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Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized
by the collapse of the femoral head. SONFH occurs due to the overuse of
glucocorticoids (GCs) in patients with immune-related diseases. Among various
pathogenesis proposed, the mechanism related to impaired blood vessels is
gradually becoming the most convincing hypothesis. Bone endothelial cells
including bone microvascular endothelial cells (BMECs) and endothelial progenitor
cells (EPCs) play a crucial role in the maintenance of vascular homeostasis. Therefore,
bone endothelial cells are key regulators in the occurrence and progression of SONFH.
Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by
the dysfunctions of bone endothelial cells are considered to be the pathogenesis of
SONFH. In addition, even with high disability rates, SONFH lacks effective therapeutic
approach. Icariin (ICA, a flavonoid extracted from Epimedii Herba), pravastatin, and
VO-OHpic (a potent inhibitor of PTEN) are candidate reagents to prevent and treat
SONFH through improving above pathological processes. However, these reagents
are still in the preclinical stage and will not be widely used temporarily. In this case, bone
tissue engineering represented by co-transplantation of bone endothelial cells and
bone marrow mesenchymal stem cells (BMSCs) may be another feasible therapeutic
strategy.
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INTRODUCTION

Glucocorticoids have been widely used in the treatment of rheumatic diseases, autoimmune diseases
and allergic diseases (Yao et al., 2020). However, long-term or extensive GCs use may lead to steroid-
induced osteonecrosis of the femoral head (SONFH). SONFH is a disabling orthopedic disease,
which is characterized by the progressive deterioration of the hip joint in individuals aged
20–50 years old (Kong et al., 2020; Yu et al., 2020). Although many pathophysiological
mechanisms for SONFH have been proposed, such as impaired microcirculation, imbalance
between osteogenic and adipogenic differentiation, fat embolism, coagulation disorder and
intramedullary pressure change, significant gaps remain in the understanding of the
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pathogenesis of SONFH (Li et al., 2005; Murata et al., 2007; Yeh
et al., 2008; Yue et al., 2021). Among several existing mechanisms
for SONFH, the vascular hypothesis seems to be the most
convincing and influential (Kerachian et al., 2006).

As long ago as 1935, Phemister raised that vascular impairment
led to thrombosis and embolism contributing to the progression of
avascular necrosis of the femoral head (ANFH) (Phemister, 1935). It
was not until Hirano et al. that direct histological evidence, severe
luminal stenosis of the draining vein in the early stages of ANFH,
was observed (Hirano et al., 1997). In another study, Starklint et al.
have found a wide obstruction of vessels in the late stages of ANFH
and the venous outflow is further damaged by thrombus and
perivenous concentric fibrosis, which immensely reduces the
lumen of veins (Starklint et al., 1995). In addition, osteocytes
cannot survive more than 100mm from blood vessels, so it is
widely believed that vascular development always precedes
osteogenesis (Yu et al., 2009). However, with the deepening
understanding of bone formation and repair, “angiogenic-
osteogenic coupling” concept has been established (Riddle et al.,
2009). SONFH is a type of ANFH. As a result, blood vessels play a
key role in the pathogenesis and repair of SONFH. Currently,
vascular hypothesis assumes that GCs could reduce the number
of blood vessels, decrease the regional blood flow of femoral head
and lead to SONFH (Kerachian et al., 2006; Kerachian et al., 2009a).

Bone endothelial cells mainly refer to bone microvascular
endothelial cells (BMECs) and endothelial progenitor cells (EPCs)
that can differentiate into BMECs. BMECs line the sinusoids and
inner layer of blood vessels, which play a crucial role in vascular
homeostasis and angiogenesis (Kusumbe et al., 2014). It is reported
that femoral head microcirculation disorder secondary to BMECs
dysfunction is of great significance in the occurrence and progression
of SONFH (Nishimura et al., 1997; Kerachian et al., 2009b).
Similarly, as the precursor cells of BMECs, EPCs are involved in
maintaining the physiological structure and function of vascular
endothelium (Yao et al., 2020). Several studies have shown that the
number and function of circulating EPCs in patients with SONFH
are impaired (Feng et al., 2010; Chen et al., 2013; Ding P. et al., 2019).
Given to the importance of vascular hypothesis in SONFH,
researches about the effects of BMECs and EPCs on the blood
supply of femoral head are helpful to further understand the
pathogenesis of SONFH.

Moreover, drug treatment (e.g., anticoagulants, fibrinolysis-
enhancing drugs, blood vessel dilatators and lipid-reducing drugs)
combined with hip-preserving surgery (e.g., core decompression,
bone transplantation and osteotomy) can be applied to treat early
ONFH (Zhao et al., 2020). However, these treatments are less
effective, as more than 80% of patients with ONFH eventually
require total hip arthroplasty (THA) (Johnson et al., 2014).
Although THA significantly improves the living quality of
patients, it cannot be considered as the best therapy for ONFH
because of dislocation, periprosthetic fracture, infection and
prosthesis loosening after THA, especially in relatively young
patients (Xu et al., 2021). Therapeutic strategies designed
according to the pathophysiological role of BMECs and EPCs in
SONFH pathogenesis may be effective.

In this review, we summarize the novel roles of bone
endothelial cells in the pathogenesis and treatment of SONFH.

Impaired angiogenesis, abnormal apoptosis, thrombosis and fat
embolism caused by the dysfunctions of bone endothelial cells are
considered to be the pathogenesis of SONFH. Targeting to repair
the amount and function of bone endothelial cells or co-
transplantation of bone endothelial cells and bone marrow
mesenchymal stem cells (BMSCs) may be effective therapeutic
approaches with great application potential. Furthermore, it is
promising to point out the direction of future studies on the
pathogenesis and treatment of SONFH.

BONE MICROVASCULAR ENDOTHELIAL
CELLS

As previously mentioned, BMECs line the interior surface of bone
microvessels and sinuses, maintaining local blood supply in
femoral head. Besides, the reduction of blood flow in femoral
head plays a vital role in the pathogenesis of ANFH (Kerachian
et al., 2006). Therefore, BMECs damage may be the critical factor
to promote the progression of SONFH.

Recent studies have demonstrated the existence of two types of
BMECs: type H and type L endothelial cells (Kusumbe et al.,
2014). Type H BMECs are mainly located in metaphysis and
highly express CD31 and endomucin (EMCN), while type L
BMECs are mainly located in the diaphysis and lowly express
CD31 and EMCN (Zhang J. et al., 2020). Runx2+

osteoprogenitors and collagen type 1α+ osteoblasts are
abundant around the type H BMECs in the metaphysis and
endosteum, suggesting type H BMECs could promote bone repair
and regeneration (Kusumbe et al., 2014). However, there is
almost no osteoprogenitor surrounding type L BMECs
(Kusumbe et al., 2014; Xu et al., 2018). At present, there are
few studies on the role of type H BMECs in the pathogenesis of
SONFH. Some studies have even shown contradictory results,
which may be attributed to the differences in preclinical animal
models (Zhou et al., 2017; Lane et al., 2018; Peng et al., 2020). And
whether targeting type H BMECs can reverse the pathological
processes of SONFH remains unclear. Hence this review mainly
focuses on recent research progresses of BMECs in SONFH.

Animal Experiments of Bone Microvascular
Endothelial Cells
Patients with SONFH have common pathological features of
allergic vasculitis prior to hormone administration (Saito et al.,
1992). Lipopolysaccharide (LPS) stimulates the immune system
and induces the pathological changes of the blood system.
Therefore, the combination of LPS and methylprednisolone
(MPS) to induce SONFH in Sprague-Dawley (SD) rats is
consistent with human clinical pathological features (Saito
et al., 1992). At the same time, femoral tissues of SD rats are
collected for pathological examination to determine whether
SONFH models are successfully established (Drescher et al.,
2011). And the BMECs used in vitro were isolated from the
femoral head of SONFH rat models. Animal experiments
including in vivo and in vitro SONFH models were established
using the above methods.
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So far, mechanisms regarding how the glucocorticoid takes
effect on BMECs in animal experiments mainly focused on
MicroRNAs (miRNAs). miRNAs are a group of small 18–25-
nt-long non-coding RNAs (Krol et al., 2010). They are involved in
plenty of physiological and pathological processes by modulating
the transcription or post-transcriptional translation to silence the
expression of their target genes (Ambros, 2004; Lan et al., 2015).
Four miRNAs differentially expressed in BMECs of SONFH rats
were identified by real-time quantitative polymerase chain
reaction (qPCR) and gene microarray, including two up-
regulated (miR-335, miR-132-3p) and two down-regulated
(miR-466b-2-3p, let-7c-1-3p) (Yue et al., 2018). Moreover, Yue
et al. reported that miR-335 could down-regulate the expression
of endothelial nitric oxide synthase (eNOS), superoxide
dismutase 2 (SOD2) and Ras p21 protein activator 1 (RASA1)
(Yue et al., 2018). eNOS is a specific protease in BMECs, which
has a variety of physiological effects, such as vasodilation, anti-
platelet aggregation, and promoting functional repair of impaired
BMECs (Yue et al., 2018). SOD is an antioxidant enzyme that
catalyzes the reactive oxygen species (ROS) into hydrogen
peroxide and oxygen molecules to inhibit senescence and
apoptosis (Nguyen et al., 2020). RASA1 is a modulator of Ras
GDP and GTP and plays an important role in several
physiological processes such as angiogenesis, cell proliferation
and apoptosis (Zhang Y. et al., 2020). In addition, Lei et al.
observed that miR-132-3p expression was significantly up-
regulated after femoral artery occlusion, and the hind limb
perfusion recovery after ischemia was slower in knockout mice
compared with wild-type mice (Lei et al., 2015; Yue et al., 2018).
Therefore, miR-335 and miR-132-3p may be involved in
regulating the functional repair of impaired BMECs and
angiogenesis in SONFH. However, the effects of rno-let-7c-1-
3p and rno-miR-466b2-3p on proliferation and apoptosis of
BMECs have not been reported (Yue et al., 2018). In the
meantime, no studies have evaluated the role of glucocorticoid
receptor (GR) on BMECs in the pathogenesis of SONFH.
Whereas, a recent study investigated GR on mouse endothelial
cells, identifying the pivotal role of Wnt signaling pathway in
suppressing vascular inflammation via GR (Zhou et al., 2020).
This result may guide the further research of signaling pathways
mediated by GR on BMECs, which function as key factors in
SONFH pathogenesis.

As a flavonoid extracted from Epimedii Herba, Icariin (ICA)
has been widely used to promote bone healing, improve
osteoporosis and SONFH in China, Japan and Korea (Brandi
and Collin-Osdoby, 2006; Zhang et al., 2007; Zhu et al., 2012; Sun
et al., 2015). Yue et al. (2021) observed that though still higher
than the control group, the expression of miR-335 was markedly
decreased after ICA treatment in vivo. What’s more, they also
found ICA had a modulatory effect on 101 unconventionally
expressed target genes of miR-335 (Yue et al., 2021). As a result,
down-regulating the expression of miR-335 may be the
mechanism of ICA to prevent and therapy SONFH. In
addition, Wen et al. (2008a) observed the increased ratio of
empty lacunae, the sparse capillary network, and the partially
blocked blood vessels in necrotic femoral head tissue from
SONFH rabbits. However, ICA treatment can significantly

decrease the rate of empty lacunae and relatively up-regulate
the expression of angiogenic biomarker CD31 in vivo (Yu et al.,
2019). And the tube formation and osteogenesis-related cytokines
expression of BMECs can be stimulated by ICA in vitro (Yu et al.,
2019). These results both in vitro and in vivo suggest that ICA
may be a potential drug in the treatment of SONFH. However, rat
models are far too different from human beings to infer similar
therapeutic roles in humans.

Human Experiments of Bone Microvascular
Endothelial Cells
There are two ways to establish the BMECs model with SONFH
used in human experiments (Lu et al., 2020; Yu et al., 2020). One is to
isolate BMECs from patients with SONFH and indications for THA,
the other is to extract BMECs from patients with femoral neck
fractures who have undergone THA. Yu et al. (2020) demonstrated
that BMECs from SONFH patients had down-regulated angiogenic
abilities. Endothelial function has been reported to decline with an
increasing age in healthy individuals (Yavuz et al., 2008). However,
dysfunction of BMECs was observed even when the mean age of the
control group was significantly older than that of the SONFH group
(Yu et al., 2020). This fully confirms that GCs can promote the
progression of the dysfunction of BMECs from SONFH patients.
However, the research results might not be replicated in the local
microenvironment of the femoral head in the presence of SONFH
because the study was conducted in vitro (Yu et al., 2020).

Similarly, Yu et al. (2019) also reported that hydrocortisone
significantly inhibited the expression of angiogenic cytokines
and the activation of Akt in BMECs, which decreased the
migration and tube formation activities of BMECs.
Angiogenic cytokines including vascular endothelial growth
factor (VEGF), CD31, von Willebrand factor (vWF) and
platelet-derived growth factor-B (PDGF-B) are promotors or
markers of angiogenesis mainly expressed in BMECs (Yang
et al., 2003; Muraoka et al., 2005; Uras et al., 2012; Mittermayr
et al., 2016). It has been reported that the activation of survival
signal PI3K/Akt pathway is related to angiogenesis (Lee et al.,
2014). Since blood supply is critical to the maintenance of
femoral head structure and function, dysfunction of BMECs
and inhibited angiogenesis are potential mechanisms for
SONFH (Kerachian et al., 2006).

Besides, some studies have found that GCs-induced apoptosis
of BMECs can activate thrombosis and decrease angiogenesis,
secondary by infarction and ischemia (Vogt and Schmid-
Schönbein, 2001; Kerachian et al., 2006). B cell lymphoma-2
(Bcl-2), as an oncoprotein, has a significant effect on inhibiting
apoptosis, while Bcl-2 associated X (Bax) has an obvious effect on
promoting apoptosis (Nomura et al., 1999; Delbridge et al., 2016).
Therefore, it’s the balance between Bcl-2 and Bax that determines
apoptosis. Furthermore, caspase-3 is a key factor in the activation
of apoptosis (Porter and Jänicke, 1999). Yu et al. found the
expression of Bcl-2 was significantly down-regulated, while the
expression of Bax and cleaved caspase-3 were increased in
BMECs with SONFH (Yu et al., 2019; Yu et al., 2020). These
results demonstrate that the apoptosis of BMECs functions a lot
in the progression of SONFH.
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In addition to impaired angiogenesis and increased
apoptosis of BMECs, Li et al. (2004) reported that the
hypercoagulability and hypofibrinolysis state induced by
dysfunction of BMECs may be the pathological mechanism
of SONFH as well. eNOS and endothelin 1 (ET-1) are two
vasoactive factors with opposite functions secreted by BMECs,
whose balance plays an important role in regulating vasomotor
(Lu et al., 2020). ET-1 is the strongest vasoconstrictor until
now and acts by binding to receptors on BMECs and vascular
smooth muscle cells, while eNOS is a vasodilator and
anticoagulation that acts by inhibiting the secretion and
function of ET-1, platelet aggregation and intercellular
adhesion (Houde et al., 2016; Hong et al., 2019).
Angiotensin II (Ang II) binds to receptors on BMECs to
inhibit eNOS expression and damage BMECs (Shatanawi
et al., 2015). Prostaglandin I2 (PGI2) is secreted by BMECs
and significantly expands blood vessels and suppresses platelet
aggregation by activating prostacyclin receptors (IP receptors)
in BMECs and platelets (Shatanawi et al., 2015). Prostaglandin
E (PGE) is capable of expanding blood vessels, protecting
BMECs and increasing the expression of eNOS (Fang et al.,
2010). Plasminogen activator inhibitor-1 (PAI-1) is the
inhibitor of tissue plasminogen activator (t-PA) primarily
produced by BMECs, the increased expression of which can
promote intravascular thrombosis (Ghosh and Vaughan,
2012). Intercellular adhesion molecule 1 (ICAM-1), an
important adhesion molecule, mediates adhesion between
leukocytes, inflammatory cells and BMECs (Bui et al.,
2020). Lu et al. found that the expressions of ET-1 receptor,
Ang II receptor and ICAM-1 were dramatically increased and
the expressions of eNOS, PGI2 synthase, PGE synthase, PGE
receptor and VEGF were dramatically decreased after 24-h
GCs treatment (Lu et al., 2020). However, the expression of
ET-1 was dramatically down-regulated, suggesting that the
effect of GCs on BMECs is complex and needs further
investigations. In other words, vasoconstriction and
thrombosis were promoted after GCs-induced BMECs
damage.

Yu et al. (2019) reported that ICA could promote angiogenesis
by up-regulating the expression of CD31, vWF, PDGF-B in
BMECs and activating Akt and reduce the apoptosis of
BMECs by up-regulating Bax and down-regulating the
expression of Bcl-2. Circular RNAs (circRNAs), serve as
endogenous RNAs competing for miRNA binding sites, are
regarded as new modulators of diseases (Wu et al., 2019). Mao
et al. (2021) reported that CircCDR1as, functioning as a sponge
for miR-135b/factor inhibiting hypoxia inducible factor 1 (FIH-
1), reduced the expression of hypoxia inducible factor-1α (HIF-
1α) and VEGF, and thereby inhibited the angiogenesis of BMECs.
Research results above suggest that the administration of ICA or
targeting to inhibit CircCDR1 as may be effective therapeutic
strategies for SONFH. However, the therapeutic approaches are
still in the pre-clinical stage and lack the support of clinical trials.
In addition, there is a short of therapeutic strategies targeting
thrombosis caused by BMECs damage. Therefore, further
investigations are needed in the future in regard to the
thrombosis of SONFH.

ENDOTHELIAL PROGENITOR CELLS

EPCs are considered to be critical participants in endogenous
vascular repair and regeneration by differentiating into mature
endothelial cells (Kim et al., 2010; Balistreri et al., 2015). EPCs are
primarily derived from bone marrow (Asahara et al., 2011). In
addition, a small amount of EPCs are also found in umbilical cord
blood, circulating blood and arterial walls (Doyle and Caplice,
2005; Wu et al., 2005; Finney et al., 2006; Pacilli and Pasquinelli,
2009). According to the difference in culture time, EPCs can be
divided into two subgroups: early EPCs (eEPCs) and late EPCs
(lEPCs) (Patel et al., 2016). In terms of maturation time, eEPCs
appeared 4–7 days after culture, while lEPCs appeared
14–21 days after culture (Yang et al., 2018). eEPCs are
characterized by several surface markers of progenitor cells,
including CD14, CD31, CD34, CD45, CD133 and vWF
(Recchioni et al., 2016). eEPCs have a weak proliferation
capacity, but can secrete a variety of cytokines, such as VEGF,
hepatocyte growth factor (HGF), granulocyte colony-stimulating
factor (G-CSF), and interleukin-8 (IL-8) (Rehman et al., 2003).
However, lEPCs express endothelial markers such as KDR, VE-
cadherin and CD146 with a strong capacity of proliferation and
differentiation (Hirschi et al., 2008; Madonna and De Caterina,
2015). In fact, the antigen expression profile on the surface of
EPCs remains controversial (Werner and Nickenig, 2006; Chen
et al., 2013). When different combinations of surface antigens are
selected, there may be some differences in experimental results
(Ding P. et al., 2019).

EPCs have the potential to differentiate into any kinds of
capillary endothelial cells, including BMECs (Peters, 2018). In
addition, EPCs can be isolated noninvasively from the donors’
own peripheral blood and umbilical cord blood, as well as from
human induced pluripotent stem cells (hiPSCs) to avoid
immunogenicity problems (Boyer et al., 2000; Ingram et al.,
2004; Mead et al., 2008). EPCs-differentiated endothelial
in vitro and in vivo have similar permeability to vessel-derived
endothelial, and are superior to vessel-derived endothelial in
vascular network formation (Peters, 2018). Therefore, EPCs
transplantation to promote angiogenesis at the lesion region
has great prospects. One of the most important pathogenesis
of SONFH is the suppression of angiogenesis caused by
dysfunction of BMECs, so most of the previous studies on
SONFH focused on the changes of BMECs. However, recent
studies have found that EPCs are more involved in vascular repair
and regeneration than BMECs, which makes EPCs the focus of
interest in the pathogenesis and treatment of SONFH (Ding S.
et al., 2019).

Animal Experiments of Endothelial
Progenitor Cells
Animal models for EPCs-related experiments were established by
rats or rabbits treated with LPS and MPS/dexamethasone (Dex).
Reduced blood flow and impaired blood supply to the femoral
head caused by SONFH can lead to increased lactic acid levels
resulting in an acidic local microenvironment (Song et al., 2010).
Ovarian cancer G-protein-coupled Receptor 1 (OGR1) is a key
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receptor involved in sensing proton. Ding S. et al. (2019) found
that OGR1 inhibited the proliferation, migration and
angiogenesis of EPCs induced by acidic environment in
SONFH. It means OGR1 may be a new breakthrough in
treating SONFH. Moreover, it is well-known that stromal cell-
derived factor-1α (SDF-1α), the product of CXCL12, promotes
angiogenesis through the CXCL12/CXCR4 or CXCL12/CXCR7
signaling pathway (Dimova et al., 2019; Zhang et al., 2019). Kong
et al. (2020) demonstrated that transplantation of miR-137-3p-
silenced BMSCs can promote angiogenesis by up-regulating
CXCL12/SDF-1α to mobilize EPCs into circulation. However,
whether CXCL12/CXCR4 or CXCL12/CXCR7 signaling
pathways is involved in the mobilization of EPCs remains
unknown.

In addition to the impaired angiogenesis caused by the damage
of EPCs, the apoptosis of EPCs is also one of the possible
pathogenesises of SONFH. Liao et al. (2017) reported that
suppressed mammalian target of rapamycin (mTOR) signal
induced by the activations of glucocorticoid receptors down-
regulates the HIF pathway and induces EPCs apoptosis, which
may be the pathophysiological mechanism of SONFH.
Meanwhile, there may be certain therapeutic potential in
enhancing mTOR signal. Autophagy is a complex process in
which cells adapt to degrade and recycle intracellular components
under stress conditions, thus promoting cell survival (Hamacher-
Brady et al., 2006; Eisenberg-Lerner et al., 2009). It was observed
that autophagy increased in EPCs treated with Dex, but this
change gradually attenuated with the prolongation of Dex
treatment (Liao et al., 2018). At the same time, prolonged Dex
treatment reduced cell viability, indicating that autophagy is
beneficial for EPCs to respond to Dex stimulation and avoid
damage (Liao et al., 2018). Liao et al. also reported that
pravastatin activated AMP-activated protein kinase (AMPK)
mediated by liver kinase B1 (LKB1), thereby inhibiting the
mTOR signaling pathway, recovering autophagy of EPCs and
protecting them from Dex-induced apoptosis (Liao et al., 2018).
The above studies on mTOR signaling pathway have produced
opposite conclusions, so the mechanism of mTOR signaling
pathway in apoptosis of EPCs remains to be explored.

The extrinsic death receptor pathway and the intrinsic
mitochondrial pathway are two main systems that initiate
apoptosis (Thorburn, 2004). Phosphatase and tensin homolog
(PTEN), a tumor-suppressor gene that enhances apoptosis, has
recently been observed to be significantly elevated in the serum of
patients with SONFH (Kotelevets et al., 2018; Li et al., 2018; Li
et al., 2019). Moreover, Yao et al. (2020) found that GCs can
induce EPCs apoptosis by activating mitochondrial pathway.
VO-OHpic, a potent inhibitor of PTEN, could protect EPCs
from apoptosis through inhibiting mitochondrial pathway (Yao
et al., 2020). They also observed that GCs exposure resulted in
mitochondrial fission and conspicuous abnormalities of ROS
production and mitochondrial membrane potential (MMP),
which promote the apoptosis of EPCs (Yao et al., 2020).
Similarly, VO-OHpic could reverse these changes and protect
EPCs. In addition, nuclear factor erythroid 2-related factor 2
(Nrf2) regulates the production of several antioxidant enzymes
(Tavakkoli et al., 2019). VO-OHpic promotes angiogenesis and

suppresses apoptosis of EPCs by activating Nrf2 (Yao et al., 2020).
Therefore, VO-OHpic may be an effective strategy for the
prevention and therapy of SONFH.

Bone tissue engineering is getting increasingly attractive to
researchers because of the enormous potential for osteogenesis
and angiogenesis. To enhance bone regeneration and
angiogenesis at SONFH lesions, transplantation of BMSCs,
EPCs and co-transplantation of both have been reported so
far. BMSCs are considered to be ideal seed cells for SONFH
treatment due to the enormous potential for self-renewal and
multilineage differentiation, including osteogenesis and
angiogenesis (Chen et al., 2019). However, several studies have
reported that BMSCs isolated from proximal femur and iliac crest
in SONFH patients have decreased osteogenic differentiation
ability, limiting the application of BMSCs transplantation in
SONFH treatment (Hernigou et al., 1999; Houdek et al.,
2016). Although researchers have used gene transfection and
established sustainable-release growth factor biomaterials to
enhance BMSCs’ osteogenic and angiogenic abilities, the harm
of gene transfection to human body and the construction of
suitable biomaterials remain incomplete problems (Wen et al.,
2008b; Wen et al., 2012; Amsden, 2015; Shapiro et al., 2018; Kong
et al., 2019). For EPCs, they are not directly involved in
osteogenesis because they cannot differentiate into osteoblasts
(Xu et al., 2021). Both carboxymethyl chitosan (CMC) and
alginate (ALG) possess outstanding biocompatibility in
enhancing osteogenesis (Upadhyaya et al., 2013; Jain and Bar-
Shalom, 2014). The composite scaffold can not only transport
stem cells, but also provide a beneficial microenvironment for cell
proliferation and intercellular communications (Xu et al., 2021).
Therefore, CMC/ALG/BMSC/EPC composite scaffold have been
developed for SONFH treatment and prevention.

Co-cultured BMECs and EPCs interact with each other
through paracrine and direct intercellular contact to promote
osteogenesis and angiogenesis has been verified as the main
mechanism. Xu et al. demonstrated that BMSCs and EPCs
mutually promote osteogenesis and angiogenesis through the
secretion of various growth factors, such as VEGF and PDGF
(Xu et al., 2021). Moreover, direct contact between EPCs and
BMSCs can lead to endothelial-like phenotypic differentiation of
BMSCs (Joddar et al., 2018). Implanted cells can promote tissue
regeneration through proliferation, differentiation and paracrine
(García-Sánchez et al., 2019). In addition to impaired
osteogenesis and angiogenesis, lipid metabolism disturbance is
another key promotor contributing to SONFH (Zhang et al.,
2018). The imbalance between osteogenic and adipogenic
differentiation of BMSCs may lead to adipocyte hypertrophy
and fat embolism, reducing blood supply to the femoral head
(Fukui et al., 2006). Transcription factors play a critical role in
determining the fate of BMSCs. For instance, Runx2 and BMP-2
are crucial transcription factors that promote osteogenic
differentiation of BMSCs, while PPARγ and C/EBPα are
pivotal transcription factors that enhance adipogenic
differentiation of BMSCs (Xu et al., 2021). The expression of
Runx2 and BMP-2 was up-regulated in the co-cultured cells,
while the expression of PPARγ and C/EBPα was down-regulated,
resulting in BMSCs tending to differentiate into osteoblasts (Xu
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et al., 2021). However, the optimal ratio between BMSCs and
EPCs in a co-transplantation system has yet to be determined.
The SONFH lesion is in a state of hypoxia due to blood supply
disorder, and the ability of proliferation, differentiation and
cytokine secretion of co-cultured cells under hypoxia
circumstances remains to be studied. In conclusion, BMSCs
and EPCs co-transplantation is a promising therapeutic
approach for SONFH.

Human Experiments of Endothelial
Progenitor Cells
Endothelial Progenitor Cells used in human experiments were
isolated and extracted from patients with SONFH. Feng et al.
observed a decrease in the number and function of circulating
EPCs in patients with SONFH, such as suppressed migration,
impaired angiogenesis, and increased senescence (Feng et al.,
2010). Similarly, Ding P. et al. (2019) reported that low doses of
GCs significantly inhibited angiogenesis of EPCs, while only large
doses of GCs could significantly inhibited cell proliferation.
Clinical routine doses of GCs may never reach the threshold
of serum concentration that inhibit EPCs proliferation (Rouster-
Stevens et al., 2008). And the decreased number of EPCs in
patients with SONFH may as a result of the indirect effects of
long-term exposure to GCs (Ding P. et al., 2019). In addition, GCs
can down-regulate the expression of CXCR7 in EPCs and inhibit
the downstream Akt and GSK-3β/Fyn signaling pathways of
SDF-1/CXCR7 (Ding P. et al., 2019). Akt and GSK-3β/Fyn are

involved in the angiogenesis of EPCs, and the up-regulation of
Fyn caused by the decreased phosphorylation of GSK-3β can
promote the degradation of Nrf2 (Torossian et al., 2014; Chen
et al., 2015; Dai et al., 2017).

In addition, Chen et al. (2013) found that the migration and
secretion of eEPCs were inhibited, while the proliferation and
angiogenesis of lEPCs were significantly suppressed, which was
appropriate for their different physiological functions. At the
same time, the number of eEPCs and lEPCs were lower than that
of the control group with similar conditions. Therefore, lEPCs
may be a superior graft for SONFH compared to EPCs. Recent
studies have reported successful enrichment and cultivation of
lEPCs on a large scale, which greatly expanded the application
prospect of lEPCs in bone tissue engineering (Reinisch et al.,
2009; Kolbe et al., 2010).

In injured tissue, cells expressing CXCR4 are recruited through
SDF-1 secreted by surrounding cells to promote healing of the
injury (Ding and Tredget, 2015). Carolina et al. (2018) reported
that GCs inhibited the migration and homing of umbilical cord
blood (UCB) derived human EPCs to injury by down-regulating
CXCR4 expression in both normoxic and hypoxic conditions. In
normoxic conditions, GCs down-regulate CXCR4 expression in
EPCs by damaging prostaglandin E2 (PGE2) synthases
cyclooxygenase (COX2) and microsomal PGE2 synthase 1
(mPEGS1) and prostaglandin receptor EP4. While in hypoxic
conditions, GCs down-regulate CXCR4 expression in EPCs
through both PGE2 pathway and HIF2α pathway. However,
whether GCs could influence the migration and homing ability

FIGURE 1 | Pathogenesis in SONFH related to bone endothelial cells. Blood vessels play a critical role in the occurrence and progression of SONFH. And bone
endothelial cells are essential for maintaining vascular homeostasis and angiogenesis. Therefore, bone endothelial cells are key regulatory factors in the pathogenesis of
SONFH. SONFH is affected by GCs regulating mobilization, angiogenesis, apoptosis and thrombosis of bone endothelial cells through several signaling pathways or
cytokines such as PI3K/Akt, GSK-3β/Fyn, Bcl-2 and Bax.
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of bone marrow derived EPCs in SONFH patients remains to be
further investigated.

CONCLUSION

SONFH is a disabling joint disease without effective drug
treatment so far. Severe advanced SONFH can only be
treated with THA, which may be accompanied by a series
of side effects, including dislocation, periprosthetic fracture,
infection and prosthesis loosening especially for young, active
population. Impaired blood vessels is a key factor in many of
the proposed pathogenesis of SONFH. Bone endothelial cells,
including BMECs and their precursors, EPCs, both play a
critical role in maintaining the normal structure and
function of blood vessels. Impaired angiogenesis, abnormal
apoptosis, thrombosis and fat embolism caused by the
dysfunction of bone endothelial cells are involved in the
occurrence and progression of SONFH (Figure 1).
Therefore, ICA, pravastatin, and VO-OHpic are candidate
reagents for the prevention and treatment of SONFH by
promoting angiogenesis and inhibiting apoptosis and
vascular embolization (Table 1). However, these reagents

are still in the preclinical stage and are not yet sufficient for
widespread clinical use. In addition, bone tissue engineering
such as bone endothelial cells and BMSCs co-transplantation is
one of the most promising strategies for treating SONFH. The
optimal ratio between cultured cells of co-grafts and scaffolds
with excellent biocompatibility need further investigations.
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