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ABSTRACT

1,2-dihydro-2-oxoadenine (2-OH-A), a common DNA
lesion produced by reactive oxygen species, is a
strong replicative block for several DNA poly-
merases (DNA pols). We have previously shown
that various bases can be misincorporated opposite
the 2-OH-A lesion and the type of mispairs varies
with either the sequence context or the type of DNA
pol tested. Here, we have analysed the ability of the
human pol family X member DNA pol j, to bypass
the 2-OH-A lesion. DNA pol j can perform error-free
bypass of 2-OH-A when this lesion is located in a
random sequence, whereas in a repeated sequence
context, even though bypass was also largely error-
free, misincorporation of dGMP could be observed.
The fidelity of translesion synthesis of 2-OH-A in
a repeated sequence by DNA pol j was enhanced by
the auxiliary proteins Proliferating Cell Nuclear
Antigen (PCNA) and Replication Protein A (RP-A).
We also found that the DNA pol j active site residue
tyrosine 505 determined the nucleotide selectivity
opposite 2-OH-A. Our data show, for the first time,
that the 2-OH-A lesion can be efficiently and
faithfully bypassed by a human DNA pol j in
combination with PCNA and RP-A.

INTRODUCTION

DNA is modified by many mutagens, including reactive
oxygen species (ROS) (1). When ROS react with DNA,
various kinds of modified base and/or sugar moieties are
produced. The most common lesion is 7,8-dihydro-
8-oxoguanine (8-oxo-G), which is highly mutagenic in
bacterial and mammalian cells, due to its well-known

miscoding potential leading to frequent G->T transver-
sions (2). The 1,2-dihydro-2-oxoadenine (2-OH-A) is
another common DNA lesion produced by ROS. 2-OH-
A possesses significant mutagenic potential in living cells
(3,4). Replication in bacteria or mammalian cells of
shuttle vectors containing a single 2-OH-A produces a
broad spectrum of mutations. Mutation analysis indicated
that a significant fraction of the oxidation-related muta-
tions occur at A:T base pairs. The mismatch repair
(MMR) enzyme MYH, the MutY homolog which excises
A incorporated opposite DNA 8-oxoG, also removes
2-OH-A from 2-OH-A:G base pairs. It has been
previously shown that overexpression of hMTH1 in
MMR-defective mouse and human cells reduces the level
of DNA 8-oxoG and significantly attenuates their
characteristic mutator phenotype (5). Mutation and
microsatellite instability analysis indicated that a signifi-
cant fraction of the oxidation-related mutations that were
subject to correction by MMR occurred at A:T base pairs
(5). In particular, AT->TA, AT->GC mutations and
frameshifts in runs of As were all affected. Since hMTH1
acts on both 2-OH-dATP and 8-oxodGTP (6), its
expression could influence mutation by either of the
oxidized purines, suggesting that DNA 2-OH-A might
make a significant contribution to the mutational burden.
No structural information for incorrect base pairs

involving 2-OH-A are available, however thermodynamic
analysis showed that 2-OH-A forms stable base pairs
with T, C and G, and, to a lesser extent with A (3,7,8).
Moreover, the presence of the 2-hydroxy and 1,2-dihydro-
2-oxo tautomers, and the possible presence of the syn and
anti conformers, may lead to various types of base pairs
opposite 2-OH-A. Accordingly, when challenged with a
2-OH-A lesion on the template, DNA polymerases (DNA
pols), beside correctly incorporating T, often misinsert G
and C nucleotides, with various efficiencies depending
upon the sequence context. So far only few DNA pols
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have been studied in detail with 2-OH-A (3,8–12). It has
been shown that the replicative enzyme DNA pol a has
greatly reduced incorporation efficiency opposite a
2-OH-A, suggesting that 2-OH-A, contrary to 8-oxo-G,
might constitute a block for DNA replication, requiring
some specialized DNA pol to be bypassed (8). Among
translesion synthesis (TLS) DNA pols of the Y family,
data are available only for human DNA pol Z and for the
archaeal enzyme Dpo4, a homologue to human DNA
pol k. Bypass of 2-OH-A by both enzymes was mutagenic,
leading to AT->GC transitions and to AT->TA trans-
versions, respectively (8). Finally, the major DNA
repair enzyme DNA pol b of family X, was shown to
catalyse significant error-prone TLS in the presence of
2-OH-A (11).
DNA pol � belongs to the DNA pol family X, together

with DNA pol b, m and TdT (13). We have recently shown
that DNA pol � is very efficient in performing error-free
TLS past an 8-oxo-G, and its fidelity and efficiency is
enhanced several-fold by the auxiliary proteins PCNA and
RP-A, both for normal and translesion synthesis (14–18).
These results led us to hypothesize that DNA pol � might
be the principal enzyme involved in error-free bypass of
oxidized bases. In this work we have analysed the 2-OH-A
bypass in either a random sequence or in a A-run, in the
presence of DNA pol �. Polypurine tracts have been
shown to reduce the intrinsic fidelity of DNA pol � (17) as
well as to constitute hotspots for oxidative lesions and
genomic instability (19). We therefore, assessed the fidelity
of the 2-OH-A bypass by DNA pol � in this highly
mutagenic context. Our results suggested that DNA pol �
can perform error-free bypass of 2-OH-A. A specific role
of the DNA pol � active site residue Tyr 505 in
determining nucleotide selectivity opposite the lesion was
found. Finally, PCNA and RP-A specifically enhanced the
fidelity of TLS by DNA pol � even on ‘difficult’ sequence
contexts such as A-runs.

MATERIALS AND METHODS

Oligonucleotide synthesis

Oligonucleotides were synthesized by MWG-Biotech AG.
6-Carboxyfluorescein (6-FAM) labelled and 2-OH-A
containing oligonucleotides were synthesized by the
Eurogentec S.A. All oligonucleotides were further purified
by denaturing polyacrylamide gels (PAGE).
The sequence of the oligonucleotides used was:
A�-31mer 50GCAAAGAACTTATAGATTGAGCAC

ACAGAGG30

6A�-36mer 50GCAAAGAACTTATAGAAAAAATTG
AGCACACAGAGG30

Bold letters indicate the position of the 2-OH-A lesion.
Underlined sequences represent primer annealing sites.

Proteins

Recombinant human DNA pol b was from Trevigen;
recombinant human his-tagged DNA pol � wild type and
the Tyr505Ala mutant were cloned, expressed and purified
as described (20). Recombinant human PCNA and human
RP-A were expressed and purified as described (17).

After purification, all the proteins were >90% homo-
genous, as judged by SDS–PAGE and Coomassie staining.

DNA polymerase assays

For denaturing gel analysis of DNA synthesis products,
the reaction mixtures contained 50mMTris–HCl (pH 7.0),
0.25mg/ml BSA, 1mM DTT and 20 nM (0.2 pmol
of 30 OH ends) of the 6-FAM-labelled primer/template
(unless otherwise stated). Concentrations of DNA pol �,
PCNA, RP-A, dNTPs and Mg++ were as indicated in the
Figure Legends. Reactions were incubated 10min at 378C
and then stopped by addition of standard denaturing gel
loading buffer (95% formamide, 10mM EDTA, xylene
cyanol and bromophenol blue), heated at 958C for 3min
and loaded on a 7M urea/14% polyacrylamide gel.

Fluorescent bands were visualized by Typhoon 9200
Gel Imager (GE Healthcare) and quantitated by
ImageQuant TL software.

Kinetic analysis

Experiments were performed under the conditions
described earlier using the following nucleotide concentra-
tions (dATP or dGTP or dTTP): 0.1, 0.25, 0.5, 2, 5, 10, 25,
100 mM, respectively. Data points were derived from the
analysis of the intensities of the products bands. The
values of integrated gel band intensities in dependence of
the nucleotide substrate concentrations ([dNTP]) were
fitted to the Equation (1):
X

IT=IT�1 ¼ Vmax½dNTP�=ðKm þ ½dNTP�Þ 1

where T is the target site, the template position of
interest;

P
IT= the sum of the integrated intensities at

positions T, T+1 . . .T+ n.
Before being inserted in Equation (1), the intensities of

the single bands of interest were first normalized by
dividing for the total intensity of the lane. This reduced
the variability due to manual gel loading. An empty
portion of the gel was scanned and the resulting value was
subtracted as background.

kcat values were derived from the relationship: Vmax=
kcat[E0], where E0 is the input enzyme concentration.

Nucleotide incorporation efficiencies were defined as
the kcat/Km ratio. Under single nucleotide incorporation
conditions kcat= kpolkoff/(kpol+ koff) and Km=Kskoff/
(kpol+ koff), where kpol is the true polymerization rate,
koff is the dissociation rate of the enzyme–primer complex
and Ks is the true Michelis constant for nucleotide
binding. Thus, kcat/Km values are equal to kpol/Ks.

The goodness of fit of the interpolated curve was
assessed by computer-aided calculation of the sum of
squares of errors SSE and the correlation coefficient R2.
Interpolation, SSE, R2 and standard errors determination
were done with the computer program GraphPadPrism.

RESULTS

DNA pol j catalyses error-free bypass of 2-OH-A

DNA pol � was tested on the A�31-mer template
containing a single 2-OH-A lesion in the presence of
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1mM Mg++. As shown in Figure 1A, DNA pol �
exclusively incorporated dTTP opposite the lesion.
Titration of dTTP in the presence of Mg++, indicated
that DNA pol � was less efficient in incorporation in
front of the 2-OH-A lesion than opposite a normal A
(Figure 1B, compare lanes 3–6 with lanes 7–10). In order
to further investigate this effect, dNTPs titrations were
performed in the presence of a higher enzyme concentra-
tion. As shown in Figure 1C, there was a clear reduction in
the elongation efficiency by DNA pol � with the
damaged template (lanes 6 - 9) with respect to the control
(lanes 2–5). The major DNA repair enzyme, DNA pol b,
which is closely related to DNA pol �, catalysed high
dGTP misincorporation in front of the lesion (Figure 1D,
lane 8). Interestingly, the lesion did not affect the
elongation at all by DNA pol b in the presence of all
four dNTPs (Figure 1D, compare lane 2 with lane 7). Also
the prototypic Y-family enzyme DNA pol Z, showed
significant misincorporation of dGTP opposite the lesion
(Figure 1E, lane 3). In contrast, however, under the same
conditions, DNA pol � did not show misincorporation
(Figure 1A). Thus, DNA pol � can catalysed the error-free
dTTP incorporation opposite 2-OH-A, albeit with
reduced overall efficiency. On the opposite, DNA pol b
catalytic efficiency was not affected by the lesion, but the
bypass reaction was error-prone due to the significant
dGTP misincorporation.

The fidelity of the 2-OH-A bypass by DNA pol j is
influenced by the sequence context

Next, the 2-OH-A lesion was placed in the middle of a six
A run, a sequence context known to be extremely
mutagenic in vitro (21) and in vivo (22). On this 6A�36-
mer template, in the presence of 1mM Mg++, DNA pol
� misincorporated dGTP both in front of the lesion and in
front of an undamaged template (Figure 2A, lanes 3 and
8). In addition, slippage products of +4 and +5 were
observed 6A�36-mer templates (lanes 6 and 11). dGTP
titration experiments, however, indicated that the effi-
ciency of dGTP misincorporation was comparable on
both the control (Figure 2B, lanes 2–5) and damaged
(Figure 2B, lanes 7–10) templates. Thus, this sequence
context could induce dGTP misincorporation by DNA
pol � also in the presence of the lesion. Moreover,
a reduced elongation efficiency of damaged versus
undamaged template was observed on this template
(Figure 2B, compare lane 1 with lane 6). The relative
incorporation efficiencies for DNA pol � in the different
sequence contexts are summarized in Table 1.

The error-free bypass of 2-OH-A placed in an A-run by
DNA pol j is enhanced by PCNA and RP-A

The data so far indicated that DNA pol � was intrinsically
able to perform error-free dTTP incorporation opposite
2-OH-A, but at the expense of a reduced catalytic
efficiency. Moreover, when the lesion was placed in an
A-run, the overall fidelity of DNA pol � decreased,
leading to significant error-prone translesion synthesis.
We have previously shown that the auxiliary proteins

PCNA and RP-A are able to increase DNA pol � catalytic
efficiency, fidelity and translesion synthesis (14–18). Thus,
PCNA and RP-A effects on the 2-OH-A bypass by DNA
pol � were investigated in the highly mutagenic sequence
context of the 6A�36-mer template. As shown in
Figure 3A, RP-A alone was able to inhibit dGTP
incorporation opposite 2-OH-A by DNA pol �, albeit
only partially (compare lanes 1, 2 with lanes 5, 6), whereas
dTTP incorporation was not affected (lanes 7–12). When
tested alone, PCNA showed a similar effect (Figure 3B),
with a slight inhibition of dGTP incorporation (compare
lane 1 with lanes 2–4). Most interestingly, however, when
PCNA was tested together with RP-A, a strong reduction
of error-prone dGTP incorporation (Figure 3B, lanes
5 and 6), but not of the faithful dTTP incorporation
(Figure 3C, lanes 2–6) opposite 2-OH-A was observed.
Titration experiments confirmed the high selectivity for
dTTP (Figure 3D, lanes 1–4) versus dGTP (Figure 3D,
lanes 5–8) incorporation opposite the lesion in the
presence of PCNA and RP-A. As summarized in
Table 1, in the presence of PCNA and RP-A, dTTP
incorporation efficiency (kcat/Km) opposite 2-OH-A was
increased 2.2-fold, whereas dGTP incorporation was
reduced 3.2-fold. As a consequence the bias for dTTP
versus dGTP incorporation by DNA pol � on the 6A�36-
mer template raised from 23.1 in the absence, to 166 in the
presence of PCNA and RP-A (Table 1). Elongation past
the lesion by DNA pol � in the presence of all four dNTPs
was also enhanced by PCNA and RP-A (Figure 3D,
compare lanes 1, 2 with lanes 6, 7), resulting in a 3.3-fold
increase in the corresponding catalytic efficiency (kcat/Km,
see Table 1).

The nucleotide selectivity by DNA pol j during bypass of
2-OH-A is dependent on the residue Tyr505

We have previously shown that the DNA pol � residue
Tyr505 is important for nucleotide discrimination (20),
being involved in interactions with the incoming dNTP.
We therefore tested the mutant Tyr505Ala in the pre-
sence of the 2-OH-A lesion. As shown in Figure 4A, the
Tyr505Ala mutant with the A�31-mer template showed
both dGTP and dATP misincorporation opposite the
lesion (lanes 8 and 10). When the same enzyme was tested
with the damaged 6A�36-mer template (Figure 4B), dGTP
and dATP misincorporations were detected, on both the
control and damaged template (Figure 4B, lanes 3, 5 and
8, 10). In addition, on this template slippage products were
also observed both in the absence and in the presence
of the lesion (Figure 4B, lanes 6 and 11). As shown in
Figure 4C, dATP misincorporation could be detected
exclusively in front of the lesion with the A�31-mer
template (lanes 9 and 10). Similar experiments on the same
template were carried out for dGTP misincorporation. As
shown in Figure 4D, again dGTP misincorporation could
be only observed in front of the lesion by the Tyr505Ala
(lanes 10 and 11). These data indicated that misincorpora-
tion was not due to a reduction in the overall fidelity of
DNA pol � by the Tyr505Ala mutation, since error-
free incorporation was observed on the undamaged
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Figure 1. DNA pol � catalyses the error-free bypass of 2-OH-A. Experiments were performed as described in ‘Materials and Methods’ section in the
presence of the A�31-mer template. A� indicates the position of the labelled 15-mer primer. The sequence of the template strand is indicated on the
right side of the panels. (A) Incorporation by DNA pol � of 10 mM of each dNTPs (lane 2) and each 10 mM of dGTP (lanes 3, 8); dCTP (lanes 4, 9),
dATP (lanes 5, 10) or dTTP (lanes 6, 11) opposite A (lanes 2–6) or 2-OH-A (lanes 7–10). Lane 1, control reaction in the absence of nucleotides.
(B) Titration of dTTP in the presence of DNA pol � on the undamaged (lanes 2–6) or 2-OH-A damaged (lanes 7–10) template. Lane 1, control
reaction in the absence of nucleotides. (C) Titration of dNTPs in the presence of DNA pol � on the 2-OH-A damaged (lanes 2–5) or undamaged
(lanes 6–9) template. Lane 1, control reaction in the absence of nucleotides. (D) Incorporation in the presence of 0.5 pmols DNA pol b of each of
100mM dNTPs (lanes 2, 7) and each 100 mM of dGTP (lanes 3, 8); dCTP (lanes 4, 9), dATP (lanes 5, 10) or dTTP (lanes 6, 11) opposite A (lanes 2–6)
or 2-OH-A (lanes 7–11). Lane 1, control reaction in the absence of nucleotides. (E) Incorporation in the presence of 0.5 pmols DNA pol Z of 10 mM
each of dATP, lane 1, dCTP, lane 2, dGTP, lane 3 or dTTP, lane 4, opposite 2-OH-A. Lane 5, control reaction in the absence of nucleotides.
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templates in both cases. Under these conditions, wild-type
DNA pol � did not misincorporate either dGTP or dATP
(Figure 1A). Thus, the Tyr505Ala mutant showed
significantly reduced fidelity specifically for 2-OH-A
bypass on the A�31-mer template, indicating a key role
for this residue in determining nucleotide selection for
incorporation opposite this lesion, suggesting an impor-
tant role of this active site residue in 2-OH-A translesion
synthesis.

DISCUSSION

The presence of the oxidized base 8-oxo-G in the
replicating strand has been shown to easily misdirect

Figure 2. The fidelity of 2-OH-A bypass by DNA pol � is influenced by
the sequence context. Experiments were performed as described in
‘Materials and Methods’ section in the presence of the 6A�36-mer
template. 6A� indicates the position of the labelled 18-mer primer. The
sequence of the template strand is indicated on the right side of the
panels. (A) Incorporation by DNA pol � of each of 100mM dNTPs
(lanes 2, 7) and each100 mM dGTP (lanes 3, 8); dCTP (lanes 4, 9),
dATP (lanes 5, 10) or dTTP (lanes 6, 11) opposite A (lanes 2–6) or
2-OH-A (lanes 7–11). Lane 1, control reaction in the absence of
nucleotides. (B) Titration of dGTP in the presence of DNA pol � on
the undamaged (lanes 2–5) or 2-OH-A damaged (lanes 7–10) template.
Lanes 1, 6, control reactions in the presence of 100 mM dNTPs.
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Figure 3. PCNA and RP-A allow the error-free bypass of 2-OH-A by DNA pol �. Experiments were performed as described in ‘Materials and
Methods’ section in the presence of the 6A�36-mer template. 6A� indicates the position of the labelled 18-mer primer. The sequence of the template
strand is indicated on the right side of the panels. (A) Incorporation opposite 2-OH-A by 0.75 pmols of DNA pol � of dGTP (lanes 1–6) or dTTP
(lanes 7–12), in the absence (lanes 1, 2, 7 and 8) or in the presence (lanes 3–6, 9–12) of RP-A. C, control reaction in the absence of nucleotides.
(B) Incorporation opposite 2-OH-A by 0.75 pmols of DNA pol � of 10 mM dGTP, in the absence (lane 1) or in the presence of PCNA alone
(lanes 2–4) or in combination with RP-A (lanes 5, 6). Lane C, control reaction in the absence of nucleotides. (C) Incorporation opposite 2-OH-A
by 0.75 pmols of DNA pol � of 2mM dTTP, in the absence (lane 1) or in the presence of PCNA alone (lanes 2–4) or in combination with RP-A
(lanes 5, 6). Lane C, control reaction in the absence of nucleotides. (D) Incorporation of dTTP (lanes 1–4) or dGTP (lanes 5–8) by 0.75 pmols
DNA pol � in the presence of PCNA and RP-A, opposite 2-OH-A. Lane C, control reaction in the absence of nucleotides. (E) Incorporation of
dNTPs by 0.75 pmols DNA pol � opposite 2-OH-A, in the presence (lanes 1–4) or in the absence (lanes 6–9) of PCNA and RP-A.
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nucleotide incorporation by replicative DNA pols, and
frequent misincorporation of A opposite 8-oxo-G is likely
to occur (2). Another oxidized base, 2-OH-A, is also a
potential source of errors by different DNA pols, with A
and G being the most frequently misincorporated nucleo-
tides (3,4). A major difference between the two oxidized
purines is however that 8-oxo-G lesion does not constitute
a block for replicative (or repair) DNA pols, while
2-OH-A causes a serious reduction in the catalytic
efficiency of several DNA pols, including the replicative
enzyme DNA pol a (8). Thus, this lesion might sensibly
slow down replication fork progression and this might
constitute the signal to recruit a specialized TLS DNA pol
(23). Recent data, also from our laboratories, suggested
that the most accurate DNA pols in dealing with 8-oxo-G
are DNA pol � and DNA pol Z, in combination with
the auxiliary proteins PCNA and RP-A (18,24).

Here, our results strongly suggested that DNA pol
� might also be a prime candidate in correctly coping the
2-OH-A lesion. DNA pol � is intrinsically able to perform
error-free TLS past a 2-OH-A lesion, although with a slight
reduction in catalytic efficiency. This ability is not shared
by other DNA pols and 2-OH-A produced high error
rates when replicated by DNA pols belonging to the B or
Y-family.
The structural information on 2-OH-A-containing

duplexes indicates that 2-OH-A can assume keto or enol
tautomeric forms in variable proportion depending on
solvent polarity and neighbouring bases (25). Thus the
polarity of the microenvironment within the active site of
various polymerases might influence the tautomeric
equilibrium of 2-OH-A (26). In particular the fraction
of 2-OH-A enol tautomers, which closely resembles
A, is favoured by a decrease in solvent polarity.

Figure 4. The nucleotide selectivity of DNA pol � during bypass of 2-OH-A is dependent on the residue Tyr505. Experiments were performed as
described in ‘Materials and Methods’ section in the presence of either the A�31-mer template or the 6A�36-mer template. A� and 6A� indicate the
position of the labelled 15-mer and 18-mer primers, respectively. The sequence of the template strand is indicated on the right side of the panels. (A)
Incorporation by 0.75 pmols of DNA pol � Tyr505Ala on the A�31-mer template, of 100 mM each of dNTPs (lanes 2, 7) and each 100 mM of dGTP
(lanes 3, 8); dCTP (lanes 4, 9), dATP (lanes 5, 10) or dTTP (lanes 6, 11), opposite A (lanes 2–6) or 2-OH-A (lanes 7–11). Lane 1, control reaction in
the absence of nucleotides. (B) As in panel A, but in the presence of the 6A�36-mer template. (C) Incorporation of dATP (lanes 3–10) by 0.75 pmols
of DNA pol � Tyr505Ala on the A�31-mer template, either undamaged (lanes 3–6) or containing the 2-OH-A lesion (lanes 7–10). Lane 1, control
reaction in the absence of nucleotides. Lane 2, control reaction in the presence of 10 mM dNTPs. (D) Incorporation of dGTP (lanes 3–6; 8–11) by
0.75 pmols of DNA pol � Tyr505Ala on the A�31-mer template, either undamaged (lanes 3–6) or containing the 2-OH-A lesion (lanes 8–11). Lane 1,
control reaction in the absence of nucleotides. Lanes 2, 7 control reactions in the presence of 10 mM dNTPs.

Nucleic Acids Research, 2007, Vol. 35, No. 15 5179



The active site of DNA pol � is known to assume a closed
conformation, even prior to dNTP binding (27,28), and
this less polar microenvironment might increase the enol
fraction of 2-OH-A. In addition DNA pol � shows limited
interactions with the template strand and strict geometric
requirements confined to the terminal and nascent base
pairs. These factors together with the preferred enolic
form of 2-OH-A might be responsible for an equivalent
use of the oxidized and unmodified A in the pairing with
dTTP in a random sequence.
In an attempt to clarify the molecular basis for the high

selectivity shown by DNA pol � for the T:2-OH-A base
pair we have analysed the contribution of the critical
residue Tyr 505, present in the DNA pol � nucleotide-
binding pocket. Kinetic and structural studies have
shown that this residue Tyr 505 plays an important role
in dNTP binding (27–30). In the DNA-DNA pol � binary
complex, Tyr 505 obstructs the nucleotide-binding pocket
through an hydrogen bond with the N1 of a templating
adenine (27,28). In the precatalytic ternary complex,
dNTP binding causes a rotation of the Tyr505 side
chain, which repositions itself in order to take interactions
with the base at the primer terminus. Such an interaction
plays a crucial role in nucleotide selectivity, allowing the
enzyme to assess proper base pair geometry. We have also
shown that Tyr505 acts as a ‘steric gate’ checking the
correct size of the nascent base pair (29,30). In this study,
we showed that mutant DNA pol � carrying an Ala
instead of a Tyr at position 505, was able to misincorpo-
rate both dATP and dGTP opposite a 2-OH-A lesion, at
variance with the wild type enzyme, which exclusively
incorporated dTTP. These results suggest that the Tyr505
residue in DNA pol � is the major determinant preventing
2-OH-A-mediated misincorporation. Thus it is possible
that the shorter side chain of Ala does not block 2-OH-A
in the suitable position for correct base pairing and
is unable to sense the altered geometry of the nascent
A:2-OH-A or G:2-OH-A mispairs.
On particular sequence contexts such as A-runs a

reduction in DNA pol � fidelity has been already reported
(17). The presence of 2-OH-A in a repeated sequence does
not further worsen the error rate of DNA pol �. However,
due to the highly mutagenic properties of the A-run,
significant dGTP misincorporation could be observed by
DNA pol � alone opposite the lesion. The auxiliary
proteins PCNA and RP-A efficiently remove these draw-
backs, ensuring efficient error-free TLS of a 2-OH-A
lesion even in such a ‘difficult’ sequence context. In
summary, our findings indicated that DNA pol � couples
flexible substrate recognition properties (being able to
bypass a 2-OH-A lesion) to high intrinsic fidelity in TLS,
and PCNA and RP-A auxiliary proteins enhance these
properties. Both these proteins play essential roles in
DNA replication and DNA repair. Moreover, while RP-A
is an important ‘sensor’ protein for DNA replication fork
stalling (31,32), PCNA has been proposed to coordinate
the switching from replicative DNA pols to specialized
TLS enzymes (33). DNA pol � interacts both functionally
and physically with PCNA and its activity is modulated in
various way by RP-A. DNA pol � has been implicated in
various pathways such as abasic site bypass, base excision

repair (34–36) and non-homologous end joining (37,38).
The present data show, for the first time, that the 2-OH-A
lesion can be efficiently and faithfully bypassed by human
DNA pol � in combination with PCNA and RP-A,
suggesting a role of this enzyme in multiple pathways,
including the translesion bypass of 2-OH-A.
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