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Background: Theta-band neuronal oscillations in the prefrontal cortex are associated
with several cognitive functions. Oscillatory phase is an important correlate of excitability
and phase synchrony mediates information transfer between neuronal populations
oscillating at that frequency. The ability to extract and exploit the prefrontal theta rhythm
in real time in humans would facilitate insight into neurophysiological mechanisms of
cognitive processes involving the prefrontal cortex, and development of brain-state-
dependent stimulation for therapeutic applications.

Objectives: We investigate individual source-space beamforming-based estimation of
the prefrontal theta oscillation as a method to target specific phases of the ongoing theta
oscillations in the human dorsomedial prefrontal cortex (DMPFC) with real-time EEG-
triggered transcranial magnetic stimulation (TMS). Different spatial filters for extracting
the prefrontal theta oscillation from EEG signals are compared and additional signal
quality criteria are assessed to take into account the dynamics of this cortical oscillation.

Methods: Twenty two healthy participants were recruited for anatomical MRI scans and
EEG recordings with 18 composing the final analysis. We calculated individual spatial
filters based on EEG beamforming in source space. The extracted EEG signal was then
used to simulate real-time phase-detection and quantify the accuracy as compared
to post-hoc phase estimates. Different spatial filters and triggering parameters were
compared. Finally, we validated the feasibility of this approach by actual real-time
triggering of TMS pulses at different phases of the prefrontal theta oscillation.

Results: Higher phase-detection accuracy was achieved using individualized source-
based spatial filters, as compared to an average or standard Laplacian filter, and also by
detecting and avoiding periods of low theta amplitude and periods containing a phase
reset. Using optimized parameters, prefrontal theta-phase synchronized TMS of DMPFC
was achieved with an accuracy of ±55◦.
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Conclusion: This study demonstrates the feasibility of triggering TMS pulses during
different phases of the ongoing prefrontal theta oscillation in real time. This method
is relevant for brain state-dependent stimulation in human studies of cognition. It will
also enable new personalized therapeutic repetitive TMS protocols for more effective
treatment of neuropsychiatric disorders.

Keywords: EEG, TMS, prefrontal cortex, brain-state dependent stimulation, non-invasive brain stimulation, theta
rhythm, brain oscillations

INTRODUCTION

Synchronous oscillatory activity between neuronal populations
allows information exchange and the strengthening of
connections through neuroplasticity (Harris et al., 2003; Buzsaki
and Draguhn, 2004). These neuronal oscillations are ubiquitous
in the functioning brain cortex and can be observed with the
aid of several tools, including non-invasive recordings such as
electroencephalography (EEG) and magnetoencephalography.
Different oscillatory patterns predominate in different cortical
areas and are modulated by the individual’s states and behavior,
suggesting that each oscillatory mode has specific physiological
functions. Specifically, oscillatory activity in the theta frequency
band (4–7 Hz), which can be found in brain areas such as the
prefrontal cortex and hippocampus, has been correlated with
several cognitive processes, making it a phenomenon of interest
for developing diagnostics and treatment of neuropsychiatric
disorders (Lisman and Buzsaki, 2008; Sauseng et al., 2010;
Cavanagh and Frank, 2014).

Advances on understanding the relationship between
cognition and neuronal oscillations in the theta band have
mainly relied on studies in animal models. Early research
has demonstrated spatial memory deficits following the
loss of theta rhythm in the hippocampus (Winson, 1978).
Moreover, the hippocampal theta oscillation has been found
to be significantly phase-locked to the neuronal firing of large
populations of neurons in the medial prefrontal cortex (Siapas
et al., 2005), with different phases corresponding to different
states of excitability. Accordingly, neuronal spiking has been
observed predominantly in specific theta-phases depending
on the brain region (Klausberger et al., 2004; Fujisawa and
Buzsaki, 2011), with stimulation applied in different phases of
theta oscillation yielding differential profiles of neuroplasticity
(Pavlides et al., 1988; Holscher et al., 1997; Hyman et al.,
2003). Together, these observations support the notion that
different phases of theta oscillations represent distinct excitability
states of neuronal populations, which would enable effective
neuronal communication and different opportunities of
plasticity induction (for comprehensive review see Fries, 2015).
Studies in human subjects have confirmed the presence of a
marked theta rhythm in the frontal midline EEG channels,
originating from the anterior part of the superior frontal gyrus
and anterior cingulate cortex (Ishii et al., 1999; Onton et al.,
2005). Concomitant EEG measures and task performance
confirmed an association between prefrontal theta dynamics
and cognition, showing increasing power of theta oscillations
and connectivity enhancement within prefrontal cortices, as

well as between prefrontal and parietal cortices during tasks that
required heavier memory loads (Onton et al., 2005; Sauseng
et al., 2007). Intracranial recordings from patients undergoing
invasive procedures further support the association between
theta rhythm dynamics and cognition in humans, as well as
phase-specific preferences for neuronal firing (Kahana et al.,
1999; Rizzuto et al., 2006; Rutishauser et al., 2010; Lega et al.,
2012; Zavala et al., 2018).

Given the role of different phases of the prefrontal theta
oscillation, interfering with this oscillatory mode by applying
non-invasive brain stimulation in a phase-specific manner may
prove to be a relevant asset for modulating human brain function.
This concept has previously been explored by our group,
demonstrating that transcranial magnetic stimulation (TMS) in
humans evokes differential responses depending on the phase
of an ongoing local low-frequency EEG oscillation. Specifically,
it has been found that the negative peak of the sensorimotor
µ-oscillation represents a state of higher responsivity compared
to the positive peak and random phase, as TMS during
the negative peak evoked higher-amplitude motor potentials,
and repetitive TMS induced long-term potentiation-like effects,
which was made possible by using a real-time phase-detection
algorithm (Schaworonkow et al., 2018; Zrenner et al., 2018). Here,
we aim to develop a method to enable phase-specific stimulation
according to the prefrontal theta oscillation.

However, differences in the characteristics of prefrontal theta
and sensorimotor µ-oscillations require significant changes
to the methods involved in the real-time phase-detection.
Firstly, despite theta oscillations being prominently observed
in EEG prefrontal regions, the signal-to-noise ratio (SNR) is
usually lower than the SNR for the sensorimotor µ-oscillation
in the alpha-frequency band. Lower SNR leads to increased
vulnerability of the measured signal to interference from other
oscillatory sources, either local or via volume conduction,
which increases the estimation error of the phase of the theta
oscillation of interest, while also decreasing the accuracy of
the real-time phase-detection algorithm (Zrenner et al., 2020).
Additionally, cortical theta oscillations have been found to
occur in limited time lengths, sometimes described as bursts,
which can last from a couple of cycles up to 2 seconds, which
translates into a signal prone to sporadic shifts in amplitude
and phase resetting (Kahana et al., 1999; Rizzuto et al., 2006;
Rutishauser et al., 2010). This poses a challenge for any phase-
estimation method, as one cannot rely on extrapolations from
long windows of data, given that longer windows are more
likely to contain periods of interference or a phase reset.
Addressing these issues is particularly relevant for designing

Frontiers in Human Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 691821

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-691821 June 15, 2021 Time: 18:36 # 3

Gordon et al. Theta-Phase Real-Time TMS

an accurate real-time phase-detection algorithm aimed at the
prefrontal theta oscillation. Therefore, such algorithm should
include methods to reliably extract the theta oscillation from
the cortical region of interest and to guarantee that the
input signal to the real-time system corresponds to a stable
oscillation, implying a signal length free from theta amplitude
shifts and phase resets, which might compromise proper
phase detection.

We propose here adaptations to the real-time phase detection
method presented previously (Zrenner et al., 2018), in order
to account for the characteristics of the prefrontal theta
oscillation, and thereby enable real-time EEG-triggered TMS
targeting of specific phases of the theta oscillation. We also
assess the benefit of using an individual EEG spatial filter,
based on the subject’s anatomical MRI and EEG source activity
estimation, designed to extract the signal of interest from
the dorsomedial prefrontal cortex (DMPFC) in real time, as
opposed to using a standard EEG montage. We also propose
additional trigger constraints, which allow the real-time phase
detection algorithm to detect instabilities in the theta oscillation,
only triggering pulses during stable theta oscillation with
adequate amplitude and without phase resets. We hope that our
findings will enable future studies into the physiology of the
human theta oscillation as well as new theta phase-dependent
therapeutic neuromodulation.

MATERIALS AND METHODS

Subjects and Design
Twenty-two healthy individuals were recruited. Inclusion
criteria were the absence of past or current psychiatric or
neurological diseases. Exclusion criteria were current treatment
with drugs acting on the central nervous system, presence
or prior history of alcohol or illicit drugs abuse, and
pregnancy. Two subjects were excluded due to excessive
sleepiness, and two due to excessive eye movements and
muscular activity during the experiment. The final sample
included 18 subjects (11 female) with a mean age (±1 SD)
of 24 ± 3.3 years. All subjects provided written informed
consent prior to participation, and the study was conducted
in accord with the Declaration of Helsinki approved by the
ethics committee of the medical faculty of the University of
Tübingen (716/2014BO2).

EEG and TMS
Scalp EEG was recorded with a 126-channel TMS compatible
Ag/AgCl sintered ring electrode cap (EasyCap GmbH, Germany)
in the International 10-5 EEG system arrangement (Oostenveld
et al., 2011), with reference and ground electrodes placed at
positions FCz and CPz, respectively. A 24-bit biosignal amplifier
was used for EEG recordings, at a sampling rate of 5 kHz
(NeurOne Tesla with Digital Out Option, Bittium Biosignals Ltd.,
Finland), in DC mode. TMS was delivered using a MagPro XP
Stimulator (MagVenture A/S, Denmark) connected to a figure-
of-eight coil (Cool-B65, inner coil winding diameter 35 mm) with
biphasic pulses of 300 µs width.

Experimental Session
The experiment was conducted in a quiet room with the subjects
sitting comfortably in a reclined chair, instructed to keep their
eyes open. Experimental measurements involved a series of
3 EEG recordings. The first recording consisted of 8 min of
resting-state EEG. This signal was used for the covariance matrix
calculation, required for the design of the individualized source-
based spatial filter, as explained in the next sub-section. This
recording was also used to later test different parameters of the
real-time phase estimation algorithm, in simulating real-time
phase estimation offline, also explained below.

The second recording also involved resting-state EEG, but
here we used the real-time phase-estimation algorithm to mark
the EEG recording in real-time whenever the conditions for
triggering at either the negative or positive peak of the ongoing
theta oscillation were met. Sufficient data was recorded to include
100 markers for each phase condition. The procedure was
designed to enable the quantification of the real-time algorithm’s
accuracy by comparing the predicted phase with a post-hoc
“gold-standard” phase estimate. This was necessary as the real-
time algorithm is essentially “predictive,” relying on preceding
signal only, which reduces the accuracy of the phase estimate
(Blackwood et al., 2018; Zrenner et al., 2020). By analyzing
the same signal post hoc, including data before and after the
time point of interest, with standard signal-processing methods,
the accuracy of the real-time estimate for a given signal can
be assessed (details are provided below). It is important that
the signal contains only trigger markers, but not actual TMS
pulses, as stimulus artifacts and evoked cortical responses distort
the post-stimulus signal, which cannot then be used for a
post hoc phase estimate. Nonetheless, this method enables a
reliable estimate of actual phase targeting accuracy, given that
the marker placement in non-stimulated epochs follows exactly
the same procedure and constraints as for the stimulated epochs
(Bergmann et al., 2012; Zrenner et al., 2018).

The third part of the experiment consisted of the application
of 480 EEG-triggered single biphasic TMS pulses to the DMPFC
using the real-time phase detection algorithm to trigger pulses to
either the positive peak, negative peak or random phases of the
theta oscillation, 160 pulses per condition. The coil was separated
from the scalp using an 11 mm plastic spacer that was mounted
on the EEG electrodes to prevent direct contact of the TMS coil
with the electrodes and reduce possible artifacts (Ruddy et al.,
2017). Pulses were applied with an intensity of 120% of the resting
motor threshold (RMT) (Groppa et al., 2012) and a minimum
interstimulus interval of 2.5 s.

Imaging and Head Model
Extraction of brain activity from DMPFC was achieved
by using an individual source-based spatial filter (filter
Wind). For this purpose, all subjects underwent MRI using
a 3T Siemens PRISMA scanner, with T1- and T2-weighted
anatomical sequences, required for the EEG forward model.
The neuronavigation system (Localite GmbH, Sankt Augustin,
Germany) was used to locate the left DMPFC (Dunlop
et al., 2015), identified by the MNI coordinates (−4, 52, 36)
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(Baetens et al., 2017; Piva et al., 2019). Individual MRIs were
segmented and meshed using the Fieldtrip toolbox (Oostenveld
et al., 2011), which relies on the software packages FreeSurfer
and HCP workbench (Fischl, 2012). Meshes were imported
into MATLAB R2018b (Mathworks Ltd., United States) and a
forward model for EEG was built using a customized pipeline
(Stenroos and Sarvas, 2012; Stenroos and Nummenmaa, 2016).
Positions of all 126 electrodes were pinpointed manually using
the neuronavigation system, and then projected onto the scalp
surface mesh. A three-compartment volume conductor model
was constructed using the boundary element method comprising
the intracranial space (conductivity 0.33 S/m), skull (0.0041 S/m),
and scalp (0.33 S/m). Cortical source activity was represented
as primary current density on the boundary of white and gray
matter, discretized into approximately 16,000 cortical source
dipoles, each oriented perpendicular to the cortical surface.
Signal topographies for all these dipoles were computed yielding
a 126 × 16,000 leadfield matrix L, which quantifies how the
source activity at each cortex location contributes to the voltage
distribution on the sensor array. Cortical dipoles within 1 cm
diameter centered in the left DMPFC coordinates were set as the
region of interest for the EEG source activity estimation.

EEG Source Activity Estimation
A linear constrained minimum variance (LCMV) beamformer
was used to estimate source activity at the relevant locations in
source space (Van Veen et al., 1997). With constrained source
orientations, the source amplitude s(r,t) in location r at time-
instant t is obtained by

s (r, t) = wT (r)E(t), (1)

where E is the array of measured EEG signals, and w is the spatial
filter vector defined as

w =
lT (r)C−1

lT (r)C−1l(r)
, (2)

where l(r) is the topography of a elementary source dipole at
location r, i.e., the corresponding column of the leadfield matrix
L, and C is the signal covariance matrix, which was in this study
calculated on 8 min of resting-state EEG data.

Spatial filters W and estimated time-course s were calculated
for the selected dipoles in the region of interest. The individual
filter Wind is constructed using only those columns of the
leadfield matrix L corresponding to the dipoles located within the
left DMPFC. As this procedure depends on the covariance matrix
of the acquired signal and on source topographies, which in turn
depend on the head conductivity geometry and sensor positions
with respect to the sources, each spatial filter is specifically
calculated for each single session and subject. For the purpose
of plotting, the results obtained from source estimation for each
subject was then pooled and warped into a common MNI space
for group average across subjects.

We used the resting state EEG data to estimate the source
of the theta oscillation in the cortical surface by performing a
spectral analysis at source level, using the individual head models
and LCMV beamforming. Spectral power was estimated using

the multi-taper method on contiguous data segments 5 s long
with 5 tapers and a time half-bandwidth parameter of 3 yielding
a power spectral density estimate of the full spectrum. Fractal
(aperiodic) background noise was estimated using the Irregular
Resampling Auto-Spectral Analysis (IRASA) method (Wen and
Liu, 2016) with factors 1.1–2.9 in steps of 0.1 and excluding 2.0,
as implemented by the Fieldtrip toolbox. SNR was computed
by subtracting the fractal (aperiodic) component from the full
spectrum (Donoghue et al., 2020).

Spatial Filters Comparison
In order to test the relevance of using an individual source-based
spatial filter, the filter Wind, we compared its properties with that
from three non-individual spatial filters. The first of these filters
involved the grand-average of the coefficient weights of the filter
Wind, channel by channel, across all subjects, resulting in the
filter Wavg, which was applied as a generic spatial filter for all
subjects. A simpler approach was to use the electrode with the
highest coefficient weight in the filter Wavg as the center of a
Hjorth montage (electrode AFF1h; coefficient weight = 1), with
surrounding electrodes suppressing the signal (AFp1, AFF2h,
FFC1h, AFF5h; coefficient weights =−1/4), resulting in the filter
WH, similarly to what has been done to detect the sensorimotor
µ-oscillation (Zrenner et al., 2018). Finally, the simplest method
was to consider solely the signal from the AFF1h electrode,
resulting in the filter WA. These spatial filters were compared
with regard to the expected cortical areas they are sensitive to,
performed by multiplying each individual filter by the whole
leadfield matrix L, yielding a sensitivity profile over the cortical
mesh. Furthermore, sensitivity profiles were normalized within
subjects by means of a z-transform, subtracting the sensitivity of
each dipole by the individual’s average and divided by its standard
deviation. The same procedure was applied to the individual
electrodes in the sensor level, to better illustrate the conformation
of the spatial filters. The correlation coefficient between the filters’
sensitivity profiles across all the cortical surface was calculated on
the individual subject level, as an estimate of similarity between
these filters. The resulting correlation coefficients were then
statistically compared. To summarize, the filters of interest were:
(A) WA, single electrode (AFF1h), with an average reference,
(B) WH, Hjorth-style Surface Laplacian montage centered on
AFF1h (Hjorth, 1975; Tenke and Kayser, 2012), (C) Wavg,
Non-individual beamforming (the average of the individual
filter across all subjects), (D) Wind, Individual source based
spatial filter,

Each spatial filter was applied to resting-state EEG data in
order to characterize and compare the resulting oscillation.
The signal was first down-sampled to 250 Hz as done in the
real-time phase estimation algorithm (see below). In order to
compare the signal resulting from each filter with regards to
their spectral distribution, a spectral analysis was performed
using the same IRASA procedure as described above, allowing an
estimate of the SNR. Total SNR in the theta band (5–8 Hz) from
each filter was then statistically compared between the signals.
The following analysis was performed to assess the stability
of the theta oscillation extracted using different spatial filters,
estimating the signal length of the theta oscillation between
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phase resets: the signal was zero-phase (forward and backward)
filtered using a theta band-pass filter (5–8 Hz pass-band, FIR
order 250) and Hilbert transformed to yield the analytic signal.
The complex angle (corresponding to instantaneous phase) was
unwrapped (using the Matlab “unwrap” command) yielding
phase progression of the signal with the slope corresponding to
instantaneous frequency (radians/Hz), and the second derivative
as a measure of the stability of the oscillation’s phase progression:
A value around zero represents stable phase progression, whereas
phase slips are indicated by brief deviations from zero (possibly
representing physiological phase resetting; see also Freeman:
Origin, structure, and role of background EEG activity. Part 1
and 2; Freeman, 2004a,b, or interference from other sources).
To detect phase slips in the signal using this procedure, the
absolute value of the second derivative was taken and a threshold
of higher than 5 times above the median was defined. From
this, the distribution of the durations of stable periods between
phase-slips was determined and statistically compared between
the spatial filters (after log-transformation to reduce skew of
the distribution).

Real-Time Phase Estimation Algorithm
EEG theta phase was estimated in real-time by downsampling
the spatially filtered signal to 250 Hz and analyzing sliding
windows of data with length of 256 samples (1,024 ms), applying
the following steps every 4 ms to yield an instantaneous phase
estimate: (1) zero-phase forward and backward filtering with
an FIR 5–8 Hz band-pass filter of order 80, (2) removal of 35
samples from the epoch’s window closest to the marker in order
to reduce filtering edge effects, (3) autoregressive forward, Yule-
Walker method, prediction of order 15 and the total predicted
interval of 268 ms (140 ms for the removed edge, and 128 ms
into the future to avoid edge effects from the Hilbert transform),
(4) Hilbert transform. TMS was triggered when the estimated
phase fell into a predetermined range and two further conditions
were met: a minimum of 1 s had passed since the previous
stimulus and no signal artifacts were detected (explained below).
We chose the theta band as 5–8 Hz instead of the classical 4–
7 Hz due to pilot experiments indicating a theta peak of the
prefrontal signal as extracted with our spatial filters around 6–
7 Hz, which was confirmed in the final results (see section
“Results,” Figure 2). A similar procedure was used previously
for real-time estimation of sensorimotor µ-oscillation phase in
the alpha band (Zrenner et al., 2018), but further adapted as
described below.

Additional constraints were implemented to take into account
the presence of muscle and eye blink artifacts when targeting
more frontal sources and the intrinsic fluctuations characteristic
to the theta oscillation. The algorithm included the following
constraints to prevent inappropriate triggering of TMS: (1) Eye
movement detection: The low frequency and high amplitude
of eye movements and blinks could bias the phase detection
algorithm and lead to inappropriate triggering. Eye blinks
were detected by determining the maximum range within a
50 ms sliding window of the voltage potentials between four
sensor pairs around the eyes (EOG1-Fp1, EOG1-Fp2, EOG2-
Fp1, EOG2-Fp2), and taking the sum, with a threshold criterion

of 250 µV. Therefore, TMS triggers were blocked for the
following 700 ms after an eye blink was identified. (2) Muscle
artifacts: If any of the EEG channels exceeded a range threshold
within the window of analysis, signal quality was deemed to
be affected by cranial muscle or movements artifacts. General
EEG artifacts were detected when any channel exceeded a
maximum range within a sliding window of 100 ms. This
threshold was adjusted manually during the measurement due
to fluctuations in the signal’s amplitude during the experiment.
(3) Phase stability of theta oscillation: constraints were added
for the system to only send a trigger if no phase reset was
detected in the previous 500 ms. Phase reset was determined
by analyzing phase progression in a sliding 1 s window as
follows: The signal was downsampled to 250 Hz, band-pass
filtered in the theta range (5–8 Hz, FIR filter order 80, forward
and backward), and converted to an analytic signal using
the Hilbert transform. Instantaneous phase was unwrapped
and (accounting for edge effects from the band-pass filter)
instantaneous frequency was determined from phase progression
over discrete 16 ms steps (units of Hz). The average squared
difference between subsequent instantaneous frequencies across
16 ms steps was calculated and used as an “oscillation stability”
criterion for the real-time phase-detection. (4) Theta amplitude:
A user adjustable amplitude threshold prevented application
of stimuli during periods where no reliably detectable theta
oscillation was present. During the experiment, the general EEG
artifacts and amplitude threshold were adjusted manually to
track fluctuations and maintain a consistent stimulation rate.
The implementation of the manually adjusted threshold was
necessary as the intensity of the EEG background noise shifted
throughout the experiment, probably due to change in the
impedance of the electrodes and subjects’ muscular activity,
which changes the profile of spectral power and limits the
possibility of establishing a static threshold. For the real-time
phase-detection, we set the amplitude threshold to the mean
of the minimum and maximum power of the theta band.
For the post hoc comparison of different algorithms, the theta
amplitude threshold was set as the 50% quantile with regards to
the whole signal.

Simulating the Performance of the Phase
Estimation Methods
In order to investigate the accuracy of the phase estimation
method with different sets of parameters, we used the resting-
state EEG data and applied the algorithm described above post-
hoc, mimicking the real-time situation. This was performed by
overlapping segments of 1,024 ms duration which were selected
every 5 ms, and having the phase corresponding to the last
sample of each segment estimated using the same procedure as
described in the preceding section. The resulting estimated phase
was then compared with the “gold-standard phase,” obtained by
using the whole signal, which involved data before and after each
time point of interest (zero-phase forward and backward 5–8 Hz
FIR band-pass filter of order 1,000, and Hilbert transform). The
difference between the estimated and the gold-standard phases
serves as an error measure to compare the accuracy of different
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real-time phase estimation methods. We also calculated the
proportion of instances when the distance between the estimated
phase and the gold-standard phase was less than 45◦ to further
quantify the accuracy of the phase estimation methods. Also, the
“gold standard phases” were compared between spatial filters,
calculating the correlation coefficient between the phases of the
signal yielded by each spatial filter at individual level, as an
estimate of phase agreement of the signal from these filters. The
resulting correlation coefficients were then statistically compared.

Phase estimation error from the real-time phase estimation
was assessed post hoc for signals extracted using the spatial filters.
Then, for the signal extracted using the individual filter Wind, the
impact of additional constraints on phase estimation accuracy
was assessed comparing the following conditions: individual
source based spatial filter without constraints Wind, as above;
application of the phase stability constraint; application of the
theta amplitude constraint; application of both the phase stability
and amplitude constraints.

Real-Time Closed-Loop Data Processing
Set-Up
Real-time data acquisition, data processing and TMS trigger
control were implemented using a custom-built dedicated digital
biosignal, executed on a dedicated xPC Target PC running the
Simulink Real-Time operating system (DFI-ACP CL630-CRM
mainboard). For the purpose of the real-time phase detection,
EEG data was sent to a real-time processor through a real-time
UDP interface at a packet rate of 5,000 Hz (one sample per
channel) (Zrenner et al., 2018). The signal from left DMPFC
was extracted using individual spatial filters based on LCMV
beamforming (filter Wind), for which all electrodes were used,
with the exception of the ones in the outer rim (electrodes with
labels 9 and 10 in the International 10–5 EEG system).

Statistics
All statistical analyses were performed using MATLAB R2018b
(Mathworks Ltd., United States), first involving the assessment
of the data distribution’s pattern. Data following a normal
distribution were analyzed using parametric methods (ANOVA,
followed by post hoc pairwise comparisons when appropriate).
Data not following a normal distribution were log-transformed
and analyzed using parametric methods, as above, in the case the
log-transformed distribution was normal. When this was not the
case, the original data was then analyzed using non-parametric
methods (Kruskal-Wallis test, followed by post hoc pairwise
comparisons when appropriate). The correlation analyses
were performed using Pearson correlation. Phase accuracy is
reported as circular standard deviation. Threshold for statistical
significance was set as p < 0.05.

RESULTS

From the 8-min resting-state EEG signal, we observed that
the spectral power in the theta band was more prominent
in prefrontal regions, as expected (Figure 1A). Given the
particular interest in the DMPFC for its role in cognition and as

possible anatomical target for brain stimulation interventions, we
designed it as the source of the signal of interest for the calculation
of the filter Wind (Figure 1B).

Performance of Spatial Filters
The average of the Wind filters across all subjects had high
amplitude positive coefficients in a central group of electrodes
centered around AFFh1, Fz and F1, vs. a surrounding area of
electrodes with negative coefficients (Figure 2). Accordingly,
the average of the sensitivity profiles shows that the Wind
filters are particularly sensitive to the anterior part of the left
superior gyrus, corresponding to the left DMPFC, as expected.
Slight inter-individual differences in the Wind filter’s coefficient
weights conformation and the respective cortical sensitivity
profile can be seen in the individual data (see individual filters
in Supplementary Material). When comparing different spatial
filters, at first glance, the sensitivity profiles of all filters appear
to share the same characteristics, with higher sensitivity to the
region around the left DMPFC. However, by basing this on
a grand-average result, we might miss relevant differences in
the individual results. To account for that, we performed an
intra-subject correlation analysis of the sensitivity profiles and
compared the resulting correlation coefficients. This revealed a
significantly lower correlation between the sensitivity profiles
from the Wind filter and other filters, compared to the correlation
between these other filters (Table 1). This suggests that, on an
individual scale, the individual filters Wind are more sensitive
to different regions of the cortex, compared to the non-
individual filters.

This particularity of the Wind filter is probably responsible for
considerable differences in the spatially filtered signal, compared
to other filters, as observed in the power spectra of the yielded
signal. Using only a single electrode as source (WA), the resulting
average power spectrum reveals the theta oscillation with little
distinction with the alpha oscillation, both with lower power
than higher frequency beta oscillations (Figure 2A). Using a
Hjorth montage centered around that channel (WH) successfully
suppresses the alpha, but with little gain to the SNR of theta
(Figure 2B). Using the average of the individual filters, there
is some gain in the theta SNR (Wavg, Figure 2C). It is only
when using the respective individual filters Wind that we obtain
a significantly higher SNR in the theta band (Figure 2D). On
an important note, here we observe that, regardless of the spatial
filter used, the average frequency peak of the local theta oscillation
is around 6–7 Hz. The phase correlation was highest between
the Wavg and Wind filters, followed by WH and other filters,
and the lowest phase correlation being between WA and other
filters (Table 2).

The analysis of the stability of theta oscillation also shows
difference between the yielded signal from the spatial filters.
The intervals of theta oscillation between phase-slips were
significantly longer in the signal from the individual source-
based spatial filter. Interference from other cortical oscillations
could have affected the phase progression estimation of the theta
oscillation, leading to an overestimation of phase slips and thus
shorter epochs between these events, especially in the signal from
non-individualized filters (Figure 2).
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FIGURE 1 | (A) Average distribution of the signal-to-noise ratio (SNR) of the theta oscillation projected in the source space, including all 18 subjects, plotted on an
averaged cortical model. (B) Cortical site (red dot) set as the region of interest for the EEG source activity estimation, centered on the left DMPFC.

FIGURE 2 | (A) Topographical plot displaying the EEG channels’ coefficient weighs of the respective filter. Cortical surface plots show the sensitivity profile of the
respective filter, averaged across all subjects. The coefficient weights are given in arbitrary units, and are here normalized across all individuals using the standard
score (z-value). Note that for the Wind filter the values are different for each subject, and its average is depicted in Wavg. Also, results using the Wind filter involved the
application of the individual filter for each subject, and thus cannot be shown as a single topographical plot. (B) Power spectra of the resting-state EEG signal,
obtained by using the respective spatial filters, averaged across all subjects (shaded area corresponds to ± 1 SEM). Data is depicted in form of
Signal-to-Noise-Ratio. (ANOVA, p = 0.0055; post-hoc WA = WH < Wind). (C) Distribution of the time lengths of epochs between phase slip events of the theta
oscillation. Red line and text indicate the median of the respective distribution (ANOVA, p = 0.0009; post-hoc WA < WH = Wavg < Wind).

Spatial Filters and Theta Oscillation
Constraints in the Phase-Detection
Algorithm
Here we investigate the procedures that may optimize the
accuracy of the phase-detection method. We define the
“accuracy” as deviation of the phase indicated by the real-
time algorithm with respect to the “gold-standard phase,”
with higher accuracy representing higher overall agreement
between these phases.

The choice of spatial filter significantly impacted the phase
estimation, with increased accuracy observed when using the
Wind filters, followed by the use of Wavg filters, and with the
lowest accuracy when using the WA and WH filters (Figure 3).
Note that the difference is not in terms of the average phase
error itself (i.e., the average difference between the estimated
phase and the gold-standard) but in the standard deviation of
that difference. In other words, on average all conditions have a
very high accuracy, with the error close to 0 degrees. However,
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TABLE 1 | Correlation matrix showing the comparison of the correlation
coefficients between sensitivity profiles from the respective filters, averaged across
all subjects (ANOVA, p = 0.0025; post-hoc [Wind vs. WA, WH, Wavg] < [WH vs.
WA]† < [Wavg vs. WA, WH]††).

WA WH Wavg Wind

WA 1 0.69† 0.73†† 0.48

WH 1 0.74†† 0.46

Wavg 1 0.55

Wind 1

TABLE 2 | Correlation matrix showing the correlation coefficients of the phases of
prefrontal theta oscillation in the signal resulting from the respective filters,
averaged across all subjects (Kruskal-Wallis test, p < 0.0001; post-hoc [WA vs.
WH, Wavg, Wind] < [WH vs. Wavg, Wind] † < [Wavg vs. Wind] ††).

WA WH Wavg Wind

WA 1 0.02 0.05 0.03

WH 1 0.15† 0.12†

Wavg 1 0.25††

Wind 1

higher standard deviations mean that a larger proportion of trials
had a higher phase estimation error. This can be exemplified
by calculating the proportion of instances where the phase
error exceeded the pre-established threshold. Setting a limit
of ± 45◦, we observe that either when using the WA and
WH filters, 48% of the phase estimations are within that limit,
whereas when using the Wind filter, this number rises to
52% (Figure 3).

A limitation of this method is that the “gold-standard” signal
was different for each filter. Therefore, each of the phase-
detection simulations was compared with respect to the “gold-
standard” signal yielded by the same filter. As a consequence,
the method does not take into account the possibility that the
yielded signal, instead of detecting the actual prefrontal theta,
might correspond to other oscillatory modes from different
cortical regions. Therefore, if we were to assume that the
Wind is more sensitive to the true underlying prefrontal
theta, the actual increase in the phase accuracy by using the
Wind in comparison to filters WA and WH might be much
larger. This possibility is strengthened by the findings of low
correlation between the filters’ sensitivity profiles, and also by
the lower phase stability of the theta oscillations yielded by
non-individualized filters (Figure 2). Finally, we investigated
the correlation between the phases of the theta oscillation at
the same given epochs in the signal from these filters, and
observed a low correlation between the theta phases from
the WA and the WH compared with other filters, with the
highest agreement being between Wavg and Wind, further
suggesting that other oscillations of non-interest are confounding
the phase estimation when non-individual filters are used to
extract the signal.

We also aimed to further increase the accuracy of the
phase-detection by taking into account the dynamics of
the prefrontal theta oscillation, which involved adding

the phase stability and amplitude threshold constrains to
guarantee that the phase-detection would be performed during
stable signal segments. These constrains were observed to
individually contribute to the increase of the phase-detection
accuracy (Figure 3).

Performance in Real-Time
As a proof of concept, we proceeded to applying the real-
time phase-detection algorithm using the specifications above,
including the Wind filter as well as phase stability and amplitude
constraints, in order to deliver theta phase-specific TMS pulses
to the left DMPFC. By analyzing the resulting signal from the
real-time phase-detection, we observed that the averaged signal of
the pre-stimulus epochs closely resembles the simulations shown
in Figure 3, with at least 2 distinct theta cycles observed prior
to the trigger, peak amplitude between −200 to −100 ms with
respect to the TMS trigger (Figure 4A). By estimating the theta
phase using whole epochs, “gold-standard phase,” we can observe
the phase of the theta oscillation where each trigger was placed,
thus allowing proper estimation of the real-time phase-detection
accuracy. The results showed values similar to the accuracies
obtained in the simulation, with 55.7% of the estimations being
within ± 45◦ accuracy in the negative peak, and 56.4% in the
positive peak (Figure 4B).

When observing the signal in the epochs where real TMS was
applied, we notice that the averaged pre-stimulus signal resembles
the simulations and the non-stimulated epochs, as expected.
Moreover, we also see a massive electrical artifact caused by
the TMS pulse in the EEG and the consequent brain response
to direct stimulation. These can severely distort the phase
estimation, which is the reason behind the need for accuracy tests
to be performed on non-stimulated epochs, marking the EEG as
if a real TMS pulse was applied.

DISCUSSION

The objective of this study was to develop a method to apply TMS
phase-locked to the ongoing theta oscillation of the left DMPFC
of healthy human subjects. We have adapted our previous
algorithm, designed to detect the phases of the sensorimotor
µ-rhythm in real-time, to now trigger stimuli phase-locked to
the ongoing prefrontal theta oscillation. Importantly, this was
possible by taking into consideration the individual anatomical
location of the signal’s source and the particularities of the theta
oscillation dynamics.

For this purpose, we used individual filters based on source
for extracting the EEG signal in real time from the region
of interest. The higher SNR in the theta band of the signal
yielded by the individual filters suggest a higher accuracy in
detecting the signal from the DMPFC (Figure 2). Moreover, the
estimated sensitivity profile of the individual filters presented a
low correlation with other filters. This suggests that individual
differences in the variables used to produce the filter (cortical
anatomy, EEG electrodes position over the scalp, resting-
state EEG signal and its covariance matrix) are relevant to
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FIGURE 3 | (A) Time course plots display the averaged epochs obtained by running the real-time phase detection algorithm with resting-state EEG, with data
obtained by using each spatial filter. Here only trials that were classified as positive peak (red) and negative peak (blue) were included. Time = 0 refers to the time
point the theta phase was being estimated. Columns display the results from each spatial filter. (B) Phase histograms show the accuracy of the phase estimation
from each spatial filter, obtained by subtracting the estimated phase of all epochs by their corresponding “gold-standard” phase (phase-bin width 20◦, inner ring
corresponds to 10% of the total trials). Below are the circular averages and standard deviations of the results, and the proportion of epochs within ± 45◦ accuracy
(ANOVA, p = 0.0025; post-hoc WA = WH < Wavg < Wind). (C) Time course plots display the averaged epochs obtained by running the real-time phase detection
algorithm with resting-state EEG (as in A), with data obtained by using the Wind filter and followed by different signal constraints: Phase stability, signal amplitude and
both phase stability and amplitude constraints. (D) Phase histograms show the accuracy of the phase estimation (as in B) from the signal after application of each
constraint (ANOVA, p = 0.0002; post-hoc [NO constraints] < [phase stability] = [amplitude] < [phase stability AND amplitude]).

be taken into account in designing a spatial filter to detect
prefrontal theta oscillation. This personalized approach might
have been responsible for a significantly higher accuracy in

the real-time phase detection algorithm when this filter was
applied (Figure 3), as the higher SNR in the theta band
provided by this filter is expected to increase the accuracy
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FIGURE 4 | (A) EEG signal generated by the individual filter Wind, averaged across all subjects and trials around the trigger (time 0 s) located by the phase detection
algorithm in the non-stimulated trials (red: positive peak; blue: negative peak). (B) Phase histogram of the estimated phases of the oscillation in the theta band at the
time of the trigger, divided by trials triggered on the negative peak and positive peak (phase-bin width 20◦, inner ring corresponds to 10% of the total trials). (C) EEG
signal generated by the individual filter Wind, averaged across all subjects and trials around the trigger (time 0 s) located by the phase detection algorithm in the
stimulated trials (red: positive peak; blue: negative peak; green: random phase). Note the large TMS artifact and TMS-evoked EEG potentials.

of phase detection compared to other filters (Zrenner et al.,
2020). However, for the purposes of estimating the phase
accuracy, the signal for both the phase-detection simulation
and for obtaining the “gold-standard phases” were produced
by the same respective filter being examined. This means that
the estimated accuracy does not account for the possibility
that other oscillatory activities might be overriding the phase-
detection, meaning that the phase inaccuracy with respect to
the “real prefrontal theta” might be even greater. Properly
identifying the “real theta” originating from the DMPFC would
need to involve invasive electrophysiological recordings, and is
beyond our present possibilities. Nevertheless, we can estimate
a possible best candidate based on the indirect evidences
available. At first, assuming that the preferential oscillatory
mode region of interest is in the theta band, we can suppose
that both the individual filters and its grand average are likely
to be more accurate in extracting the “real prefrontal theta”
than the other filter options, given the higher SNR of that
oscillation in the yielded signal. This is reflected in the higher
correlation between the phases of the theta oscillation of the
signal yielded by these filters, with little agreement with the
phases produced by the Hjorth montage and even smaller when
using a single electrode, further suggesting that the signals
being enhanced by these filters are of different origin. Finally,
the lower stability of theta oscillations observed in the signal
from non-individual filters suggests the existence of considerable
interference with other oscillatory activities, falsely resembling
theta phase slips. Conversely, longer durations of stable theta
oscillation epochs were observed using the individual filter,
which are closer to what has been reported in a previous
study using invasive cortical recordings, with theta oscillation
durations of on average 650 ms (Kahana et al., 1999). These
reported values, however, are far above what we obtained,
which is expected given that the signal was obtained during
the execution of a continuous visuospatial task, which is
more likely to recruit more stable theta oscillation, compared
to the resting state used in our experiment. Moreover, the
values reported in the aforementioned study were obtained
through invasive recordings, which provides considerable

protection from contamination from distant oscillatory signals
compared to scalp EEG. Interestingly, the upper limit (95%
percentile) of stable theta epochs was found to be around
1,500 ms in both our results and the aforementioned report
(Kahana et al., 1999).

Taking into consideration the transient nature of the theta
oscillation also significantly increased the method’s accuracy.
Creating constraints to avoid triggering during epochs of low
theta power or theta phase shifts were independently responsible
for increasing the accuracy (Figure 3). The relevance of these
phenomena can also be seen in the final results: When averaging
the non-stimulated trials, at least two cycles of an oscillation
in the theta frequency-band prior to the stimulus marker can
clearly be identified (Figure 4C). It should be noted that phase-
locking to the sensorimotor µ-rhythm yields a continuous
oscillation pattern, which extends up to 4–5 cycles prior to the
trigger (Zrenner et al., 2018). This is not expected in phase-
locking to the prefrontal theta rhythm, as this oscillation, as
already mentioned, was found to occur in well-defined epochs
of only a few hundred milliseconds, prone to sporadic shifts
in amplitude and phase resetting (Kahana et al., 1999; Rizzuto
et al., 2006; Rutishauser et al., 2010), resulting in the oscillatory
activity averaging out the further it is from the time point of
interest (TMS trigger). The application of these constraints was
necessary to properly achieve accurate real-time phase-detection
of the prefrontal theta oscillation. The resulting algorithm
was found to be effective, with its accuracy in triggering at
the desired phase being comparable to previously published
phase-triggering algorithms (Siegle and Wilson, 2014; Blackwood
et al., 2018; Zrenner et al., 2018; Madsen et al., 2019), and
in line with the limitations imposed by the SNR of the data
(Zrenner et al., 2020).

A limitation of this study is that we did not analyze
the response signal produced by the different stimulation
conditions. Although the stimuli applied to different phases
of theta might have led to different cortical responses, it
is exceedingly challenging to investigate these differences in
the EEG signal response, given that the ongoing oscillations
influence the resulting signal (Desideri et al., 2019). Differences
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in stimulating opposite phases of the prefrontal theta oscillation
could be better detected by methods unbiased by the pre-stimulus
EEG, such as functional MRI or near-infrared spectroscopy.
Another unbiased output is behavioral performance. It has
been shown that TMS pulses applied during different phases
of the prefrontal theta oscillation have different effects on
cognition. More precisely, after applying a series of TMS pulses
to subjects performing a working memory task, the accuracy
of trials was influenced by the phase of the prefrontal theta
during which the TMS pulse was delivered (Berger et al.,
2019). Although that study relied on estimating the phase
of each trial post hoc, by using the method described here
it is possible to investigate the effects of cortical stimulation
during specific theta phases on cognition in real-time. The
method can also be applied in differentially modulating cortical
plasticity. The particular role of the theta rhythm in frontal
cortex neuroplasticity has inspired the development of a
stimulation protocol that delivers repetitive TMS bursts of
50 Hz at a carrier frequency of 5 Hz, and was termed
accordingly theta-burst stimulation (TBS) (Huang et al., 2005).
Nevertheless, despite the clinical success of TBS, it has not
been shown to be superior to standard repetitive TMS protocols
(Blumberger et al., 2018). One possible reason is that, although
the stimulation is applied in a theta-frequency band, it does
not take into account the phase of the ongoing endogenous
oscillation. Future studies should determine whether EEG-
informed brain-state-dependent repetitive TMS, targeting, e.g.,
the negative peak of the theta-rhythm in prefrontal cortex
indeed leads to neuroplastic changes that are significantly
different when compared to random-phase stimulation. The
capability of applying repetitive theta phase-locked cortical
stimuli demonstrated in this study could potentially be used
as neuroplasticity inducing non-invasive brain stimulation, with
potential clinical applications.

CONCLUSION

Results support the feasibility of synchronizing TMS accurately to
a specific phase of the local theta oscillation in DMPFC informed
by EEG data analyzed in real time and source space. They
may also be relevant for devising EEG-informed personalized
therapeutic repetitive TMS protocols for effective treatment of
neuropsychiatric disorders.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Ethik-Kommission an der Medizinischen
Fakultät Eberhard-Karls-Universität Tübingen. The
patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

CZ, PG, and UZ conceived the study and designed the study
protocol. CZ, PG, and BZ set-up the experiment and obtained
ethical approval. PB, CZ, MS, and PG designed the algorithms for
experiments and analyses. PB created the headmodels. PG and
SD conducted the experiments and analyzed the data. CZ, PG,
and BZ performed the spectral analysis. All authors contributed
to the writing of the manuscript.

FUNDING

The authors acknowledge administrative supported by the Anna
Kempf and Dragana Galevska. CZ acknowledges support from
the Clinician Scientist Program at the Faculty of Medicine at
the University of Tübingen (Grant 391-0-0). The project has
received funding from the European Research Council (ERC
Synergy) under the European Union’s Horizon 2020 Research
and Innovation Programme (ConnectToBrain; grant agreement
no. 810377), and from an EXIST Transfer of Research grant by
the German Federal Ministry for Economic Affairs and Energy
(Grant 03EFJBW169).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2021.691821/full#supplementary-material

REFERENCES
Baetens, K. L., Ma, N., and Van Overwalle, F. (2017). The dorsal

medial prefrontal cortex is recruited by high construal of non-
social stimuli. Front. Behav. Neurosci. 11:44. doi: 10.3389/fnbeh.2017.
00044

Berger, B., Griesmayr, B., Minarik, T., Biel, A. L., Pinal, D., Sterr, A., et al. (2019).
Dynamic regulation of interregional cortical communication by slow brain
oscillations during working memory. Nat. Commun. 10:4242. doi: 10.1038/
s41467-019-12057-0

Bergmann, T. O., Molle, M., Schmidt, M. A., Lindner, C., Marshall, L.,
Born, J., et al. (2012). EEG-guided transcranial magnetic stimulation

reveals rapid shifts in motor cortical excitability during the human sleep
slow oscillation. J. Neurosci. 32, 243–253. doi: 10.1523/JNEUROSCI.4792-
11.2012

Blackwood, E., Lo, M. C., and Alik Widge, S. (2018). Continuous phase estimation
for phase-locked neural stimulation using an autoregressive model for signal
prediction. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018, 4736–4739. doi: 10.1109/
EMBC.2018.8513232

Blumberger, D. M., Vila-Rodriguez, F., Thorpe, K. E., Feffer, K., Noda, Y., Giacobbe,
P., et al. (2018). Effectiveness of theta burst versus high-frequency repetitive
transcranial magnetic stimulation in patients with depression (THREE-D): a
randomised non-inferiority trial. Lancet 391, 1683–1692. doi: 10.1016/S0140-
6736(18)30295-2

Frontiers in Human Neuroscience | www.frontiersin.org 11 June 2021 | Volume 15 | Article 691821

https://www.frontiersin.org/articles/10.3389/fnhum.2021.691821/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2021.691821/full#supplementary-material
https://doi.org/10.3389/fnbeh.2017.00044
https://doi.org/10.3389/fnbeh.2017.00044
https://doi.org/10.1038/s41467-019-12057-0
https://doi.org/10.1038/s41467-019-12057-0
https://doi.org/10.1523/JNEUROSCI.4792-11.2012
https://doi.org/10.1523/JNEUROSCI.4792-11.2012
https://doi.org/10.1109/EMBC.2018.8513232
https://doi.org/10.1109/EMBC.2018.8513232
https://doi.org/10.1016/S0140-6736(18)30295-2
https://doi.org/10.1016/S0140-6736(18)30295-2
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-691821 June 15, 2021 Time: 18:36 # 12

Gordon et al. Theta-Phase Real-Time TMS

Buzsaki, G., and Draguhn, A. (2004). Neuronal oscillations in
cortical networks. Science 304, 1926–1929. doi: 10.1126/science.10
99745

Cavanagh, J. F., and Frank, M. J. (2014). Frontal theta as a mechanism for cognitive
control. Trends Cogn. Sci. 18, 414–421. doi: 10.1016/j.tics.2014.04.012

Desideri, D., Zrenner, C., Ziemann, U., and Belardinelli, P. (2019). Phase
of sensorimotor mu-oscillation modulates cortical responses to transcranial
magnetic stimulation of the human motor cortex. J. Physiol. 597, 5671–5686.
doi: 10.1113/JP278638

Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao,
R., et al. (2020). Parameterizing neural power spectra into periodic and
aperiodic components. Nat. Neurosci. 23, 1655–1665. doi: 10.1038/s41593-020-
00744-x

Dunlop, K., Gaprielian, P., Blumberger, D., Daskalakis, Z. J., Kennedy, S. H.,
Giacobbe, P., et al. (2015). MRI-guided dmPFC-rTMS as a treatment for
treatment-resistant major depressive disorder. J. Vis. Exp. 102, e53129. doi:
10.3791/53129

Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774–781. doi: 10.1016/j.neuroimage.
2012.01.021

Freeman, W. J. (2004a). Origin, structure, and role of background EEG activity.
Part 1. Analytic amplitude. Clin. Neurophysiol. 115, 2077–2088. doi: 10.1016/j.
clinph.2004.02.029

Freeman, W. J. (2004b). Origin, structure, and role of background EEG activity.
Part 2. Analytic phase. Clin. Neurophysiol. 115, 2089–2107. doi: 10.1016/j.
clinph.2004.02.028

Fries, P. (2015). Rhythms for cognition: communication through
coherence. Neuron 88, 220–235. doi: 10.1016/j.neuron.2015.
09.034

Fujisawa, S., and Buzsaki, G. (2011). A 4 Hz oscillation adaptively synchronizes
prefrontal, VTA, and hippocampal activities. Neuron 72, 153–165. doi: 10.1016/
j.neuron.2011.08.018

Groppa, S., Oliviero, A., Eisen, A., Quartarone, A., Cohen, L. G., Mall, V., et al.
(2012). A practical guide to diagnostic transcranial magnetic stimulation: report
of an IFCN committee. Clin. Neurophysiol. 123, 858–882. doi: 10.1016/j.clinph.
2012.01.010

Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsaki, G. (2003).
Organization of cell assemblies in the hippocampus. Nature 424, 552–556.
doi: 10.1038/nature01834

Hjorth, B. (1975). An on-line transformation of EEG scalp
potentials into orthogonal source derivations. Electroencephalogr.
Clin. Neurophysiol. 39, 526–530. doi: 10.1016/0013-4694(75)
90056-5

Holscher, C., Anwyl, R., and Rowan, M. J. (1997). Stimulation on the
positive phase of hippocampal theta rhythm induces long-term potentiation
that can Be depotentiated by stimulation on the negative phase in area
CA1 in vivo. J. Neurosci. 17, 6470–6477. doi: 10.1523/jneurosci.17-16-064
70.1997

Huang, Y.-Z., Edwards, M. J., Rounis, E., Bhatia, K. P., and Rothwell, J. C.
(2005). Theta burst stimulation of the human motor cortex. Neuron 45,
201–206.

Hyman, J. M., Wyble, B. P., Goyal, V., Rossi, C. A., and Hasselmo, M. E. (2003).
Stimulation in hippocampal region CA1 in behaving rats yields long-term
potentiation when delivered to the peak of theta and long-term depression
when delivered to the trough. J. Neurosci. 23, 11725–11731. doi: 10.1523/
jneurosci.23-37-11725.2003

Ishii, R., Shinosaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T.,
et al. (1999). Medial prefrontal cortex generates frontal midline theta
rhythm. Neuroreport 10, 675–679. doi: 10.1097/00001756-199903170-
00003

Kahana, M. J., Sekuler, R., Caplan, J. B., Kirschen, M., and Madsen,
J. R. (1999). Human theta oscillations exhibit task dependence
during virtual maze navigation. Nature 399, 781–784. doi: 10.1038/
21645

Klausberger, T., Marton, L. F., Baude, A., Roberts, J. D., Magill, P. J., and
Somogyi, P. (2004). Spike timing of dendrite-targeting bistratified cells during
hippocampal network oscillations in vivo. Nat. Neurosci. 7, 41–47. doi: 10.1038/
nn1159

Lega, B. C., Jacobs, J., and Kahana, M. (2012). Human hippocampal theta
oscillations and the formation of episodic memories. Hippocampus 22, 748–761.
doi: 10.1002/hipo.20937

Lisman, J., and Buzsaki, G. (2008). A neural coding scheme formed by the
combined function of gamma and theta oscillations. Schizophr. Bull. 34, 974–
980. doi: 10.1093/schbul/sbn060

Madsen, K. H., Karabanov, A. N., Krohne, L. G., Safeldt, M. G., Tomasevic, L.,
and Siebner, H. R. (2019). No trace of phase: corticomotor excitability is not
tuned by phase of pericentral mu-rhythm. Brain Stimul. 12, 1261–1270. doi:
10.1016/j.brs.2019.05.005

Onton, J., Delorme, A., and Makeig, S. (2005). Frontal midline EEG dynamics
during working memory. Neuroimage 27, 341–356. doi: 10.1016/j.neuroimage.
2005.04.014

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J. M. (2011). FieldTrip:
Open source software for advanced analysis of MEG, EEG, and invasive
electrophysiological data. Comput. Intell. Neurosci. 2011:156869. doi: 10.1155/
2011/156869

Pavlides, C., Greenstein, Y. J., Grudman, M., and Winson, J. (1988). Long-term
potentiation in the dentate gyrus is induced preferentially on the positive
phase of theta-rhythm. Brain Res. 439, 383–387. doi: 10.1016/0006-8993(88)
91499-0

Piva, M., Velnoskey, K., Jia, R., Nair, A., Levy, I., and Chang, S. W.
(2019). The dorsomedial prefrontal cortex computes task-invariant relative
subjective value for self and other. Elife 8:e44939. doi: 10.7554/eLife.
44939

Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., and Kahana,
M. J. (2006). Human neocortical oscillations exhibit theta phase differences
between encoding and retrieval. Neuroimage 31, 1352–1358. doi: 10.1016/j.
neuroimage.2006.01.009

Ruddy, K. L., Woolley, D. G., Mantini, D., Balsters, J. H., Enz, N., and Wenderoth,
N. (2017). Improving the quality of combined EEG-TMS neural recordings:
Introducing the coil spacer. J. Neurosci. Methods 294, 34–39. doi: 10.1016/j.
jneumeth.2017.11.001

Rutishauser, U., Ross, I. B., Mamelak, A. N., and Schuman, E. M. (2010).
Human memory strength is predicted by theta-frequency phase-
locking of single neurons. Nature 464, 903–907. doi: 10.1038/nature
08860

Sauseng, P., Griesmayr, B., Freunberger, R., and Klimesch, W. (2010). Control
mechanisms in working memory: a possible function of EEG theta oscillations.
Neurosci. Biobehav. Rev. 34, 1015–1022. doi: 10.1016/j.neubiorev.2009.
12.006

Sauseng, P., Hoppe, J., Klimesch, W., Gerloff, C., and Hummel, F. C. (2007).
Dissociation of sustained attention from central executive functions: local
activity and interregional connectivity in the theta range. Eur. J. Neurosci. 25,
587–593. doi: 10.1111/j.1460-9568.2006.05286.x

Schaworonkow, N., Caldana Gordon, P., Belardinelli, P., Ziemann, U., Bergmann,
T. O., and Zrenner, C. (2018). mu-Rhythm extracted with personalized
EEG Filters correlates with corticospinal excitability in real-time phase-
triggered EEG-TMS. Front. Neurosci. 12:954. doi: 10.3389/fnins.2018.
00954

Siapas, A. G., Lubenov, E. V., and Wilson, M. A. (2005). Prefrontal phase locking
to hippocampal theta oscillations. Neuron 46, 141–151. doi: 10.1016/j.neuron.
2005.02.028

Siegle, J. H., and Wilson, M. A. (2014). Enhancement of encoding and retrieval
functions through theta phase-specific manipulation of hippocampus. Elife 3,
e03061. doi: 10.7554/eLife.03061

Stenroos, M., and Nummenmaa, A. (2016). Incorporating and compensating
cerebrospinal fluid in surface-based forward models of magneto- and
electroencephalography. PLoS One 11:e0159595. doi: 10.1371/journal.pone.
0159595

Stenroos, M., and Sarvas, J. (2012). Bioelectromagnetic forward problem: isolated
source approach revis(it)ed. Phys. Med. Biol. 57, 3517–3535. doi: 10.1088/0031-
9155/57/11/3517

Tenke, C. E., and Kayser, J. (2012). Generator localization by current source density
(CSD): implications of volume conduction and field closure at intracranial
and scalp resolutions. Clin. Neurophysiol. 123, 2328–2345. doi: 10.1016/j.clinph.
2012.06.005

Frontiers in Human Neuroscience | www.frontiersin.org 12 June 2021 | Volume 15 | Article 691821

https://doi.org/10.1126/science.1099745
https://doi.org/10.1126/science.1099745
https://doi.org/10.1016/j.tics.2014.04.012
https://doi.org/10.1113/JP278638
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.3791/53129
https://doi.org/10.3791/53129
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.clinph.2004.02.029
https://doi.org/10.1016/j.clinph.2004.02.029
https://doi.org/10.1016/j.clinph.2004.02.028
https://doi.org/10.1016/j.clinph.2004.02.028
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1016/j.neuron.2011.08.018
https://doi.org/10.1016/j.neuron.2011.08.018
https://doi.org/10.1016/j.clinph.2012.01.010
https://doi.org/10.1016/j.clinph.2012.01.010
https://doi.org/10.1038/nature01834
https://doi.org/10.1016/0013-4694(75)90056-5
https://doi.org/10.1016/0013-4694(75)90056-5
https://doi.org/10.1523/jneurosci.17-16-06470.1997
https://doi.org/10.1523/jneurosci.17-16-06470.1997
https://doi.org/10.1523/jneurosci.23-37-11725.2003
https://doi.org/10.1523/jneurosci.23-37-11725.2003
https://doi.org/10.1097/00001756-199903170-00003
https://doi.org/10.1097/00001756-199903170-00003
https://doi.org/10.1038/21645
https://doi.org/10.1038/21645
https://doi.org/10.1038/nn1159
https://doi.org/10.1038/nn1159
https://doi.org/10.1002/hipo.20937
https://doi.org/10.1093/schbul/sbn060
https://doi.org/10.1016/j.brs.2019.05.005
https://doi.org/10.1016/j.brs.2019.05.005
https://doi.org/10.1016/j.neuroimage.2005.04.014
https://doi.org/10.1016/j.neuroimage.2005.04.014
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/0006-8993(88)91499-0
https://doi.org/10.1016/0006-8993(88)91499-0
https://doi.org/10.7554/eLife.44939
https://doi.org/10.7554/eLife.44939
https://doi.org/10.1016/j.neuroimage.2006.01.009
https://doi.org/10.1016/j.neuroimage.2006.01.009
https://doi.org/10.1016/j.jneumeth.2017.11.001
https://doi.org/10.1016/j.jneumeth.2017.11.001
https://doi.org/10.1038/nature08860
https://doi.org/10.1038/nature08860
https://doi.org/10.1016/j.neubiorev.2009.12.006
https://doi.org/10.1016/j.neubiorev.2009.12.006
https://doi.org/10.1111/j.1460-9568.2006.05286.x
https://doi.org/10.3389/fnins.2018.00954
https://doi.org/10.3389/fnins.2018.00954
https://doi.org/10.1016/j.neuron.2005.02.028
https://doi.org/10.1016/j.neuron.2005.02.028
https://doi.org/10.7554/eLife.03061
https://doi.org/10.1371/journal.pone.0159595
https://doi.org/10.1371/journal.pone.0159595
https://doi.org/10.1088/0031-9155/57/11/3517
https://doi.org/10.1088/0031-9155/57/11/3517
https://doi.org/10.1016/j.clinph.2012.06.005
https://doi.org/10.1016/j.clinph.2012.06.005
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-691821 June 15, 2021 Time: 18:36 # 13

Gordon et al. Theta-Phase Real-Time TMS

Van Veen, B. D., van Drongelen, W., Yuchtman, M., and Suzuki, A. (1997).
Localization of brain electrical activity via linearly constrained minimum
variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880. doi: 10.1109/
10.623056

Wen, H., and Liu, Z. (2016). Separating fractal and oscillatory components in
the power spectrum of neurophysiological signal. Brain Topogr. 29, 13–26.
doi: 10.1007/s10548-015-0448-0

Winson, J. (1978). Loss of hippocampal theta rhythm results in spatial
memory deficit in the rat. Science 201, 160–163. doi: 10.1126/science.
663646

Zavala, B., Jang, A., Trotta, M., Lungu, C. I., Brown, P., and Zaghloul, K. A.
(2018). Cognitive control involves theta power within trials and beta power
across trials in the prefrontal-subthalamic network. Brain 141, 3361–3376. doi:
10.1093/brain/awy266

Zrenner, C., Desideri, D., Belardinelli, P., and Ziemann, U. (2018). Real-time
EEG-defined excitability states determine efficacy of TMS-induced plasticity
in human motor cortex. Brain Stimul. 11, 374–389. doi: 10.1016/j.brs.2017.
11.016

Zrenner, C., Galevska, D., Nieminen, J. O., Baur, D., Stefanou, M. I.,
and Ziemann, U. (2020). The shaky ground truth of real-time phase
estimation. Neuroimage 214:116761. doi: 10.1016/j.neuroimage.2020.
116761

Conflict of Interest: PG, CZ, and BZ report funding through the EXIST
translational research program from the German Federal Ministry for Economic
Affairs and Energy, with the goal of commercializing the real-time EEG-TMS
device used in this study and CZ and BZ report an interest in and employment by
the spin-off company resulting from this grant (sync2brain GmbH, Tübingen). UZ
received grants from the German Ministry of Education and Research (BMBF),
European Research Council (ERC), German Research Foundation (DFG), Janssen
Pharmaceuticals NV and Takeda Pharmaceutical Company Ltd., and consulting
fees from Bayer Vital GmbH, Pfizer GmbH, and CorTec GmbH, all not related to
this work.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Gordon, Dörre, Belardinelli, Stenroos, Zrenner, Ziemann and
Zrenner. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 13 June 2021 | Volume 15 | Article 691821

https://doi.org/10.1109/10.623056
https://doi.org/10.1109/10.623056
https://doi.org/10.1007/s10548-015-0448-0
https://doi.org/10.1126/science.663646
https://doi.org/10.1126/science.663646
https://doi.org/10.1093/brain/awy266
https://doi.org/10.1093/brain/awy266
https://doi.org/10.1016/j.brs.2017.11.016
https://doi.org/10.1016/j.brs.2017.11.016
https://doi.org/10.1016/j.neuroimage.2020.116761
https://doi.org/10.1016/j.neuroimage.2020.116761
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Prefrontal Theta-Phase Synchronized Brain Stimulation With Real-Time EEG-Triggered TMS
	Introduction
	Materials and Methods
	Subjects and Design
	EEG and TMS
	Experimental Session
	Imaging and Head Model
	EEG Source Activity Estimation
	Spatial Filters Comparison
	Real-Time Phase Estimation Algorithm
	Simulating the Performance of the Phase Estimation Methods
	Real-Time Closed-Loop Data Processing Set-Up
	Statistics

	Results
	Performance of Spatial Filters
	Spatial Filters and Theta Oscillation Constraints in the Phase-Detection Algorithm
	Performance in Real-Time

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


