Neoadjuvant Chemotherapy Followed by Surgery Versus Surgery Alone for Colorectal Cancer

Meta-analysis of Randomized Controlled Trials

Lei Huang, MD, Tuan-Jie Li, MD, PhD, Jian-Wen Zhang, MD, PhD, Sha Liu, MD, Bin-Sheng Fu, MD, PhD, and Wei Liu, MD, PhD

Abstract: Effects of neoadjuvant chemotherapy (NAC) on colorectal cancer (CRC) have been largely studied, while its survival and surgical benefits remain controversial. This study aimed to perform a metaanalysis of randomized controlled trials (RCTs), comparing efficacy and safety of NAC plus surgery with surgery alone (SA) for CRC.

We searched systematically databases of MEDLINE, EMBASE, and the Cochrane Library for RCTs comparing NAC and surgery with SA for treating CRC. References of relevant articles and reviews, conference proceedings, and ongoing trial databases were also screened. Primary outcomes included overall and disease-free survivals, total and perioperative mortalities, recurrence, and metastasis. Meta-analysis was performed where possible comparing parameters using relative risks (RRs). Safely analysis was then performed. Outcomes for stages II and III tumors were also meta-analyzed, respectively. Our study was conducted according to intention-to-treat analysis.

A total of 6 RCTs comparing NAC (n = 1393) with SA (n = 1358) published from 2002 to 2012 were identified. Compared with SA, NAC tended to reduce overall recurrences (21.86% vs 25.15%, RR: 0.70, 95% confidence interval [CI]: 0.32-1.56, P = 0.09), and prevent vascular invasion (32.30% vs 43.12%, RR: 0.73, 95% CI: 0.53-1.00, P = 0.05); and significantly lowered distant metastasis (15.58% vs 23.80%, RR: 0.66, 95% CI: 0.50-0.86, P = 0.002), especially liver metastasis rate (13.00% vs 18.25%, RR: 0.71, 95% CI: 0.51-0.99, P = 0.04), and associated with higher incidence of ypT0-2 cases upon resection (13.04% vs 6.42%, RR: 2.36, 95% CI: 1.02-5.44, P = 0.04). All other parameters were comparable. NAC-related side-effects were

generally mild. NAC mainly benefited patients with stage III disease.

NAC could prevent recurrence and metastasis, associates with better tumor stages upon resection, and potentially impedes vascular invasion among CRC patients. NAC does not contribute to significant survival benefits for CRC, and compares favorably with SA in tumorfree resection rates, nodal status upon resection, and postsurgical complications. This level 1a evidence does not support NAC to obviously outweigh SA in terms of survival and surgical benefits for CRC currently.

(Medicine 93(28):e231)

Abbreviations: CI = confidence interval, CRC = colorectal cancer, DFS = disease free survival, NAC = neoadjuvant chemotherapy, OS = overall survival, RCT = randomized controlled trial, RR = relative risk, SA = surgery alone.

INTRODUCTION

C olorectal cancer (CRC) is one of the most common malignancies, and a leading cause of cancer death worldwide.¹ It is the third most commonly diagnosed cancer in males and the second in females, with over 1.2 million new cancer cases and over 0.6 million deaths each year, and a 5-year survival rate of around 54%.² Even with adjuvant therapy, which has been extensively studied, the prognosis of advanced tumor is far from satisfactory.³ Although neoadjuvant chemoradiotherapy achieves low local recurrence rates, it delays administration of optimal chemotherapy, and does not seem to compromise outcomes.⁴

Neoadjuvant chemotherapy (NAC) has attracted increasing attention as a treatment for CRC.⁵ NAC, which is defined as chemotherapy supplied before operation, has been tested in various studies and proven effective against some malignancies, especially breast carcinoma, while its role for CRC patients remains obscure.⁴ The robust peri-surgical and survival advantages of NAC for CRC are weakly informed with insufficient evidence base. There still exist controversies in many other aspects, like down-staging effect and presence of tumor-free resection margin, which have kept unsolved mainly because differences between NAC and surgery alone (SA) for CRC had been compared mostly in retrospective and observational studies, until the randomized controlled trials (RCTs) included in our study emerged.⁶

To the best of our knowledge, pooled analysis on effectiveness of mere NAC followed by surgery compared with SA for only CRC patients has not been found, and this meta-analysis of RCTs seems to be the first one on this issue. In our study, potential advantages of 2 treatments were quantified using the metaanalytical method. Meta-analysis provides the most convincing evidence when pooling data only from RCTs.⁷ Therefore our

Editor: Yinyuan Wu.

Received: August 3, 2014; revised: October 10, 2014; accepted: October 13, 2014.

From the Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China (LH, TJL, WL); Department of Gastrointestinal Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China (LH); Organ Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China (BSF, JWZ).

Correspondence: Wei Liu, Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China (e-mail: lwei6@mail.sysu.edu.cn).

Funding source: National Natural Science Foundation of China [grant number 81172036], Science and Technology Planning Project of Guangdong [grant number 2012B061500005], and Natural Science Foundation of Guangdong Province [grant number S2012010008792]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The authors declare that they have no conflict of interest.

Copyright © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins. This is an open access article distributed under the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ISSN: 0025-7974

DOI: 10.1097/MD.00000000000231

study, which is based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)⁸ guidelines and intention-to-treat analysis, and systematically reviews all relevant high-quality RCTs, creates the highest level of evidence.

MATERIALS AND METHODS

Ethical Consideration

Since this is a meta-analysis article, and each included publication has appropriate and complete ethical statement, ethical approval was not necessary for this paper.

Literature Retrieval

A systematic literature retrieval with search terms "neoadjuvant/preoperative chemotherapy," "surgery," and "colon/rectal/colorectal carcinoma/cancer," and their combinations as keywords was conducted using MEDLINE, EMBASE, and the Cochrane Library databases, and Google Scholar (Figure 1). Special database functions like "related publications" and "explosion" were applied to maximize our search, and references from relevant articles, cross-references, and reviews were also screened. We also searched conference proceedings and ongoing trial databases. Language restrictions were not applied. The latest search was performed on May 29th, 2014.

Inclusion Criteria

Titles and abstracts of all identified articles were screened and we selected studies according to the following criteria: population—patients with CRC without age, gender, and racial limitations; intervention and comparative intervention—clearly documented NAC versus SA for CRC, regardless of detailed NAC regimen, timing, modality of administration, duration of chemotherapy, interval between randomization and surgery, surgical method applied, and classification, grade, and position of the lesion; outcomes—at least one of the outcome measures reported below; study design—published and unpublished RCTs. If 2 studies from the same institution were identified, the most recent or the most informative was selected, unless they were reports from different periods or if the data of overlapping patients could be subtracted.

Exclusion Criteria

Studies were excluded from our analysis if they did not meet the abovementioned inclusion criteria, or the study population included diseases other than CRC (eg, ulcerative colitis, polyps, and polyposis) or neoadjuvant therapy sets other than mere NAC (eg, neoadjuvant radiotherapy and neoadjuvant chemoradiotherapy) unless the data were separately presented, or it was impossible to extract or to calculate appropriate data from the published results.

Types of Interventions

Any method of chemotherapy performed initially presurgery, with or without further postsurgical therapy (if there existed, then the postoperational management, including regimen, administration route, and dose, had to be matched between

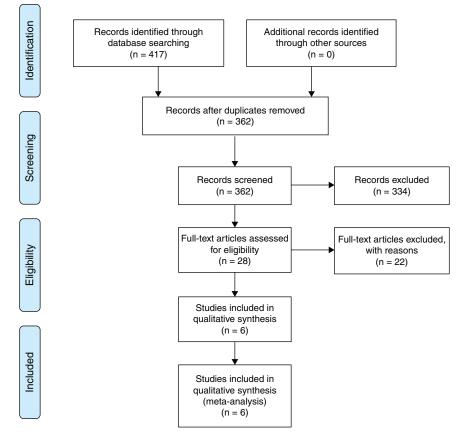


FIGURE 1. PRISMA literature selection flow diagram. NAC = neoadjuvant chemotherapy, SA = surgery alone, RCT = randomized controlled trial, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analysis.

2 groups) was included and referred as NAC, regardless of the specific regimen, administration and dosage. As SA we considered all procedures as "primary surgery" or "surgery alone" and merely performed through open operation. Studies with postsurgical therapy comparable between 2 groups applied to guarantee the treatment efficacy were not excluded. Studies that included other types of malignancies or operation (eg, laparoscopic surgery), or those that contained multivisceral resections were excluded unless the data were separatively presented.

Outcomes of Interest and Definitions

Primary outcomes included 3- and 5-year overall survival (OS) and disease-free survival (DFS) rates, total and perioperative mortalities, recurrence, and metastasis at the end of followup. Secondary outcomes were tumor conditions upon resection, including tumor (ypT0-2) and nodal classifications (ypN0), and vascular invasion, curative resection rate, and post-surgical complications. Safety and toxicity analysis focused on adverse effects of NAC was also performed. As described in the included trials, OS was based on survivors during the time from operation to death from any cause, and DFS was according to survivorship during the time until the first relapse of disease. Tumor and nodal classifications upon resection were recorded based on the Union for International Cancer Control (UICC) tumor node metastatic (TNM) classification of malignant tumors.⁹ The clinicopathological responses of the resected specimens were described by Quirke classification.¹⁰ Toxicity grading was evaluated according to the Common Terminology Criteria for Adverse Events of the National Cancer Institute.

Data Extraction

Titles and abstracts of all retrieved records, and subsequently full-text articles were examined independently by 2 authors (LH and TJL). The following data were extracted separately by the same 2 authors for all enrolled studies: references of study, characteristics of study population, study design, and inclusion and exclusion criteria. For dichotomous outcomes, we recorded the number of events. Population characteristics included number of participating subjects, regimen of NAC applied, age, and gender. In case of discrepancies, a third author (WL) was consulted and agreement was reached by consensus.

Risk of Bias Assessment

Risk of bias was evaluated for all articles by individual components using both the Jadad scoring system¹² and the Cochrane Collaboration's tool for assessing risk of bias. High-quality trials scored more than 2 out of a maximum possible score of 5, while low-quality trials scored 2 or less.

Statistical Analysis

This study was carried out in the light of the recommendations of the PRISMA⁸ statement. Statistical analyses were performed according to the recommendations of the Cochrane Collaboration Guidelines.¹³ Outcomes reported by 2 or more studies were pooled in meta-analyses. Our study was based on intention-to-treat analysis.

Dichotomous outcomes were presented as relative risks (RRs). Data were pooled using the Mantel–Haenszel method. Trials with zero events in both arms were excluded from metaanalyses. For all analyses, the 95% confidence interval (CI) was quantified. Heterogeneity was assessed using Higgins χ^2 test,¹⁴ and inconsistency in study effects was quantified by I^2 values.¹⁵ The fixed-effects model was applied if no heterogeneity was presented ($\chi^2 P > 0.100$ and $I^2 < 50\%$). If excessive heterogeneity existed, data were first rechecked and the DerSimonian random-effects model was applied when heterogeneity persisted.¹⁶ Funnel plots were drawn to help identify the presence of publication or other types of biases.¹⁷ Subgroup analysis was planned for studies with single regimen and combination regimens after the overall analysis.¹⁸ Review Manager software (RevMan[©] v. 5.0) provided by the Cochrane Collaboration was used for data management and statistical analyses.

RESULTS

Selected RCT Characteristics

A total of 6 original RCTs¹⁹⁻²⁴ comparing NAC with SA for treating CRC and meeting the eligibility criteria were identified. They were published between 2002 and 2012, with 36 to 73 months for follow-up period. A total of 2751 patients were enrolled in our analysis with 1393 (50.6%) receiving NAC and 1358 (49.2%) receiving SA. Patients' characteristics are detailed in Table 1. Matching of demographic factors was almost complete and all studies were adequately matched in the factors reviewed (Table 1). All patients had proofs of CRC according to pathology and/or signs and/or symptoms and pre-surgical laboratory and imaging studies (Table 2). Before operation, NAC and SA groups did not diverse significantly in terms of age (58.50 vs 58.74, Z = 0.63, P = 0.53), gender (male percentage, 59.12% vs 59.14%, Z = 0.10, P = 0.92), differentiation grade (well [37.64%] vs 40.47%, Z = 1.22, P = 0.22], moderately [47.39% vs 47.01%, Z=0.17, P=0.87], poorly [14.96% vs 12.43%, Z=1.58, P = 0.11]), location of primary tumor (ascending colon [24.12% vs 20.56%, Z=0.40, P=0.69], transverse colon [6.64% vs 6.00%, Z=0.38, P=0.70], descending colon [7.81% vs 7.92%, Z = 0.01, P = 0.99], sigmoid colon [21.48%]vs 23.34%, Z = 1.04, P = 0.30], rectum [40.04% vs 42.18%, Z = 0.39, P = 0.70]), or follow-up month (48.04 vs 44.92, Z = 0.68, P = 0.49).

Methodological Quality Evaluation

The included trials had good methodological qualities with a mean Jadad score of 3 (range, 2–4). They mostly suffered from methodological flaws frequently existing in clinical RCTs generally, majorly, difficulties in concealment of the patients' allocation, and the inherent complication of blinding between 2 managements. Three trials did not report allocation concealment. All trials had adequate sequence generation, reports on postoperative protocol and loss to follow-up, and sample size calculation (Table 3).

Primary Outcomes

Detailed analyses and data by categories are shown in Tables 4 and 5.

OS

Results for 3 and 5 years were available for 3 and 4 RCTs, respectively. Both had significant heterogeneities ($\chi^2 = 8.09$, P = 0.02, $I^2 = 75\%$; $\chi^2 = 11.01$, P = 0.01, $I^2 = 73\%$) between NAC and SA arms, so random-effects model was selected. No significant difference was presented for both parameters between 2 groups for treating CRC (77.18% vs 76.65%, RR: 1.07, 95% CI: 0.94–1.22, P = 0.31, Figure 2A; 71.04% vs

TABLE 1. Details of Included Trials in This Meta-Analysis

Authors/Trial Acronym/Institution	Year	Accrual Period	Conducted Center	Matched Factors [*]	Sample Size
Kotake et al/NAC for Colorectal Cancer Study Group ¹⁹	2002	NR	Multi-center	1, 2, 4, 5	326
Colorectal Cancer Chemotherapy Study Group ²⁰	2003	1991.2-1992.12	Multi-center	1-5	1355
Xu et al ²¹	2007	2001.6-2003.6	Single-center	1-3, 6-11	240
Zhong et al ²²	2008	2001.6-2007.6	Single-center	1, 2, 4, 7-9	560
Okabayashi et al/KODK4 ²³	2012	1991.9-1994.8	Multi-center	1, 2, 4, 7–9, 11	120
FOxTROT Collaborative Group ²⁴	2012	2008.5-2010.9	Multi-center	1, 2, 6, 7, 9, 12–14	150

Authors/Trial Acronym/Institution	Main Inclusion Criteria	Regimen and Administration	Median Follow-Up Month
Kotake et al/NAC for Colorectal Cancer Study Group ¹⁹	Resectable advanced colorectal cancer, \leq 75 years, Dukes' B/C	$HCFU\times{\geq}14~d$	>60
Colorectal Cancer Chemotherapy Study Group ²⁰	Curatively resectable colorectal carcinoma, no distant metastasis or double/multiple cancer, tumor invading muscularis propria or deeper or with lymphatic metastasis, <70 years, PS 0-1	5-FU: intravenous, $320 \text{ mg/m}^2/\text{d} \times 5 \text{ d}$	60
Xu et al ²¹	Colorectal adenocarcinoma, stage II (T3-4, N0, M0)/III (T0-4, N1-2, M0), <75 years, PS 0-1	Intra-arterial, FUDR 500 mg, oxali- platin 50 mg, and dexamethasone 2.5 mg, 2 courses	36
Zhong et al ²²	Colorectal cancer, stage II/III, no distant metastasis, <75 years	Intra-arterial, FUDR 500 mg, MMC 10 mg, oxaliplatin 50 mg, 2 courses	42
Okabayashi et al/KODK4 ²³	Curatively resectable colorectal adenocarcinoma; no distant metastasis or multiple cancer, stage II/III (T3/4), <75 years, PS 0-2	Tegafur suppositories: 750–1500 mg/ d × 14 d	73
FOxTROT Collaborative Group ²⁴	Locally advanced operable primary colon adenocarcinoma, (T3 with extramural depth \geq 5 mm or T4), \geq 18 years, PS 0-2	3 cycles × (OxMdG [oxaliplatin 85 mg/m ² , 1-folinic acid 175 mg, 5-FU 2800 mg/m ²] with or without panitumumab 6 mg/kg), intrave- nous	53

5-FU = 5-fluorouracil, FUDR = fluorodeoxyuridine, HCFU = carmofur, NAC = neoadjuvant chemotherapy, MMC = mytomycin, NR = not reported, OxMdG = the standard UK modified de Gramont, PS = performance status (ECOG/WHO).

¹* Matching: 1, age; 2, gender; 3, carcinoembryonic antigen (CEA); 4, grade of differenciation; 5, Duke's classification; 6, PS; 7, primary tumor location; 8, tumor size; 9, histopathologic stage (TNM); 10, carbohydrate antigen 19-9 (CA19-9); 11, duration of follow-up; 12, dysfunctioning colostomy; 13, colonic obstruction; 14, extramural vascular invasion.

TABLE 2.	Criteria for	Colorectal	Cancer	Inclusion	Eligibility	and Assessment

	Symptoms					Previous/	
Authors/Trial Acronym/ Institution	and Signs	Endoscopy / Pathology	Imaging Signs	Laboratory Studies	Severe Comorbidities	Other Therapy	Other Malignancies
Kotake et al/NAC for Colorectal Cancer Study Group ¹⁹	Yes	Yes	Yes	Yes	No	No	NR
Colorectal Cancer Chemotherapy Study Group ²⁰	NR	Yes	Yes	Yes	No	No	No
Xu et al^{21}	Yes	Yes	Yes	Yes	No	No	NR
Zhong et al ²²	NR	Yes	Yes	Yes	No	No	NR
Okabayashi et al/KODK4 ²³	Yes	Yes	Yes	Yes	No	No	No
FOxTROT Collaborative Group ²⁴	Yes	Yes	Yes	Yes	No	No	No

NR = not reported.

Items	Kotake et al/ Neoadjuvant Chemotherapy for Colorectal Cancer Study Group ¹⁹	Colorectal Cancer Chemotherapy Study Group ²⁰	Xu et al ²¹	Zhong et al ²²	Okabayashi et al/ KODK4 ²³	FOxTROT Collaborative Group ²⁴
Adequate sequence generation?	Yes	Yes	Yes	Yes	Yes	Yes
Allocation concealment?	Unclear	Unclear	Yes	Yes	Unclear	Yes
Blinding (observer)?	Unclear	Unclear	No	Unclear	No	Yes
Blinding (patient)?	Unclear	Unclear	No	Unclear	No	Unclear
Incomplete outcome data addressed?	No	Yes	Yes	Yes	Yes	Yes
Postoperative protocol reported?	Yes	Yes	Yes	Yes	Yes	Yes
Adequate report on loss to follow-up?	Yes	Yes	Yes	Yes	Yes	Yes
Free of selective reporting?	Yes	Yes	Yes	Yes	Yes	Yes
Free of other bias?	Yes	Yes	Yes	Yes	Yes	Yes
Sample size calculation?	Yes	Yes	Yes	No	Yes	Yes
Intention-to-treat analysis?	NR	Yes	Yes	NR	Yes	Yes
Jadad score	2	3	3	3	3	4

TABLE 3. Quality Assessment and Risk of Bias Summary

68.91%, RR: 1.05, 95% CI: 0.93-1.17, P=0.45, Figure 2B). Kotake et al¹⁹ reported that survival rates of 2 groups were not affected by either cancer site or nodal status. The Colorectal Cancer Chemotherapy Study Group of Japan (CCCSGJ)²⁰ found that even after adjusting for non-curable resection rate, there was no significant difference in the 5-year survival rate, and further revealed no significant differences between 2 procedures for colon and rectal malignancies, respectively.

DFS

Result at 3 years based on 3 trials indicated no significant difference between 2 groups (55.88% vs 55.84%, RR: 1.11, 95% CI: 0.89-1.39, P = 0.35, Figure 2C) with random-effects model used due to significant heterogeneity ($\chi^2 = 11.71$, P = 0.003, $I^2 = 83\%$). Fixed-effects model applied because of insignificant heterogeneity also suggested no significant difference in 5-year DFS rate (53.02% vs 55.68%, RR: 0.95, 95% CI: 0.87–1.03, P = 0.22, Figure 2D), with funnel plot demonstrating no significant bias (Figure 3A). Xu et al²¹ further reported that the preoperative hepatic and regional arterial chemotherapy (PHRAC) arm demonstrated a significantly better liver metastasis-free survival rate compared with the control arm at 3 years (85.5% vs 79.5%, P = 0.04), and that the median liver metastasis detection time was significantly longer in the NAC group $(19 \pm 3 \text{ vs } 10 \pm 2 \text{ months})$, P = 0.025).

Mortality

There being significant heterogeneity ($\chi^2 = 12.18$, P = 0.03, $I^2 = 59\%$), random-effects model selected revealed that there was not significant difference in mortality rates between patients receiving NAC and those undergoing SA at the end of follow-up (6 RCTs, 31.08% vs 33.87%, RR: 0.91, 95% CI: 0.73-1.12, P = 0.37, Figure 2E). Perioperative

mortality was further analyzed, also revealing comparable results between 2 procedures, with fixed-effects model applied due to insignificant heterogeneity (4 RCTs, 0.42% vs 0.55%, RR: 0.72, 95% CI: 0.22–2.41, P = 0.60, Figure 2F), and with funnel plot supporting insignificant bias (Figure 3B).

Recurrence and Metastasis

Significant heterogeneity was observed ($\chi^2 = 11.07$, $P = 0.01, I^2 = 73\%$), and randomized-effects model selected revealed that NAC tended to contribute to lower recurrence rate than SA (4 RCTs, 21.86% vs 25.15%, RR: 0.70, 95% CI: 0.32-1.56, P = 0.09, Figure 4A). Through further analysis, we found that no significant difference existed in local recurrence between 2 groups (3 RCTs, 2.16% vs 3.06%, RR: 0.70, 95% CI: 0.32-1.56, P = 0.39, Figure 4B). However, NAC significantly reduced distant metastases compared with SA (3 RCTs, 15.58% vs 23.80%, RR: 0.66, 95% CI: 0.50-0.86, P=0.002, Figure 4C). We further uncovered that the overall preventive effect of liver and lung metastases did not vary significantly between 2 processes (3 RCTs, 11.89% vs 13.16%, RR: 0.90, 95% CI: 0.72–1.12, P = 0.35, Figure 4D), and that the lung metastasis rates were comparable between 2 arms (2 RCTs, 2.25% vs 2.50%, RR: 0.90, 95% CI: 0.37–2.19, P=0.82), as well as bone metastasis (2 RCTs, 1.00% vs 2.00%, RR: 0.50, 95% CI: 0.15–1.65, P = 0.25). But NAC significantly contributed a prophylactic effect to liver metastasis compared to SA (2 RCTs, 13.00% vs 18.25%, RR: 0.71, 95% CI: 0.51-0.99, P = 0.04). All the above parameters were based on fixedeffects model because of insignificant heterogeneity, with funnel plots showing no significant bias (Figure 3C-E). Xu et al²¹ also reported that recurrences in the peritoneum were significantly reduced in the NAC arm. CCCSGJ²⁰ further found that initial recurrence most commonly involved the liver in colon cancer, followed by lungs; local recurrence was more

TABLE 4. Primary Outcomes	tcomes														
Authors/Trial Acronym/ Institution	Method	п	3-Year Overall Survival	5-Year Overall Survival	3-Year DFS	5-Year DFS	Total Mortality	Perio- perative Mortality	Total Recurrence	Local Recurrence	Distant Metastasis	Liver and Lung Metastases	Liver Meta- stasis	Lung Meta- stasis	Bone Meta- stasis
Kotake et al/NAC for CRC Study Group ¹⁹	NAC	164	NR av	118	NR T	117	46	NR	NR	NR	NR	NR	NR	NR	NR
CRC Chemotherapy Study Group of Janan ²⁰	SA NAC	162 668	NR 499	122 454	333 333	315	40 169	2 NR	NR 165	NR NR	NR NR	NR 66	NR NR	NR	NR NR
	A S	687	527	476	369	353	178	ſ	165	NR	NR	60	NR	NR	NR
Xu et al ²¹	NAC	120	100	NR	89	NR	10	0	21		20	18	16	7	7
	SA	120	93	NR	LL	NR	19	0	35	4	31	26	23	Э	ŝ
Zhong et al ²²	NAC	280	NR H	219	NR S	NR	202	NR	56	7	49	43	36 20	r 1	0 '
	SA	280	NK	183	NK	NK	204	NK	72	9	66	57	50	L	2
Okabayashi et al/ KODK4 ²³	NAC	62	57	43	53	42	9	0	S	0	ω	NR	NR	NR	NR
	SA	58	43	37	37	36	14	1	16	4	12	NR	NR	NR	NR
FOxTROT Collaborative	NAC	66	NR	NR	NR	NR	0	0	NR	NR	NR	NR	NR	NR	NR
dioip	\mathbf{SA}	51	NR	NR	NR	NR	5	1	NR	NR	NR	NR	NR	NR	NR
CRC = colorectal cancer, DFS = disease-free survival, NAC = neoadjuvant chemotherapy, NR = not reported, SA = surgery alone.	er, $DFS = c$	lisease	-free surviv	al, NAC $=$ n _i	eoadjuvar	it chemoth	erapy, NR=	= not reported	, $SA = surgery$	alone.					

Category	No. RCTs	NAC	SA	RR	95% CI	P-Value
3-Year survival	3	656/850 (77.18%)	663/865 (76.65%)	1.07	0.94-1.22	0.31
5-Year survival	4	834/1174 (71.04%)	818/1187 (68.91%)	1.05	0.93-1.17	0.45
3-Year disease-free survival	3	475/850 (55.88%)	483/865 (55.84%)	1.11	0.89-1.39	0.35
5-Year disease-free survival	3	474/894 (53.02%)	505/907 (55.68%)	0.95	0.87-1.03	0.22
Total mortality	6	433/1393 (31.08%)	460/1358 (33.87%)	0.91	0.73-1.12	0.37
Perioperative mortality	4	4/949 (0.42%)	5/916 (0.55%)	0.72	0.22-2.41	0.60
Total recurrence	4	247/1130 (21.86%)	288/1145 (25.15%)	0.73	0.50-1.05	0.09
Local recurrence	3	10/462 (2.16%)	14/458 (3.06%)	0.70	0.32-1.56	0.39
Distant metastasis	3	72/462 (15.58%)	109/458 (23.08%)	0.66	0.50-0.86	0.002
Liver and lung metastases	3	127/1068 (11.89%)	143/1087 (13.16%)	0.90	0.72-1.12	0.35
Liver metastasis	2	52/400 (13.00%)	73/400 (18.25%)	0.71	0.51-0.99	0.04
Lung metastasis	2	9/400 (2.25%)	10/400 (2.50%)	0.90	0.72-1.12	0.35
Bone metastasis	2	4/400 (1.00%)	8/400 (2.00%)	0.50	0.15-1.65	0.25

95% CI = 95% confidence interval, NAC = neoadjuvant chemotherapy, RCTs = randomized controlled trials, RR = risk ratio, SA = surgery alone.

common in rectal cancer, with a similar incidence of metastases to the liver and lungs.

Secondary Outcomes

Detailed analyses and data by categories are shown in Tables 6 and 7.

Tumor Conditions Upon Resection

Since there were not significant heterogeneities, fixedeffects model was used. The combined data revealed similar results for tumor TNM classification (3 RCTs, 43.09% vs 38.14%, RR: 1.09, 95% CI: 0.93–1.27, P = 0.28, Figure 5A), and nodal classification (ypN0) (2 RCTs, 55.28% vs 45.87%, RR: 1.18, 95% CI: 0.92-1.52, P = 0.20) upon resection. However, pooled result showed that there were significantly more ypT0-2 statuses (2 RCTs, 13.04% vs 6.42%, RR: 2.36, 95% CI: 1.02-5.44, P=0.04) observed upon resection among patients treated with NAC than SA, and that there tended to be fewer vascular invasions in NAC group compared with SA group (2 RCTs, 32.30% vs 43.12%, RR: 0.73, 95% CI: 0.53-1.00, P = 0.05). Funnel plots revealed low bias for the above parameters (Figure 3F). FOxTROT Collaborative Group²⁴ further reported significant differences favoring NAC in apical node (1.02% vs 20.00%, P < 0.001), and retroperitoneal margin involvements (5.32% vs 18.18%, P = 0.02). According to that study, the depth of spread beyond the muscularis propria $(12.8 \pm 8.4 \text{ to } 9.0 \pm 7.9 \text{ mm}, P = 0.002)$ and the maximum tumor thickness $(24.9 \pm 12.2 \text{ to})$ 19.0 ± 12.8 mm, P = 0.002) were reduced compared with baseline in NAC group, which was more obvious than the SA group. NAC significantly reduced moderate or greater regression (31% vs 2%, P < 0.001).

Presence of Tumor-Free Resection Margin

There being significant heterogeneity ($\chi^2 = 9.98$, P = 0.007, $I^2 = 80\%$), analysis with a random-effects model supported that NAC did not hopefully contribute to a significantly higher incidence of curative resection compared with SA (3 RCTs, 86.49% vs 84.05%, RR: 1.03, 95% CI: 0.91–1.17, P = 0.61, Figure 5B). However, CCCSGJ²⁰ reported significantly greater number of cases of non-curative resection among colon cancer patients in the SA group.

Complications

Funnel plot indicating no bias (Figure 3G) and heterogeneity not existing, fixed-effects model revealed that postsurgical morbidities between 2 groups were similar (5 RCTs, 7.97% vs 6.44%, RR: 1.17, 95% CI: 0.87–1.56, P = 0.30, Figure 5C). Moreover, CCCSGJ²⁰ reported no statistically significant difference in postoperative complications requiring treatment (grade G2 or above) was noted between 2 groups. FOxTROT Collaborative Group²⁴ revealed that no significant differences were found in complications prolonging hospital stay, procedures resulting in a stoma or further abdominal surgery needed.

Outcomes for Stage II and III Tumors, Respectively

Two $RCTs^{21,22}$ reporting relevant parameters were separately analyzed. Detailed analyses and data by categories are shown in Table 8.

Stage II

Total mortality (7.74% vs 10.14%, RR: 0.76, 95% CI: 0.37–1.58, P = 0.47), overall recurrence (14.19% vs 14.86%, RR: 0.95, 95% CI: 0.55–1.65, P = 0.87), local recurrence (1.29% vs 2.03%, RR: 0.68, 95% CI: 0.14–3.42, P = 0.64), and liver metastasis (7.10% vs 8.78%, RR: 0.81, 95% CI: 0.37–1.75, P = 0.59) rates were all comparable between 2 groups. Fixed-effects model was used for all the above items due to insignificant heterogeneities. According to Xu et al²¹, there were no significant differences in overall DFS or liver metastasis free survival rate at 3 years; furthermore, there were also no significant differences in the median liver metastasis detection time noted between the 2 treatment arms.

Stage III

NAC significantly reduced overall mortality (17.06% vs 34.56%, RR: 0.49, 95% CI: 0.35–0.70, P < 0.001) and recurrence rates (26.07% vs 39.17%, RR: 0.67, 95% CI: 0.50–0.88, P = 0.005), and tended to prevent liver metastasis (19.43% vs 27.65%, RR: 0.70, 95% CI: 0.50–1.00, P = 0.05) compared with SA. However, NAC did not contribute to a significant reduction in local recurrence with compared to SA (2.84% vs

	Engenter	Total	SA	Total	Mainte	Risk Ratio	Ver	Risk Ratio
Study or Subgroup	Events 499	Total 1 668	Events 527	Total 687	41.5%	I-H, Random, 95% CI		M-H, Random, 95% Cl
CCCSGJ 2003 Xu 2007	499	120	93	120	41.5%	0.97 [0.92, 1.03]		
Okabayashi 2012	57	62	43	58	32.3%	1.08 [0.95, 1.22] 1.24 [1.05, 1.47]		
						the first rail		
Total (95% CI)		850		865	100.0%	1.07 [0.94, 1.22]		
Total events	656		663					P ²
Heterogeneity: Tau ² =				P = 0.03	2); l ² = 75%			0.7 1
Test for overall effect:	Z= 1.02 (P = 0.31)					Favours SA Favours NAC
•								
4	NAC		SA			Risk Ratio		Risk Ratio
Study or Subgroup	C	Total	Events	Total	Weight N	1-H, Random, 95% CI	Year	M-H, Random, 95% Cl
Kotake 2002	118	164	122	162	25.4%	0.96 [0.84, 1.09]		
CCCSGJ 2003	454	668	476	687	32.6%	0.98 [0.91, 1.05]		
Zhong 2008	219	280	183	280	28.6%	1.20 [1.08, 1.33]		
Okabayashi 2012	43	62	37	58	13.4%	1.09 [0.84, 1.40]	2012	
Total (95% CI)		1174		1187	100.0%	1.05 [0.93, 1.17]		-
Total events	834		818					
Heterogeneity: Tau ² =				(P = 0.)	01); I ^z = 739	6		0.7 1
Test for overall effect:	2=0.75(r = 0.45	, ,					Favours SA Favours NAC
3								
	NAC		SA			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total I		Total	Weight N	I-H, Random, 95% CI	Year	M-H, Random, 95% Cl
CCCSGJ 2003	333	668	369	687	37.6%	0.93 [0.84, 1.03]		
Xu 2007	89	120	77	120	33.0%	1.16 [0.97, 1.37]		
Okabayashi 2012	53	62	37	58	29.3%	1.34 [1.08, 1.67]		
Total (95% CI)		850		865	100.0%	1.11 [0.89, 1.39]		
Total events	475	000	483	005				
Heterogeneity: Tau ² =				(P = 0.0	003); IF = 83	1%		0.7 1 1.5
Test for overall effect.	Z = 0.93 (P = 0.35)					Favours SA Favours NAC
0								
D								
	NA	с	SI	1		Risk Ratio		Risk Ratio
Study or Subgroup			Events	Tota		M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Kotake 2002	117		116			1.00 [0.87, 1.14]		
CCCSGJ 2003	315		353			0.92 [0.82, 1.02]		
Okabayashi 2012	42	62	36	58	7.4%	1.09 [0.84, 1.42]	2012	
Total (95% CI)		894		907	100.0%	0.95 [0.87, 1.03]		-
	474		505					
Total events				- 0.04				
Heterogeneity: Chi*	= 1.93, df			= 0.70				0.7 1 1
	= 1.93, df			- 0 %				0.7 1 Favours SA Favours NAC
Heterogeneity: Chi*	= 1.93, df			- 0%				
Heterogeneity: Chi*	= 1.93, df			- 0%				
Heterogeneity: Chi*	= 1.93, df t Z = 1.23		2)	- 0%		Rick Ratio		Favours SA Favours NAC
Heterogeneity: Chi ^a Test for overall effec	= 1.93, df	(P = 0.2	2) SA		Weight_N	Risk Ratio		
Heterogeneity: Chi ^a Test for overall effec	= 1.93, df t Z = 1.23 NAC	(P = 0.2	2) SA		Weight N 18.7%		Year	Favours SA Favours NAC Risk Ratio
Heterogeneity: Chi ^a Test for overall effec	= 1.93, df t Z = 1.23 NAC Events	(P = 0.2 Total 1 164 668	SA Events	Total 162 687	18.7% 31.3%	I-H, Random, 95% Cl	Year 2002	Favours SA Favours NAC Risk Ratio
Heterogeneity: Chi ²⁺ Test for overall effec Study or Subgroup Kotake 2002 ccCs6J 2003 Xu 2007	= 1.93, df t Z = 1.23 NAC Events 46 169 10	(P = 0.2 Total 1 164 668 120	SA Events 40 178 19	Total 162 687 120	18.7% 31.3% 7.3%	I.H. Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08]	Year 2002 2003 2007	Favours SA Favours NAC Risk Ratio
Heterogeneity: Chi ² Test for overall effec Study of Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008	= 1.93, df t Z = 1.23 <u>Events</u> 46 169 10 202	(P = 0.2 Total 1 164 668 120 280	SA Events 40 178 19 204	Total 162 687 120 280	18.7% 31.3% 7.3% 37.0%	I-H, Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10]	Year 2002 2003 2007 2008	Favours SA Favours NAC Risk Ratio
Heterogeneity: Chi ²⁺ Test for overall effec Study or Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FoxTROT 2012	= 1.93, df t Z = 1.23 NAC Events 46 169 10 202 0	(P = 0.2 Total 1 164 668 120 280 99	SA Events 40 178 19 204 5	Total 162 687 120 280 51	18.7% 31.3% 7.3% 37.0% 0.6%	I-H. Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84]	Year 2002 2003 2007 2008 2012	Favours SA Favours NAC Risk Ratio
Heterogeneity: Chi ² Test for overall effec Notake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Okabayashi 2012	= 1.93, df t Z = 1.23 <u>Events</u> 46 169 10 202	(P = 0.2 Total 1 164 668 120 280 99 62	SA Events 40 178 19 204	Total 162 687 120 280 51 58	18.7% 31.3% 7.3% 37.0% 0.6% 5.1%	I-H, Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10]	Year 2002 2003 2007 2008 2012	Favours SA Favours NAC Risk Ratio
Heterogeneity: Chi ² Test for overall effec D Study or Subgroup Kotake 2002 CCCSGU 2003 Xu 2007 Zhong 2008 Zhong 2008 Zhorg 2008 Zhorg 2012 Okabayashi 2012 Total (95% Cl)	= 1.93, df tt Z = 1.23 NAC Events 46 169 10 202 0 6	(P = 0.2 Total 1 164 668 120 280 99	SA Events 40 178 19 204 5 14	Total 162 687 120 280 51 58	18.7% 31.3% 7.3% 37.0% 0.6%	I-H. Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84]	Year 2002 2003 2007 2008 2012	Favours SA Favours NAC Risk Ratio
Heterogeneik; Chi ² Test for overall effec D Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXIROT 2012 Okabayashi 2012 Total (95% Cl) Total events	= 1.93, df t Z = 1.23 NAC Events 46 169 10 202 0 6 433	(P = 0.2 Total 1 164 668 120 280 99 62 1393	22) SA Events 40 178 19 204 5 14 460	Total 162 687 120 280 51 58 1358	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0%	LH, Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84] 0.40 [0.17, 0.97] 0.91 [0.73, 1.12]	Year 2002 2003 2007 2008 2012	Favours SA Favours NAC Risk Ratio
Heterogeneity: ChF Test for overall effec D Study or Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Okabayashi 2012 Total (95% Cl) Total events Heterogeneity: Tau*=	= 1.93, dfs t Z = 1.23 NAC Events 46 169 10 202 0 6 433 0.03; Chi ⁺	(P = 0.2 Total 1 164 668 120 280 99 62 1393 P = 12.11	5 5 40 178 19 204 5 14 460 3, df = 5	Total 162 687 120 280 51 58 1358	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0%	LH, Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84] 0.40 [0.17, 0.97] 0.91 [0.73, 1.12]	Year 2002 2003 2007 2008 2012	Favours SA Favours NAC
Heterogeneik; Chi ² Test for overall effec D Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Okabayashi 2012 Total (95% Cl) Total events	= 1.93, dfs t Z = 1.23 NAC Events 46 169 10 202 0 6 433 0.03; Chi ⁺	(P = 0.2 Total 1 164 668 120 280 99 62 1393 P = 12.11	5 5 40 178 19 204 5 14 460 3, df = 5	Total 162 687 120 280 51 58 1358	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0%	LH, Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84] 0.40 [0.17, 0.97] 0.91 [0.73, 1.12]	Year 2002 2003 2007 2008 2012	Pavours SA Favours NAC
Heterogeneity: ChF Test for overall effec D Study or Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Okabayashi 2012 Total (95% Cl) Total events Heterogeneity: Tau*=	= 1.93, dfs t Z = 1.23 NAC Events 46 169 10 202 0 6 433 0.03; Chi ⁺	(P = 0.2 Total 1 164 668 120 280 99 62 1393 P = 12.11	5 5 40 178 19 204 5 14 460 3, df = 5	Total 162 687 120 280 51 58 1358	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0%	LH, Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84] 0.40 [0.17, 0.97] 0.91 [0.73, 1.12]	Year 2002 2003 2007 2008 2012	Favours SA Favours NAC
Heterogeneity: ChF Test for overall effec D Study or Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FoXTROT 2012 Okabayashi 2012 Total (95% Cl) Total events Heterogeneity: Tau*=	= 1.93, dfs t Z = 1.23 NAC Events 46 169 10 202 0 6 433 0.03; Chi ⁺	(P = 0.2 Total 1 164 668 120 280 99 62 1393 P = 12.11	5 5 40 178 19 204 5 14 460 3, df = 5	Total 162 687 120 280 51 58 1358	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0%	LH, Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84] 0.40 [0.17, 0.97] 0.91 [0.73, 1.12]	Year 2002 2003 2007 2008 2012	Favours SA Favours NAC
Heterogeneity: ChF Test for overall effec D Study or Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Okabayashi 2012 Total (95% Cl) Total events Heterogeneity: Tau*=	= 1.93, df t Z = 1.23 NAC Events 46 169 10 202 0 0 6 433 0.03; Chi ² Z = 0.89 ()	(P = 0.2 Total 1 164 668 120 280 99 62 1393 *= 12.11 P = 0.37 C	22) SA Events 40 178 19 204 5 14 460 3, df= 5) SJ	Total 162 687 120 280 51 58 1358 (P = 0.1	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0%	LH, Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84] 0.40 [0.17, 0.97] 0.91 [0.73, 1.12]	Year 2002 2003 2007 2008 2012	Favours SA Favours NAC
Heterogeneity: Chi ² Test for overall effec D Study of Subgroup Kotake 2002 CCCSG J 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Okabayashi 2012 Total events Heterogeneity: Tau ² = Test for overall effect:	= 1.93, df t Z = 1.23 NAC Events 46 169 10 202 0 6 433 0.03; Chi ² Z = 0.89 () NA Events	(P = 0.2 Total 1 164 668 120 280 99 62 1393 *= 12.11 P = 0.37 C C Total	SA <u>Events</u> 40 178 19 204 5 14 460 3, df = 5 SJ Events	Total 162 687 120 280 51 58 1358 (P = 0.1 4 Total	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0% 03); P= 599	LH, Random, 95% CI 1.14 (0.79, 1.63) 0.98 (0.81, 1.17) 0.53 (0.26, 1.08) 0.99 (0.89, 1.10) 0.05 (0.00, 0.84) 0.40 (0.17, 0.97) 0.91 (0.73, 1.12) 6 Risk Ratio M.H, Fixed, 95% CI	Year 2002 2003 2007 2008 2012 2012 2012	Favours SA Favours NAC Risk Ratio M.H. Random, 95% CI 0.2 0.5 2 Favours NAC Favours SA
Heterogeneiky: Ch# Test for overall effec Study or Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Okabayashi 2012 Total eyents Heterogeneiky: Tau ² = Test for overall effect: Study or Subgroup CCCSGJ 2003	= 1.93, df :t Z = 1.23 NAC Events 46 169 100 202 0 6 433 0.03; Chiř Z = 0.89 (0 NA Events	(P = 0.2 Total 1 164 668 99 62 1393 P = 12.11 P = 0.37 C Total 668	22) SA Events 19 204 5 14 460 3, df=5) SJ Events 3	Total 162 687 120 280 51 58 1358 (P = 0.1 4 Total 687	18.7% 31.3% 7.3% 0.6% 5.1% 100.0% 03); P = 599 Weight 49.6%	LH, Bandom, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84] 0.40 [0.17, 0.97] 0.91 [0.73, 1.12] 6 Risk Ratio M.H, Fixed, 95% CI 0.68 [0.11, 4.09]	Year 2002 2003 2007 2008 2012 2012 2012 2012	Favours SA Favours NAC Risk Ratio M.H. Random, 95% CI M.H. Random, 95% CI CI Favours NAC Favours SA Risk Ratio
Heterogeneity: Chi ² Test for overall effec D Study of Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Otabayashi 2012 Total (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: Study of Subgroup CCCSGJ 2003 Xu 2007	= 1.93, df :t Z = 1.23 NAC <u>Events</u> 46 169 10 202 0 6 433 0.03; Chir Z = 0.89 () NA <u>Events</u> 2 0 0	(P = 0.2 Total 1 164 668 120 280 99 62 1393 P = 0.37 C Total 120 C C C C C C C C	SA <u>Events</u> 19 204 5 14 460 3, df= 5) S/ <u>Events</u> 3 0	Total 162 687 120 51 58 1358 (P = 0.1 1358 (P = 0.1 1358 1358 1358 1358 1358 1358 1358 1358 120 120 120 120 120 120 120 120	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0% 103.0% 103.0%	LH, Random, 95% C1 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84] 0.40 [0.17, 0.97] 0.91 [0.73, 1.12] 6 Risk Ratio <u>M.H. Fixed, 95% C1</u> 0.69 [0.11, 4.09] Not estimable	Year 2002 2003 2007 2012 2012 2012 2012 2012 2012 2012	Favours SA Favours NAC Risk Ratio M.H. Random, 95% CI M.H. Random, 95% CI CI Favours NAC Favours SA Risk Ratio
Heterogeneity: ChP Test for overall effec Study or Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FO/TROT 2012 Total (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect Study or Subgroup CCCSGJ 2003 Xu 2007 FO/TROT 2012	= 1.93, df = 1.93, df t Z = 1.23 NAC Events 46 169 100 202 0 6 433 0.03; Chil Z = 0.89 (0 NA Events 2 0 0 0 0 0 0 0 0 0 0 0 0 0	(P = 0.2 Total 164 668 120 99 62 1393 *= 12.11 P = 0.37 C C Total 668 120 99 62 1393 *= 12.11 P = 0.2	SA Events 40 178 19 204 5 14 5 14 460 3, df = 5) SJ Events 3 0 1	Total 162 687 120 280 51 58 1358 (P = 0.1 (P = 0.1 1358 (P = 0.1 1358 1358 (P = 0.1 1358 135	18.7% 31.3% 37.0% 37.0% 5.1% 100.0% 03); P = 599 Weight 49.6% 33.1%	LH, Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84] 0.40 [0.17, 0.97] 0.91 [0.73, 1.12] 6 Risk Ratio M-K Fixed, 95% CI 0.69 [0.11, 4.09] Not estimable 0.17 [0.01, 4.18]	Year 2002 2003 2012 2012 2012 2012 <u>Year</u> 2003 2007 2012	Favours SA Favours NAC Risk Ratio M.H. Random, 95% CI M.H. Random, 95% CI CI Favours NAC Favours SA Risk Ratio
Heterogeneity: Ch# Test for overall effec D Study of Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Okabayashi 2012 Total events Heterogeneity: Tau*= Test for overall effect: Study of Subgroup CCCSGJ 2003 Xu 2007 FOXTROT 2012 Okabayashi 2012	= 1.93, df :t Z = 1.23 NAC <u>Events</u> 46 169 10 202 0 6 433 0.03; Chir Z = 0.89 () NA <u>Events</u> 2 0 0	(P = 0.2 Total 1 164 668 120 99 62 1393 *= 12.11 P = 0.37 C C C C C C C C 120 99 62 120 99 62 120 99 62 120 120 120 120 120 120 120 12	SA <u>Events</u> 19 204 5 14 460 3, df= 5) S/ <u>Events</u> 3 0	Total 162 687 120 280 51 58 1358 (P = 0.1 (P = 0.1 1358 (P = 0.1 1358 1358 1358 1358 1358 1358 1358 1358 1358 1358 1358 152 152 152 152 158 158 158 158 158 158 158 158	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0% 33); P= 599 Weight 49.6% 33.1% 17.3%	LH, Random, 95% CI 1.14 (0.79, 1.63) 0.98 (0.81, 1.17) 0.53 (0.26, 1.08) 0.99 (0.89, 1.10) 0.05 (0.00, 0.84) 0.40 (0.17, 0.97) 0.91 (0.73, 1.12) 6 Risk Ratio M.H, Fixed, 95% CI 0.69 (0.11, 4.09) Not estimable 0.17 (0.01, 4.18) 1.87 (0.17, 20.09)	Year 2002 2003 2012 2012 2012 2012 <u>Year</u> 2003 2007 2012	Favours SA Favours NAC Risk Ratio M.H. Random, 95% CI M.H. Random, 95% CI CI Favours NAC Favours SA Risk Ratio
Helerogeneily: Ch# Test for overall effec D Study or Subgroup Kotake 2002 CCCSGU 2003 Xu 2007 Zhong 2008 FoXTROT 2012 Okabayashi 2012 Total (95% CI) Total events Helerogeneily: Tau ² = Test for overall effect CCCSGU 2003 Xu 2007 FOXTROT 2012 Okabayashi 2012 Total (95% CI)	= 1.93, df = 1.93, df t Z = 1.23 NAC Events 46 169 100 202 0 6 433 0.03; Chiř Z = 0.89 (0 NA Events 2 0 0 0 2 2 0 0 6 4 2 0 0 6 4 2 0 0 6 4 8 109 109 10 2 0 10 2 0 10 10 10 10 10 10 10 10 10	(P = 0.2 Total 164 668 99 62 120 280 99 62 1393 2=12.11 P = 0.37 C C Total 668 120 99 62 99 99 99 99 99 99 99 99 90 99 90 90	SA Events 40 178 19 204 5 14 460 3, df= 5) SJ Events 3 0 1 1	Total 162 687 120 280 51 58 1358 (P = 0.1	18.7% 31.3% 37.0% 37.0% 5.1% 100.0% 03); P = 599 Weight 49.6% 33.1%	LH, Random, 95% CI 1.14 [0.79, 1.63] 0.98 [0.81, 1.17] 0.53 [0.26, 1.08] 0.99 [0.89, 1.10] 0.05 [0.00, 0.84] 0.40 [0.17, 0.97] 0.91 [0.73, 1.12] 6 Risk Ratio M-K Fixed, 95% CI 0.69 [0.11, 4.09] Not estimable 0.17 [0.01, 4.18]	Year 2002 2003 2012 2012 2012 2012 <u>Year</u> 2003 2007 2012	Favours SA Favours NAC Risk Ratio M.H. Random, 95% CI M.H. Random, 95% CI CI Favours NAC Favours SA Risk Ratio
Heterogeneity: ChP Test for overall effec Study of Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Total (95% Cl) Total events Study of Subgroup CCCSGJ 2003 Xu 2007 FOXTROT 2012 Okabayashi 2012 Total (95% Cl) Total (95% Cl) Total (95% Cl) Total (95% Cl) Total (95% Cl) Total (95% Cl) Total (95% Cl)	= 1.93, df = 1.93, df t Z = 1.23 NAC Events 46 169 10 202 0 6 433 202 0 6 433 3.0.3; CH Z = 0.89 () X = 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 4 4	(P = 0.1 164 668 120 280 99 62 1393 *= 12.11 P = 0.37 C C Total 668 120 99 62 1393 *= 12.11 668 120 99 99 62 1393 *= 12.11 668 120 99 99 62 1393 *= 12.11 668 120 99 99 62 1393 *= 12.11 164 668 120 99 62 1393 *= 12.11 164 668 120 1393 *= 12.11 120 1393 *= 12.11 120 1393 *= 12.11 120 1393 *= 12.11 120 1393 *= 12.11 120 1393 *= 12.11 120 1393 *= 12.11 120 1393 *= 12.11 120 120 1393 *= 12.11 100 120 1393 120 1393 120 1393 120 1393 120 1393 1393 1393 1393 1393 1393 1393 1393 1393 120 120 1393 1395 13	22) SA Events 40 178 19 204 460 3, df= 5) Events 3 0 1 1 5 5 14 5 5 14 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 204 5 5 19 19 204 5 5 19 19 204 5 5 14 5 5 5 5 5 5 5 5 5 5 5 5 5	Total 162 687 120 280 1358 1358 1358 (P = 0.0 (P = 0.0 1358 1	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0% 33); P= 599 Weight 49.6% 33.1% 17.3%	LH, Random, 95% CI 1.14 (0.79, 1.63) 0.98 (0.81, 1.17) 0.53 (0.26, 1.08) 0.99 (0.89, 1.10) 0.05 (0.00, 0.84) 0.40 (0.17, 0.97) 0.91 (0.73, 1.12) 6 Risk Ratio M.H, Fixed, 95% CI 0.69 (0.11, 4.09) Not estimable 0.17 (0.01, 4.18) 1.87 (0.17, 20.09)	Year 2002 2003 2012 2012 2012 2012 <u>Year</u> 2003 2007 2012	Favours SA Favours NAC Risk Ratio M.H. Random, 95% CI M.H. Random, 95% CI CI Favours NAC Favours SA Risk Ratio
Heterogeneity: ChP ² Test for overall effect D Study or Subgroup Kotake 2002 CCCSGJ 2003 Xu 2007 Zhong 2008 FOXTROT 2012 Otabayashi 2012 Total events Heterogeneity: Tau ² = Test for overall effect Study or Subgroup CCCSGJ 2003 Xu 2007 FOXTROT 2012 Otabayashi 2012 Total (95% CI) Total events Heterogeneity: ChP ²	= 1.93, df = 1.93, df t Z = 1.23 NAC Events 46 169 10 202 0 6 433 0.03; Chil Z = 0.89 (f NA Events 2 0 0 2 4 4 1 1 2 2 0 6 4 3 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	(P = 0.2 Total 1 164 166 120 280 99 62 1393 *= 12.11 P = 0.37 C Total 120 280 99 62 99 62 99 92 949 = 2 (P = 2 (P = 2)	SA <u>Events</u> 40 178 19 204 5 14 460 3, df= 5) SJ <u>Events</u> 3 0 11 1 5 5 0, 50; P	Total 162 687 120 280 1358 1358 1358 (P = 0.0 (P = 0.0 1358 1	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0% 33); P= 599 Weight 49.6% 33.1% 17.3%	LH, Random, 95% CI 1.14 (0.79, 1.63) 0.98 (0.81, 1.17) 0.53 (0.26, 1.08) 0.99 (0.89, 1.10) 0.05 (0.00, 0.84) 0.40 (0.17, 0.97) 0.91 (0.73, 1.12) 6 Risk Ratio M.H, Fixed, 95% CI 0.69 (0.11, 4.09) Not estimable 0.17 (0.01, 4.18) 1.87 (0.17, 20.09)	Year 2002 2003 2012 2012 2012 2012 2012 2012	Risk Ratio M-H. Random, 95% CI 0.2 0.5 1 2 5 Favours NAC Favours SA Risk Ratio M-H. Fixed, 95% CI
Heterogeneity: ChP Test for overall effec Study or Subgroup Kotake 2002 CCCS6J 2003 Xu 2007 Zhong 2008 FO/TROT 2012 Okabayashi 2012 Total (95% Cl) Total events Study or Subgroup CCCS6J 2003 Xu 2007 FO/TROT 2012 Okabayashi 2012 Total (95% Cl) Total (95% Cl) Total (95% Cl) Total events	= 1.93, df = 1.93, df t Z = 1.23 NAC Events 46 169 10 202 0 6 433 0.03; Chil Z = 0.89 (f NA Events 2 0 0 2 4 4 1 1 2 2 0 6 4 3 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	(P = 0.2 Total 1 164 166 120 280 99 62 1393 *= 12.11 P = 0.37 C Total 120 280 99 62 99 62 99 92 949 = 2 (P = 2 (P = 2)	SA <u>Events</u> 40 178 19 204 5 14 460 3, df= 5) SJ <u>Events</u> 3 0 11 1 5 5 0, 50; P	Total 162 687 120 280 1358 1358 1358 (P = 0.0 (P = 0.0 1358 1	18.7% 31.3% 7.3% 37.0% 0.6% 5.1% 100.0% 33); P= 599 Weight 49.6% 33.1% 17.3%	LH, Random, 95% CI 1.14 (0.79, 1.63) 0.98 (0.81, 1.17) 0.53 (0.26, 1.08) 0.99 (0.89, 1.10) 0.05 (0.00, 0.84) 0.40 (0.17, 0.97) 0.91 (0.73, 1.12) 6 Risk Ratio M.H, Fixed, 95% CI 0.69 (0.11, 4.09) Not estimable 0.17 (0.01, 4.18) 1.87 (0.17, 20.09)	Year 2002 2003 2012 2012 2012 2012 2012 2012	Risk Ratio M-H. Random, 95% CI 0.2 0.5 2 Favours NAC Favours BA

FIGURE 2. Forest plots for (A) 3-year survival, (B) 5-year survival, (C) 3-year disease-free survival, (D) 5-year disease-free survival, (E) overall mortality, and (F) perioperative mortality by NAC and SA procedures, all showing no significant difference. The relative weight of each study is proportional to the size of the corresponding box in the Forest plot. NAC = neoadjuvant chemotherapy; SA = surgery alone.

3.23%, RR: 0.88, 95% CI: 0.30–2.57, P = 0.81). Fixed-effects model was applied for all the above parameters due to insignificant heterogeneities. According to Xu et al²¹, the RR for OS was 0.51 (95% CI: 0.32–0.67, P = 0.009) in the NAC arm; NAC significantly improved DFS rate (74.6% vs 58.1%,

P = 0.01), and the RR for DFS was 0.61 (95% CI: 0.51–0.79, P < 0.001) in the NAC arm; the liver metastasis-free survival rate at 3 years was significantly higher in the NAC group, and the RR for liver metastasis-free survival rate was 0.73 (95% CI: 0.52–0.86, P = 0.02) in the NAC arm; furthermore, the median

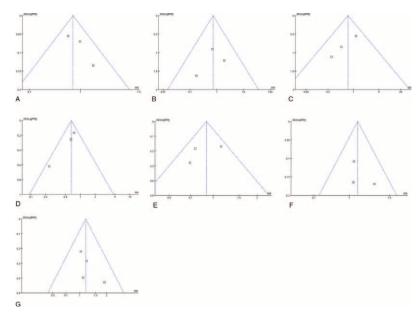


FIGURE 3. Funnel plots for (A) 5-year disease-free survival, (B) perioperative mortality, (C) local recurrence, (D) distant metastasis, (E) liver and lung metastases, (F) TNM stage upon resection, and (G) postoperative complications, showing that all parameters are free from significant bias. RR = relative risk, SE = standard error.

liver metastasis detection time for patients was significantly longer in the PHRAC group compared to SA group (16 ± 3 vs 8 ± 1 months, P = 0.01).

Others

Okabayashi et al²³ suggested that the preoperative administration may have some cytotoxic potential for preventing tumor recurrence. Xu et al's²¹ histopathologic evaluation after PHRAC showed obvious necrosis in the middle of the tumor lesions as well as in involved lymph nodes. Zhong et al²² reported that NAC could restrain proliferation, promote apoptosis and necrosis in CRC. Pooled analyses were not available for these parameters.

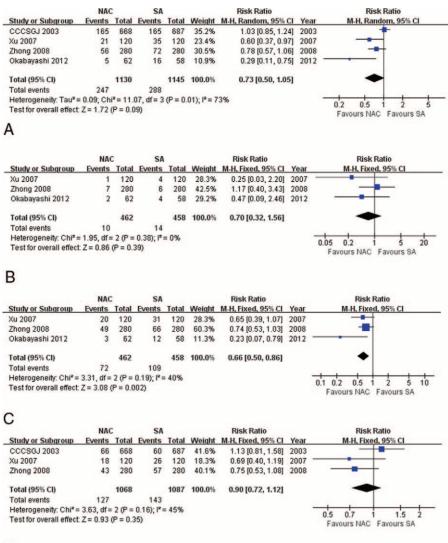
Objective Response to NAC

Okabayashi et al²³ revealed that 33% patients had responded to the preoperative administration of tegafur suppositories. FOxTROP Collaborative Group²⁴ reported preoperative therapy resulted in 2.13% complete pathological responses.

Safety Analysis

Safety analysis included NAC-related adverse effects. CCCSGJ²⁰ reported that adverse reactions were generally mild, and that the most common NAC-related adverse effect was leucopenia. Xu et al²¹ reported that grade 3 hepatic toxicity was observed in only 2% of patients in the PHRAC group and could be lightened before surgery. Okabayashi et al²³ reported that none of the patients in NAC group experienced any severe adverse effects (\geq grade 3), indicating that this treatment was feasible and tolerable. FOxTROP Collaborative Group²⁴ reported 34% of patients receiving NAC had grade 3 or worse toxicity, with grade 3–4 gastrointestinal toxicity in 7% of patients in the NAC group.

Sensitivity Tests


There were significantly higher 3-year survival (86.26% vs 76.40%, RR: 1.13, 95% CI: 1.02-1.25, P=0.02), and 3-year DFS (78.02% vs 64.04%, RR: 1.22, 95% CI: 1.06-1.39, P=0.004) rates, and lower rates of overall recurrence (17.75% vs 26.86%, RR: 0.61, 95% CI: 0.40-0.93, P=0.02, Figure 6A), and liver and lung metastases (15.25% vs 20.75%, RR: 0.73, 95% CI: 0.54-0.99, P=0.04) for patients receiving NAC than those undergoing SA with CCCSGJ's study²⁰ excluded. Sensitivity analyses of all the other indexes revealed similar results. Funnel plots (Figure 3A–G) and a strict and exhaustive literature retrieval conferred a substantial degree of confidence in our pooled findings.

Subgroup Analysis

We divided subgroups according to whether single regimen or combination regimens were applied, and found that combination regimens used in NAC set significantly reduced overall recurrence rate compared with SA (19.25% vs 26.75%, RR: 0.72, 95% CI: 0.56–0.93, P = 0.01, Figure 6B).

DISCUSSION AND CONCLUSIONS

Chemotherapy is a complementary treatment modality in the form of adjuvant chemotherapy, NAC and concomitant chemoradiotherapy.²⁵ Potential advantages of preoperative therapy are making minimal access surgery practicable, better control of micrometastasis, and better tolerability than similar treatment after surgery, hence allowing increased dose intensity, and potentiality to downstage tumor and to increase the possibility of curative resection.²⁶ There have been many trials assessing this novel method majorly among operable advanced CRC patients without distant metastasis and many reported satisfactory achievements.²⁶ However, most of reports are limited to nonrandomized retrospective studies based on

D

FIGURE 4. Forrest plots for (A) overall recurrence, showing that NAC tends to lower recurrence rate compared with SA; (B) local recurrence, showing comparable results between NAC and SA processes; (C) distant metastasis, showing NAC significantly reduces distant metastasis rate compared with SA; and (D) liver and lung metastases, showing comparable results between NAC and SA procedures. The relative weight of each study is proportional to the size of the corresponding box in the Forest plot. NAC = neoadjuvant chemotherapy, SA = surgery alone.

relatively small population.²⁷ The optimal approach remains controversial.

The results of RCTs comparing NAC with SA for CRC differ in aspects of efficacy and safety. This study, ensuring high recall and precision rates of literature retrieval, summarizes data of the highest quality. RCTs published after 2005 constitute most of the studies included. The methodological quality of the 6 RCTs included in this meta-analysis was generally good.

Xu et al²¹ and Zhong et al²² reported that NAC in combination with surgical resection could reduce and delay the occurrence of liver metastasis, and improve survival rate in patients with stage III CRC; Okabayashi et al²³ also reported that NAC might block recurrences and improve survival rates, mainly by preventing distant metastasis. The convincing level 1a evidence provided by us revealed that no significant differences existed in 3-year or 5-year OS or DFS, or total death, which may be due to the fact that NAC, though inhibiting malignant proliferation and promoting tumor necrosis, leads to attenuation of immunity and delay of timely curative treatment. Ishii et al's study²⁸ demonstrated that preoperative chemotherapy had no impact on the prevention of local recurrence despite obvious tumor shrinkage in 46% of the participants. Our results further supported that NAC contributed to lower distant, especially liver, metastasis rate, but resulted in similar local recurrence rate. For stage I disease, timely surgery would be the ideal choice. In this analysis, patients with stage III disease had lower mortality, recurrence, and liver metastasis rates with NAC than SA, while in patients with stage II disease, the differences were not significant. This indicates that NAC could be beneficial to patients with diseases in advanced stages, which needs to be further clarified by larger sample size and longer follow-up period. Regimens and intervals between randomization/NAC

Authors/Trial Acronym/ Institution	Method	n	TNM Staging (0-2)	Tumor Stage Upon Resection (ypT0/1/2)	Nodal Stage Upon Resection (ypN0)	Vascular Invasion	Curative Resection	Postoperative Complication
Kotake et al/NAC for	NAC	164	NR	NR	NR	NR	NR	NR
CRC Study Group ¹⁹	SA	162	NR	NR	NR	NR	NR	NR
CRC Chemotherapy	NAC	668	NR	NR	NR	NR	567	39
Study Group of Japan ²⁰	SA	687	NR	NR	NR	NR	573	39
Xu et al^{21}	NAC	120	47	NR	NR	NR	NR	12
	SA	120	45	NR	NR	NR	NR	11
Zhong et al ²²	NAC	280	108	NR	NR	NR	NR	25
-	SA	280	103	NR	NR	NR	NR	21
Okabayashi et al/	NAC	62	NR	12	30	18	55	0
KODK4 ²³	SA	58	NR	6	26	23	56	0
FOxTROT	NAC	99	60	9	59	34	95	22
Collaborative Group ²⁴	SA	51	24	1	24	24	40	6

TABLE 6 Secondary Outcomes

application and operation might be factors potentially influencing efficacy and safety. It seems intuitively unlikely that such a short duration of chemotherapy applied in the included trials would significantly alter outcomes. Besides, thanks to the widespread high-quality surgery with satisfactory resections of regional lymph nodes outside the peri-colorectal area, there might be a better outcome than anticipated after curative SA, which could also conceal part of the effects. When CCCSGJ's results²⁰ were excluded, we found that NAC resulted in significantly better outcomes, which might be because of the relatively inferior single regimen used, and the relatively long interval between randomization and surgery in the NAC arm. In CRC patients, combination therapies are related with a significant survival benefit compared to single agent therapy,²⁹ and application of the most effective chemotherapeutic regimen is essential in the case of a NAC manipulation. However, single agent therapy was used in some of the RCTs available. Through a subgroup analysis, we revealed that combination therapy effectively impeded recurrence compared to single regimen, perhaps because of more effective micrometastasis eradication, reduced risk of incomplete excision, and tumor cell shedding during surgery after NAC.

NAC, which has been brought about with the hope to improve resection condition, is under heated discussion about its definite role in improving cure rate for CRC patients.⁴

According to our convincing study, better tumor conditions upon resection were screened with NAC applied, and NAC tended to prevent vascular invasion, which are the major differences between the 2 treatment modalities, while other advantages for resectability were not firmly supported. There were basically no significant differences in outcome measures of curative resection or postsurgical morbidities. It is notable that the current imaging technique available is not sufficiently accurate to assess the clinical staging of primary tumor or nodal stage, thus the exact down-staging effect could not be obtained, though other pre-treatment tumor parameters measurable were comparable between 2 groups. Lack of response to NAC may delay curative operation, and chemotherapy-related toxicity may lead to increased operational complications. The variability of the objective response rates may be influenced by issues of interval between administration and surgery, trial type and phase, regimen, and administration route. In a parallel audit,³⁰ 93% of patients with radiologically classified T3 tumors with less than 5 mm invasion of the muscularis propria were found to have coexisting high-risk pathological features that justify chemotherapy. There also existed the risk of progression of similar chemoresistant tumors.³¹ Response rates higher than 50% are consistently achieved in metastatic CRC with chemotherapy regimens combining fluoropyrimidines with irino-tecan or oxaliplatin,³² and even higher responses can be

Category	No. RCTs	NAC	SA	RR	95% CI	P-Value
TNM staging (0-2)	3	215/499 (43.09%)	172/451 (38.14%)	1.09	0.93-1.27	0.28
Tumor stage upon resection (ypT0-2)	2	21/161 (13.04%)	7/109 (6.42%)	2.36	1.02-5.44	0.04
Nodal stage upon resection (ypN0)	2	89/161 (55.28%)	50/109 (45.87%)	1.18	0.92-1.52	0.20
Vascular invasion	2	52/161 (32.30%)	47/109 (43.12%)	0.73	0.53 - 1.00	0.05
Curative resection	3	717/829 (86.49%)	669/796 (84.05%)	1.03	0.91 - 1.17	0.61
Postoperative complication	5	98/1229 (7.97%)	77/1196 (6.44%)	1.17	0.87-1.56	0.30

95% CI = 95% confidence interval, NAC = neoadjuvant chemotherapy, RCTs = randomized controlled trials, RR = risk ratio, SA = surgery alone, WMD = weighted mean difference.

	NAC		SA			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Xu 2007	47	120	45	120	25.0%	1.04 [0.76, 1.44]	2007	
Zhong 2008	108	280	103	280	57.3%	1.05 [0.85, 1.30]	2008	
FOXTROT 2012	60	99	24	51	17.6%	1.29 [0.92, 1.79]	2012	
Total (95% CI)		499		451	100.0%	1.09 [0.93, 1.27]		-
Total events	215		172					
Heterogeneity: Chi ² =	1.17, df=	2 (P =	0.56); 17:	= 0%				
Test for overall effect								0.7 1 1.5 Favours SA Favours NAC

A

	NAC		SA			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
CCCSGJ 2003	567	668	573	687	40.6%	1.02 [0.97, 1.07]	2003	
FOxTROT 2012	95	99	40	51	26.1%	1.22 [1.05, 1.42]	2012	
Okabayashi 2012	55	62	56	58	33.2%	0.92 [0.83, 1.02]	2012	
Total (95% CI)		829		796	100.0%	1.03 [0.91, 1.17]		-
Total events	717		669					
Heterogeneity: Tau ² =	= 0.01; Ch	i ² = 9.9	8, df = 2 (P = 0.0	$(07); I^2 = 8$	0%		
Test for overall effect	: Z = 0.51	(P = 0.8	51)					0.7 1 1.5 Favours SA Favours NAC
3								

	NAC		SA		Risk Ratio			Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
CCCSGJ 2003	39	668	39	687	49.1%	1.03 [0.67, 1.58]	2003	
Xu 2007	12	120	11	120	14.0%	1.09 [0.50, 2.38]	2007	
Zhong 2008	25	280	21	280	26.8%	1.19 [0.68, 2.08]	2008	
Okabayashi 2012	0	62	0	58		Not estimable	2012	
FOxTROT 2012	22	99	6	51	10.1%	1.89 [0.82, 4.36]	2012	
Total (95% CI)	1229			1196	100.0%	1.17 [0.87, 1.56]		-
Total events	98		77					
Heterogeneity: Chi ² =	1.64, df=	3 (P=	0.65); I ² =	= 0%			-	
Test for overall effect	Z=1.04	(P = 0.3	30)					0.5 0.7 1 1.5 2 Favours NAC Favours SA

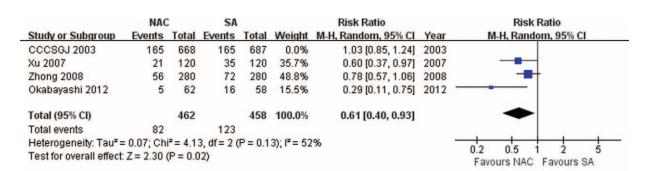
С

FIGURE 5. Forest plots for (A) TNM stage upon resection, (B) presence of tumor-free resection margin, and (C) postoperative complications, all showing comparable results between NAC and SA processes. The relative weight of each study is proportional to the size of the corresponding box in the Forest plot. NAC = neoadjuvant chemotherapy, SA = surgery alone.

achieved in K-RAS wild-type tumors by adding EGFR-targeted monoclonal antibodies, panitumumab or cetuximab, to combination chemotherapy.³¹ Number of courses applied might be another great influential factor.

Though a number of phase III trials have been conducted in the last few decades, the best regimen of chemotherapy remains a point of argue and active research.³³ Given the modern advancement of chemotherapy for CRC, a combination of chemotherapy and molecular targeting therapy may become mainstream.³⁴ Recently, a number of new multicenter studies have been registered to assess the role of NAC in treating advanced CRC, and several new regimens are tested.³⁵ It is desired that questions will be better addressed by them.

Therefore, NAC should not be recommended as a routine and regular treatment for CRC before gaining abundant evidence of its certain efficacy, and should be administered under the framework of clinical trials.³⁶ Adequate operation (based on racial features, malignant progression, local standard, and surgeons' experience) without delay may remain the appropriate and preferable management for resectable CRC, until further large multicenter RCTs supporting NAC emerges. Further investigations in terms of patient selection, and treatment regimen would be required to determine the significance of preoperative chemotherapy against CRC.


The internal validity of this study is high because the analysis was based on high-quality RCTs, with low risk of bias. This analysis is limited by the diverse timings, intervals between randomization and surgery, regimens, modalities of administration, durations of chemotherapy, and follow-up periods, and the fact that not all outcome measures of interest are reported by all selected trials.

In summary, NAC does not contribute to significant survival benefits for CRC, and compares favorably with SA in tumor-free resection rates, nodal status upon resection, and postsurgical complications. This might be due to the regimen issue. NAC significantly associates with favorable tumor stage

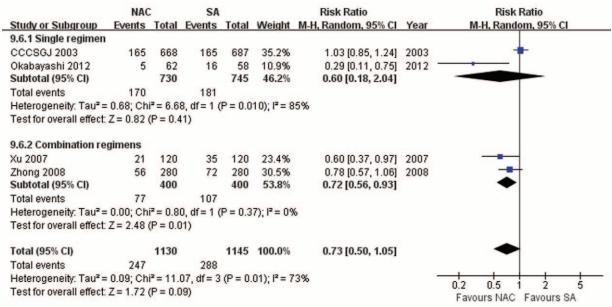

Stage	Authors	Method	n	Overall Mortality	Overall Recurrence	Local Recurrence	Liver Metastasis
II	Xu et al ²¹	NAC	47	3	5	0	3
		SA	45	4	7	2	4
	Zhong et al ²²	NAC	108	9	17	2	8
	-	SA	103	11	15	1	9
III	Xu et al ²¹	NAC	63	8	16	1	13
		SA	67	16	28	2	19
	Zhong et al ²²	NAC	148	28	39	5	28
	-	SA	150	59	57	5	41

TABLE 8. Outcomes for Stage II and III Tumors, Respectively

NAC = neoadjuvant chemotherapy, NR = not reported, SA = surgery alone.

A

В

FIGURE 6. (A) Sensitivity test for total recurrence between NAC and SA measurements, showing that there exists significantly lower recurrence rate among patients receiving NAC than those undergoing SA when CCCSGJ's study was excluded. (B) Subgroup analysis for total recurrence according to whether single regimen or combination regimens are applied, showing that combination regimens significantly reduce overall recurrence rate, while single regimen makes no significant contribution. CCCSGJ=Colorectal Cancer Chemotherapy Study Group of Japan, NAC=neoadjuvant chemotherapy, SA=surgery alone.

upon resection, prevent distant (particularly liver) metastasis, and may result in lower incidences of vascular invasion and overall recurrence. This level 1a evidence does not support NAC to obviously outweigh SA in terms of efficacy and safety for CRC.

ACKNOWLEDGMENTS

We thank Prof Hong Liu and College of Public Hygiene of Anhui Medical University for their contributions to our study, and Ms Leah Liu for the English language writing assistance.

REFERENCES

- Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.
- Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. *Int J Cancer*. 2010;127:2893– 2917.
- Bosset JF, Calais G, Mineur L, et al. Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: long-term results of the EORTC 22921 randomised study. *Lancet Oncol.* 2014;15:184–190.
- Schrag D, Weiser MR, Goodman KA, et al. Neoadjuvant chemotherapy without routine use of radiation therapy for patients with locally advanced rectal cancer: a pilot trial. J Clin Oncol. 2014;32:513–518.
- Glynne-Jones R, Anyamene N, Moran B, et al. Neoadjuvant chemotherapy in MRI-staged high-risk rectal cancer in addition to or as an alternative to preoperative chemoradiation? *Ann Oncol.* 2012;23:2517–2526.
- Sebag-Montefiore D, Stephens RJ, Steele R, et al. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. *Lancet.* 2009;373:811–820.
- Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-Analysis of Observational Studies in Epidemiology (MOOSE) group. *JAMA*. 2000;283:2008–2012.
- Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*. 2009;339:b2535.
- Wang W, Xu DZ, Li YF, et al. Tumor-ratio-metastasis staging system as an alternative to the 7th edition UICC TNM system in gastric cancer after D2 resection—results of a single-institution study of 1343 Chinese patients. *Ann Oncol.* 2011;22:2049–2056.
- Quirke P, Williams GT, Ectors N, et al. The future of the TNM staging system in colorectal cancer: time for a debate? *Lancet Oncol.* 2007;8:651–657.
- Cirillo M, Venturini M, Ciccarelli L, et al. Clinician versus nurse symptom reporting using the National Cancer Institute-Common Terminology Criteria for Adverse Events during chemotherapy: results of a comparison based on patient's self-reported questionnaire. *Ann Oncol.* 2009;20:1929–1935.
- Moher D, Pham B, Jones A, et al. Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? *Lancet*. 1998;352:609–613.
- 13. Clarke M, Horton R. Bringing it all together: Lancet-Cochrane collaborate on systematic reviews. *Lancet.* 2001;357:1728.
- Higgins JP, Thompson SG. Quantifying heterogeneity in a metaanalysis. Stat Med. 2002;21:1539–1558.
- Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327:557–560.

- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188.
- Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315:629–634.
- Fisher DJ, Copas AJ, Tierney JF, et al. A critical review of methods for the assessment of patient-level interactions in individual participant data meta-analysis of randomized trials, and guidance for practitioners. J Clin Epidemiol. 2011;64:949–967.
- Kotake K, Koyama Y, Shida S, et al. Neo-adjuvant chemotherapy with carmofur for colorectal cancer—a multi-institutional randomized controlled study. *Gan To Kagaku Ryoho.* 2002;29:1917–1924.
- Colorectal Cancer Chemotherapy Study Group of Japan—The 2nd T. Results of a randomized trial with or without 5-FU-based preoperative chemotherapy followed by postoperative chemotherapy in resected colon and rectal carcinoma. *Jpn J Clin Oncol.* 2003;33:288–296.
- Xu J, Zhong Y, Weixin N, et al. Preoperative hepatic and regional arterial chemotherapy in the prevention of liver metastasis after colorectal cancer surgery. *Ann Surg.* 2007;245:583–590.
- Zhong YS, Lu SX, Xu JM. Tumor proliferation and apoptosis after preoperative hepatic and regional arterial infusion chemotherapy in prevention of liver metastasis after colorectal cancer surgery. *Zhonghua Wai Ke Za Zhi.* 2008;46:1229–1233.
- 23. Okabayashi K, Hasegawa H, Watanabe M, et al. Usefulness of the preoperative administration of tegafur suppositories as alternative adjuvant chemotherapy for patients with resectable stage II or III colorectal cancer: a KODK4 multicenter randomized control trial. *Oncology*. 2012;83:16–23.
- Foxtrot Collaborative G. Feasibility of preoperative chemotherapy for locally advanced, operable colon cancer: the pilot phase of a randomised controlled trial. *Lancet Oncol.* 2012;13:1152–1160.
- Menges M, Hoehler T. Current strategies in systemic treatment of gastric cancer and cancer of the gastroesophageal junction. J Cancer Res Clin Oncol. 2009;135:29–38.
- Aschele C, Cionini L, Lonardi S, et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol. 2011;29:2773–2780.
- Gerard JP, Azria D, Gourgou-Bourgade S, et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. *J Clin Oncol.* 2010;28:1638–1644.
- Ishii Y, Hasegawa H, Endo T, et al. Medium-term results of neoadjuvant systemic chemotherapy using irinotecan, 5-fluorouracil, and leucovorin in patients with locally advanced rectal cancer. *Eur J Surg Oncol.* 2010;36:1061–1065.
- Des Guetz G, Uzzan B, Morere JF, et al. Duration of adjuvant chemotherapy for patients with non-metastatic colorectal cancer. *Cochrane Database Syst Rev.* 2010:CD007046.
- Dighe S, Swift I, Magill L, et al. Accuracy of radiological staging in identifying high-risk colon cancer patients suitable for neoadjuvant chemotherapy: a multicentre experience. *Colorectal Dis.* 2012;14:438–444.
- Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–1417.
- 32. Maughan TS, Adams RA, Smith CG, et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. *Lancet.* 2011;377:2103–2114.
- 33. Sauer R, Liersch T, Merkel S, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer:

results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. *J Clin Oncol.* 2012;30:1926–1933.

- 34. Muro K, Boku N, Shimada Y, et al. Irinotecan plus S-1 (IRIS) versus fluorouracil and folinic acid plus irinotecan (FOLFIRI) as second-line chemotherapy for metastatic colorectal cancer: a rando-mised phase 2/3 non-inferiority study (FIRIS study). *Lancet Oncol.* 2010;11:853–860.
- 35. Pectasides D, Papaxoinis G, Kalogeras KT, et al. XELIRI-bevacizumab versus FOLFIRI-bevacizumab as first-line treatment in patients with metastatic colorectal cancer: a Hellenic Cooperative Oncology Group phase III trial with collateral biomarker analysis. BMC Cancer. 2012;12:271.
- Mochizuki I, Takiuchi H, Ikejiri K, et al. Safety of UFT/LV and S-1 as adjuvant therapy for stage III colon cancer in phase III trial: ACTS-CC trial. *Br J Cancer.* 2012;106:1268–1273.