4.1.1 and RStudio version 1.4.1717 [61].
The weekly phenology data were analysed using linear mixed-effect models, with ‘salt
treatment’, ‘week of treatment’, and ‘initial height block’ as the fixed effects and ‘individual’
as a random effect to account for repeated measures. The measurements relating to plant
suckers were analysed using Kruskal–Wallis tests, as the data were non-parametric. The
remaining data were analysed using ANOVAs, in which ‘days of growth’ was used as a
covariate to control for different harvest dates. The means were compared using post-hoc
Tukey’s honest significant difference tests, by which statistical significance was detected
among the groups. Where a significant interaction was found between predictors in the
LME models, the data were subset by ‘week of treatment’. Square root and log transfor-
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mations were applied where required in order to satisfy the assumptions of normality
and equal variances. A rank normal transformation was applied to three variables (the
root/shoot ratio, and the foliar carbon and calcium concentrations) where deviation from
normality was more severe. All significance testing was at the 0.05 level.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10112319/s1, Table S1. Statistical analysis for sucker growth variables; Table S2.
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