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Human parturition is an inflammatory process that involves both fetal and maternal 
compartments. The precise immune cell interactions have not been well delineated in 
human uterine tissues during parturition, but insights into human labor initiation have 
been informed by studies in animal models. Unfortunately, the timing of parturition 
relative to fetal maturation varies among viviparous species—indicative of different 
phylogenetic clocks and alarms—but what is clear is that important common pathways 
must converge to control the birth process. Herein, we hypothesize a novel signaling 
mechanism initiated by human fetal membrane aging and senescence-associated 
inflammation. Programmed events of fetal membrane aging coincide with fetal growth 
and organ maturation. Mechanistically, senescence involves in telomere shortening and 
activation of p38 mitogen-activated signaling kinase resulting in aging-associated phe-
notypic transition. Senescent tissues release inflammatory signals that are propagated 
via exosomes to cause functional changes in maternal uterine tissues. In vitro, oxidative 
stress causes increased release of inflammatory mediators (senescence-associated 
secretory phenotype and damage-associated molecular pattern markers) that can be 
packaged inside the exosomes. These exosomes traverse through tissues layers, reach 
maternal tissues to increase overall inflammatory load transitioning them from a quies-
cent to active state. Animal model studies have shown that fetal exosomes can travel 
from fetal to the maternal side. Thus, aging fetal membranes and membrane-derived 
exosomes cargo fetal signals to the uterus and cervix and may trigger parturition. This 
review highlights a novel hypothesis in human parturition research based on data from 
ongoing research using human fetal membrane model system.
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Preterm birth (delivery before the 37th week of gestation) has increased globally nearly 30% in the 
last 25 years despite improvements in perinatal care (1). To address PTB, a clear understanding of 
the signals that initiate labor is needed (2). Both preterm, specifically spontaneous preterm, and 
term parturition share common terminal pathways that involve intrauterine inflammation and oxi-
dative stress (OS), resulting in myometrial contractions and cervical remodeling (2, 3). Significant 
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FiguRe 1 | Human fetal membranes undergo cumulative oxidative stress during gestation. Reactive oxygen species (ROS) can lead to telomere-dependent, 
p38-mediated amnion cell senescence. Aging within fetal membranes coincides with fetal growth and organ maturation and, therefore, senescence-associated 
molecular signals can be hypothesized as proxies for fetal parturition signals. Senescent fetal cells release signals in the form of senescence-associated secretory 
phenotype and damage-associated molecular pattern (DAMP) markers [senescence-associated secretory proteins (SASPs) and DAMPs]. They can be collectively 
considered as sterile inflammatory mediators of parturition. SASPs and DAMPs can be packaged inside exosomes and propagated to maternal uterine tissues. In 
decidua, myometrium, and cervix, fetal-derived exosomes fuse with maternal target cells and deliver their cargo, increasing a localized inflammatory load. When 
inflammation reaches a threshold, quiescent uterine tissues transition to an active laboring state. Thus, fetal exosomes serve as signals of fetal readiness for 
parturition. In summary, fetal tissue derived exosomes that can be isolated from maternal blood could serve as biomarkers of fetal maturation at term. In preterm 
labor, fetal exosome cargo content may reflect pathophysiologic derangements and serve as a biomarker indicative of imminent delivery.
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knowledge gaps exist, but over the past decade, we have come 
to realize that fetal endocrine signals, particularly those derived 
from the adrenal axis (i.e., CRH, ACTH) function as a biologic 
clock, concomitantly triggering organ maturation and labor and 
delivery at term (4). We hypothesize, however, that endocrine 
signals alone are not sufficient to disrupt the homeostatic bal-
ance that maintains uterine quiescence. Inflammation and OS 
of the amniochorionic (fetal) membranes at the feto-maternal 
interface are postulated as signals that perturb the relaxed uter-
ine state (3). In this brief review, we introduce the concept and 
provide circumstantial evidence that in utero aging of the fetal 
membranes generates inflammatory proteins and prostanoids 
that trigger parturition.

AgiNg

The amniochorionic membranes surround the intrauterine 
cavity, providing a structural barrier to contain amniotic fluid 
for the growing fetus (5). The aging of these membranes is 
now recognized as a contributor of labor inducing signals (6). 
Like all tissues, the fetal membranes undergo aging, a natural, 
biologic phenomenon of random stochastic changes that result 
in altered molecular structure and function. Aging in utero is 
associated with the development of the fetus, with accelera-
tion of this process projected to have long-term programming 
consequences in later life, potentially predisposing to adult-
onset diseases. We posit that aging of the fetal membranes 
developmentally synchronize with the fetus to dictate the 
duration of pregnancy. As we have reported, progressive reduc-
tions in telomere length of fetal membrane cell chromosomes 

parallel those in fetal leukocytes (7). Herein, we hypothesize 
that fetal membrane aging is associated with sterile inflamma-
tory changes (Figure 1) propagated via exosomes (30–100 nm 
spherical microvesicles) from amniochorionic cells to maternal 
tissues. Accelerated fetal membrane aging, manifested as tel-
omere length reduction, is influenced by biochemical media-
tors of OS generated within fetal organs as they mature (8). OS 
fluctuates throughout pregnancy and maximum OS is seen at 
term (9–17). This is partly due to increased metabolic demand 
from the fetus, reduced maternal supply of substrate, no change 
in antioxidant status in uterine tissues creating an imbalance 
in redox state and increased stretching of membranes. This 
increased OS accelerates telomere attrition as Guanine nucleo-
tide base-rich telomere are highly susceptible to OS induced 
DNA damage.

MeCHANiSMS OF FeTAL  
MeMBRANe AgiNg

Aging is an inevitable process in the life of all cells and organ-
isms (18). OS plays a major role in regulating aging process  
(19, 20), especially in intrauterine tissues during pregnancy 
(21–23). OS builds up in part by an increase in fetal energy 
utilization as gestation progresses, but also due to the limited 
maternal supply of metabolic substrates and low antioxidant 
reserves (11). The peroxidation of cellular proteins, lipids, and 
DNA activate the p38 mitogen-activated protein kinase (MAPK) 
signaling pathway (24, 25), a pluripotent stress mediator that 
induces p16Ink4 and p19arf intermediates (26, 27), leading to cell 
cycle arrest and senescence (28).
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CONSeQueNCeS OF FeTAL MeMBRANe 
SeNeSCeNCe

Fetal membranes undergo telomere-dependent aging during 
gestation, with the shortest telomere lengths detected post-term 
(~42 weeks’ gestation) (3, 29). Progressive telomere length 
reduction during gestation is a feature of oxidative damage 
to highly vulnerable G-rich repeats within the telomere DNA 
sequence (30). OS-induced p38MAPK activation causes ultra-
structural changes characteristic of senescence, manifested 
by enlargement of cell and organelle (ER and mitochondria) 
volumes as well as damage to nuclear and plasma membranes. 
Unlike the phenomena of apoptosis and autophagy, clearing 
of senescent cells by immunological mechanisms has not been 
reported during pregnancy and their persistence may instigate 
a unique inflammatory response (31) although senescence 
surveillance by immune cells has been reported in other fields 
(32). The uterine environment senses fetal membrane aging 
based on its recognition of inflammatory mediators known as 
senescence-associated secretory proteins (SASPs) (31, 33). SASP 
include cytokines, chemokines, growth factors, matrix degrad-
ing enzymes, and enzymes that generate prostanoids. Many 
of the SASP factors are already reported to be associated with 
both term and preterm labor (34–42). SASPs are released from 
senescent fetal membrane cells and their release can be reduced 
by treating fetal membrane cells with p38MAPK inhibitor, sug-
gesting the role for this stress signaler in fetal membrane aging 
and inflammation.

We also want to acknowledge that fetal membranes are 
not the only tissues that undergo aging. Multiple reports have 
suggested decidual aging and its association with term and 
preterm parturition (43–45). These reports have suggested 
the mechanistic role of p53, a prosenescence and apoptosis 
promoter, in murine decidual tissues. Although our group 
reports no p53-mediated senescence activation in human fetal 
membranes, it is likely that distinct mechanisms of senescence 
activation in feto-maternal compartments. All these processes 
may synergize to cause parturition as effecter molecules and 
their activation processes are likely regulated differently in vari-
ous tissues. Placental aging associated with adverse pregnancy 
outcomes has been reviewed recently by Cox and Redman (46). 
Similarly, unexplained anteparturm still births have been linked 
to placental aging and other adverse outcomes (17, 47, 48). The 
rest of the review is focused on our work using fetal membrane 
senescence.

SigNALS FROM AgiNg FeTAL 
MeMBRANeS

Senescence-associated secretory proteins include cytokines, 
chemokines, angiogenic and other growth factors, matrix 
degrading enzymes as well as their endogenous inhibitors, cell 
adhesion molecules, proapoptotic receptors, and their ligands 
(33). Many of these factors have previously been identified in 
fetal and maternal tissues from term and spontaneous preterm 
births (31). SASPs perpetuate cellular inflammation and injury 

by causing the release of damage-associated molecular patterns 
(DAMPs) (49). Unlike inflammatory cytokines or chemokines 
released as specific responses to cellular stress, DAMPs are 
molecules with other defined intracellular signaling functions, 
but when leaked into the extracellular space they elicit a power-
ful inflammatory response (50). DAMPs from senescent fetal 
membrane cells include high mobility group box (HMGB)-1, 
a non-histone nuclear protein, HSP70, fragments of cell-free 
DNA, telomere repeat sequences, and uric acid (51). DAMPs 
are recognized by pattern recognition receptors located in the 
plasma membranes and on endosomes of nearby cells (52, 53). 
Their ubiquitous expression enables most cells to recognize and 
ligate DAMPs, causing inflammation, complement activation, 
and cell necrosis (52).

DAMPs iN A FeeD FORwARD LOOP 
CAuSe FeTAL SeNeSCeNCe TO  
SigNAL PARTuRiTiON

As mentioned above, SASP markers are well reported to be 
associated with human parturition. Several studies have reported 
a higher concentration of pro-inflammatory cytokines and 
chemokines at term labor compared to term not in labor (54–56). 
Similarly, several reports have compared them between term and 
spontaneous preterm birth with and without preterm rupture of 
the membranes (34, 39, 57, 58). This surge in inflammatory mark-
ers at term labor is theorized as changes initiated by endocrine 
disruptions (59), vascular changes (60), and leukocyte migration 
and activation (61, 62). In adverse pregnancies, the inflamma-
tory response is associated with either infectious or other risk 
exposures (2).

Functional role for DAMPs, specifically HMGB1 (50, 63–65), 
uric acid (66, 67) and cell-free fetal DNA have also been reported 
in term and preterm parturition (68–71). In vitro experiments 
have shown that HMGB1 released from senescent fetal cells 
in a feedforward loop cause increased expression of TLR2 and 
TLR4, cause p38MAPK-mediated senescence and inflammatory 
cytokine release in amnion epithelial cells. Both senescence 
activation and inflammatory cytokine release were inhibited by 
p38MAPK inhibitor SB 203580. This suggests the activation of 
pathway mediated by p38AMPK (72). Gomez-Lopez et al. have 
reported that intraperitoneal injection of HMGB1 into pregnant 
B6 mice leads to spontaneous preterm birth and high rate of pup 
mortality (73). Thus, HMGB1, a normal nuclear component, can 
function as a pro-parturition inflammatory mediator. Telomere 
fragments are released from senescent fetal cells and they are 
seen in high abundance in the amniotic fluid of women at 
term labor compared to term not in labor (74). These cell-free 
fetal telomere fragments are also DAMPs with immunological 
functions. Using cell-free telomere fragment mimics (TTAGG2 
repeats) as a stimulant, Polettini et  al. showed amnion cells 
undergo p38MAPK-mediated senescence and inflammatory 
cytokine release (8). Like in HMGB1 experiments, this effect 
was inhibited by p38MAPK inhibitor SB203580, confirming 
the role of this signaler in inducing this pathway. In addition, 
Polettini et al. showed that intraamniotic injection of telomere 
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fragments into CD1 mice could cause OS, p38MAPK activa-
tion, senescence, and low birth weight and prematurity (8). 
Thus, multiple pieces of evidence indicate that DAMPs, such as 
SASPs, have a functional role in preterm and term parturition. 
It is unclear how these proinflammatory mediators reach from 
senescent fetal tissues to maternal compartments to increase an 
overall inflammatory load.

SASPs AND DAMPs AS  
eXOSOMe-eNCAPSuLATeD SigNALS

Localized effects within the fetal membranes are insufficient 
to promote robust uterine contractions, but SASP and DAMP 
signals can be propagated across the feto-maternal interface 
through two different paths: (1) direct chemical diffusion to 
adjacent tissue layers or (2) encapsulated within exosomes, 
which can be transported to sites of functional activity in the 
myometrium, decidua, or cervix. One of the limiting steps in the 
former transport approach is that SASPs and DAMPs, including 
free HMGB1, are modified by acetylation or oxidization ren-
dering very short half-lives in biologic fluids due to proteolytic 
degradation (75). By contrast, encapsulation in exosomes 
protects their cargo and increases the stability of potential 
signals by several fold. Exosomes are bioactive, spherical, 
cell-derived vesicles (30–100 nm) secreted during the process 
of exocytosis, which have been reported to increase in number 
as a function of duration of pregnancy (76–78). In addition to 
common membrane and cytosolic molecules, exosomes harbor 
unique, cell-specific subsets of proteins, such as HMGB1, cell-
free fetal DNA, and telomere fragments. Exosomes afford a low 
intraluminal ambient pH, shielding contents, such as HMGB1 
from oxidation, and conferring secure transport to distant sites 
(79). Exosomes contain molecular constituents of their cell of 
origin, including proteins and RNA that reflect the physiologi-
cal state of the cell source and, hence, can serve as a source of 
representative biomarkers (80–84). Recent report by Sheller 
et  al. has shown that exosomes from amnion epithelial cell 
grown under normal and OS conditions had specific markers 
reflective of physiologic changes (85). Similarly, in their review, 
Cuffe et al. found that placental OS generates biomarkers that 
are packaged in exosomes (86), reflecting cellular physiologic 
status. These placental-specific exosomes can be isolated from 
maternal liquid biopsies and can be used as biomarkers to 
determine placental function.

TRAFFiCKiNg AND FuNCTiONAL 
CHANgeS iNDuCeD BY eXOSOMeS  
AT DiSTANT SiTeS

Trafficking of exosomes, delivery of cargo at specific sites 
and their functional role have not been well reported during 
pregnancy. Recent findings by Chang et al. reported expression 
and trafficking of placental microRNAs at the feto-maternal 
interface. In a model of humanized mouse, authors report 
expression of 160-kb human 19 miRNA cluster (C19MC) locus 
or lentivirally express C19MC miRNA members selectively in 

the placenta of mouse (87). Pregnancy caused elevated expres-
sion of C19MC miRNA in the placenta of transgenic mice that 
resembled C19MC miRNAs patterns in humans. The authors 
further report that placental miRNA traffic primarily to the 
maternal circulation, suggesting a paracrine mode of signaling 
between the fetus and the mother (87).

In vitro experiments have shown that oxidatively stressed 
fetal membrane cells secrete exosomes richer in inflammatory 
mediators than cells grown under control conditions (85). 
Exosomes are increased at term in maternal plasma samples, and 
particularly so during certain pregnancy complications, and are 
more prevalent during labor (76, 81, 88). When fetal membrane 
cell-derived exosomes were injected into the intraamniotic cav-
ity of mice, they were shown to traverse across the placental 
layers and accumulate within maternal tissues, including the 
myometrium and kidneys (89). Exosomes used for these studies 
were isolated from human amnion cells using ultracentrifuga-
tion and size exclusion chromatography were 50–120 nm in size 
and exhibited tetraspanin and endosomal sorting complexes 
required for transport markers. In addition, amnion-derived 
exosomes also expressed NANOG, a stem-cell-specific marker, 
expressed in amnion and chorion cells but in other uterine 
derived cells. In our animal model study, we were able to show 
two key modes of propagation of exosomes: (1) diffusion of exo-
some through tissue layers from fetal side to maternal side of the 
placenta and uterus, and (2) systemic propagation of exosomes 
through blood to various maternal organ system. Although, we 
were able to determine the propagation of exosomes, we are yet 
to determine their functional effect on maternal side in  situ. 
In human amnion cells exposed to OS in vitro, exosomes were 
secreted into the conditioned media and could be passively 
transferred to human myometrial cell cultures, where they 
fused with the uterine cells and activated host cell COX-2, con-
nexin-43, and cytokine mRNA expression. Salomon et al. have 
also shown the functional effect of exosomes under different 
oxygen tension (90). These combined results provide a proof 
of concept that the fetal membranes can propagate and traffic a 
parturition signal to the uterus via exosomes.

eXOSOMeS AS BiOMARKeRS

Because exosome contents are specific to the derivative cell, they 
constitute a real-time “fingerprint” of their cell of origin (91). 
Thus, exosomes could potentially contribute as biomarkers of 
the physiologic state of fetal membrane cells during pregnancy 
and parturition (76, 88). Exosomes exhibit several advantages 
over classical soluble or “free” biomarkers present in biofluids 
(83, 91, 92). In particular, the stability of molecules packaged 
into exosomes is enhanced since they are protected from deg-
radation in vivo and during storage (79).

AgiNg STARTS IN UTERO

In summary, our thesis provides a new concept of the 
mechanisms underlying human parturition. We emphasize 
that along with its embryonic development program, the 
process of organismal aging of any mammal, including the 
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human, starts in  utero, at the time of fertilization. In utero 
programming involves both embryonic and extraembryonic 
tissue longevity, ultimately creating a homeostatic, stable 
environment preparing the fetus for independent extrauterine 
existence as a neonate. However, given their strategic layering 
between the fetus and the maternal decidua and myometrium, 
it appears that the fetal membranes tissues monitor the tim-
ing of gestation and promote expulsion of the intrauterine 
contents via an outburst of sterile inflammatory mediators. 
These mediators are propagated vectorially, from the fetal-to-
maternal direction, promoting labor-associated changes in the 
myometrium. Concomitant with fetal maturation, tissues of 
the fetal membranes age and senesce, generating exosomes that 
carry molecules that are transformed into a uterotonic payload  
(3, 6, 74). As the interaction of SASPs and DAMPs reach a 
threshold, myometrial activation is initiated and the birthing 
process is launched.

If these concepts and our preliminary data are confirmed and 
supported by continuing investigation, several testable hypoth-
eses are self-evident:

 1. p38MAPK inhibitors could be used to prevent or even reverse 
cellular damage, providing a potential therapeutic strategy to 
mitigate fetal membrane aging and PTB (93).

 2. Exosomes expressing selective fetal membrane-specific anti-
gens could be sampled from maternal blood as cell-specific, 
non-invasive “liquid biopsies” to longitudinally monitor 
amniochorionic membrane aging during pregnancy.

 3. Given the physical characteristics of exosomes, they are 
suitable to a variety of mechanical separation methods that 
currently confound standard “OMICs” approaches to the 

quantification of “free” biomarkers. Moreover, enhanced 
stability of exosomes in biologic fluids is likely to enhance 
biomarker sensitivity and assay performance.

 4. Custom exosomes could be used as therapeutic delivery 
vehicles that contain cargo that promotes uterine quiescence.

In summary, we propose a novel concept of parturition in 
humans mediated by paracrine factors generated by natural 
and physiologic aging of fetal cells through senescence. The 
aging trajectory of fetal membranes and placenta are likely 
reflections of fetal growth and maturation. Aging, an inflam-
matory condition, generate inflammatory mediators, including 
DAMPs and well characterized uterotonins and propagate 
them to various feto-maternal tissues through exosomes. These 
communication channels reflect physiologic status of their 
cells of origin. Thus, exosome cargo contents reflect pregnancy 
status and, therefore, can function as potential biomarkers. 
Ongoing research has successfully isolated placental-derived 
exosomes from maternal plasma during normal and abnormal 
pregnancies (81). Future research in this area is expected to 
provide novel insights into fetal signaling during pregnancy 
and parturition.
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