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A B S T R A C T   

Migratory birds are important carriers of pathogens such as viruses, bacteria and protozoa. Avian haemosporidia 
have been detected from many wild birds of Japan, but the infection status of migratory birds and transmission 
area are still largely unknown. Gallinago snipes are long-distance migratory shorebirds, and five species migrate 
to or through Japan, including Latham’s snipe which is near threatened. Haemosporidian parasites in four snipe 
species were investigated to understand the role of migratory birds in the transmission of avian haemosporidia. 
Namely, this study aimed: i) to investigate differences in parasite prevalence and related factors explaining 
infection likelihood among these migratory species, ii) to explore the diversity in haemosporidian lineages and 
possible transmission areas, and iii) to assess the possibility of morphological effects of infection. Blood samples 
were collected from snipes caught in central and southwest Japan during migration. Parasites cytb gene DNA 
were detected via PCR-based testing, and detected lineages were phylogenetically analyzed. Additionally, factors 
related to prevalence and morphological effects of infection were statistically tested. 383 birds from four Gal-
linago snipe species were caught, showing higher overall prevalence of avian haemosporidia (17.8 %) than re-
ported in other wader species in previous studies. This high infection rate is presumably due to increased contact 
with vector insects, resultant of environmental preferences. The prevalence of Plasmodium spp. Was higher in 
Swinhoe’s snipes, while Haemoproteus spp. Was higher in Latham’s snipes. These differences are thought to be 
related to ecological factors including habitat use, distribution and migratory route. Six lineages detected from 
juveniles indicate transmission between the breeding and sampling area. Contrary to expectations, a direct link 
between morphological features and haemosporidian parasite infection were not detected. These findings pro-
vide valuable information for conservation of this endangered migratory bird group. Further studies linking 
biological and parasitological research are anticipated to contribute to conservational actions.   

1. Introduction 

Migratory behaviors are accompanied by the risk of spreading in-
fectious diseases to new areas (Altizer et al., 2011; Rappole et al., 2000; 
Satterfield et al., 2018). Many studies have suggested that migratory 
birds have an important role in the transmission of haemosporidian 
parasites among resident species by carrying new pathogens to a certain 
area (de Angeli Dutra et al., 2021; Ishtiaq, 2017; Ishtiaq and Renner, 
2020; Murata, 2007; Ramey et al., 2015; Waldenström et al., 2002). 
Meanwhile, some studies suggest a reduced introduction of new path-
ogens due to migratory species because of limitations in local host 
assemblage of co-transported parasites (e.g. the presence of viable 

vector species, host specificity and migratory timing) (Hellgren et al., 
2013; 2007; Pulgarín-R et al., 2019; Ricklefs et al., 2017; Soares et al., 
2020). Nonetheless, migratory behaviors are closely linked to para-
sitism, as different migratory populations within a species may 
encounter different parasites through different migratory routes (Cum-
ming et al., 2013; Ramey et al., 2015; Shurulinkov et al., 2012). There is 
also a trade-off between the risk of infection and risk of migration which 
may ultimately lead to modifications and adaptations of migratory 
routes (Clark et al., 2016; Mendes et al., 2005; Sorensen et al., 2019; 
Waldenström et al., 2002). Such global patterns in parasite distribution 
can be used to reveal possible locations of transmission (Inumaru et al., 
2017; Ishtiaq, 2017; Ishtiaq et al., 2007; Valkiūnas, 2005; Waldenström 
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et al., 2002). 
Avian haemosporidia have been detected from various wild birds of 

Japan (Imura et al., 2012; Inumaru et al., 2017; Murata, 2002, 2007; 
Murata et al., 2007; Sato et al., 2007; Tanigawa et al., 2013; Yoshimura 
et al., 2014). However, information on the infection status in migratory 
birds of Japan remains limited (Inumaru et al., 2017; Murata, 2002, 
2007; Tanigawa et al., 2013; Yoshimura et al., 2014). This is especially 
relevant in the case of species belonging to the genus Gallinago, where 
most species have not been previously investigated for malaria infection. 
Although Gallinago genus includes 17 species distributed across many 
continents, the prevalence and genetic diversity of haemosporidian 
parasites have been reported in only two Gallinago species (G. gallinago 
and G. media) (Halvarsson, 2016; Höglund et al., 2017; Pardal et al., 
2014) (MalAvi database Version 2.4.8 Feb 25th, 2021 (Bensch et al., 
2009),). 

Gallinago species, commonly referred to as snipes, are distributed 
throughout the world (Gill et al., 2020), including five species that 
migrate to or through Japan. The common snipe (G. gallinago) and sol-
itary snipe (G. solitaria) are known to winter in parts of Japan. Latham’s 
snipe (G. hardwickii) breeds mainly in northern parts of Japan and 
winters in parts of Australia. Meanwhile, the Swinhoe’s snipe 
(G. megala) and pin-tailed snipe (G. stenura) are passage migrants, 
breeding in areas north of Japan and wintering in areas such as South 
East Asia and Australia (Brazil, 2009; Hayman et al., 1986; Message and 
Taylor, 2005). Japan therefore has a different but equally important role 
for these snipe species. Due to habitat loss and hunting, the common 
snipe and Latham’s snipe are decreasing in population (IUCN, 2020; 
Kitajima and Fujimaki, 2003; Ura, 2007). Particularly, Latham’s snipe is 
listed as near threatened in Japan and parts of Australia (Department of 
the Environment, 2020; Ministry of the Environment, 2019); and con-
servation projects have been dedicated to support this species (CeRDI, 
2020; Wild Bird Society of Japan, 2020). Swinhoe’s snipe and pin-tailed 
snipe have been given much less attention and population trends are 
unknown. 

While haemosporidian infection can be subclinical, many studies 
have revealed the risk of infection, with the most extreme risk being 
death. Species that have no evolutionary history or only a short history 
in the presence of vectors such as mosquitoes have little to no tolerance 
of infectious diseases transmitted by these vectors. This is the case with 
the native honeycreepers of Hawai’i which were naïve to introduced 
avian malaria, leading to population decline and even the extinction of 
many native bird species (Atkinson et al., 2013; Atkinson and Lapointe, 
2009; LaPointe et al., 2012; Van Riper et al., 1986). Captive birds such as 
those in zoos and aviaries are also at high risk, as they may encounter 
haemosporidian parasites that they would not have encountered in their 
original distribution (Inumaru et al., 2021; Lee et al., 2018; Olias et al., 
2011; Scott, 1927; Vanstreels et al., 2016). Apart from those lethal ef-
fects, some studies have also reported negative associations between 
haemosporidian infection and host status, including both morphological 
and physiological effects. These effects include decreased body mass 
(Coon et al., 2016; Fleskes et al., 2017; Marzal et al., 2008), delayed molt 
(Morales et al., 2007), shorter wing length (Dunn et al., 2013), slower 
feather growth rate (Coon et al., 2016; Marzal et al., 2013), impaired 
reproductive success (Höglund et al., 2017; Merino et al., 2000) and 
reduced fitness (Merino et al., 2000; Palinauskas et al., 2008). In some 
Gallinago species, male snipes compete for mating partners through 
display flights and intense fights (Byrkjedal, 1990; Golovina, 1998; 
Hayman et al., 1986; Morozov, 2004; Nakamura and Shigemori, 1990). 
In these energy-demanding behaviors, maintaining good physical con-
ditions is crucial to win partners. Additionally, during display flights, 
snipes use their tail feathers to create characteristic buzzing sounds 
(Byrkjedal, 1990; Morozov, 2004; Nakamura and Shigemori, 1990), and 
it is suggested that the tail length and number of feathers may have 
impacts on mating success (Ura et al., 2005). If such negative effects are 
present in infected snipes, they may indirectly affect reproductive 
success. 

In this study, avian haemosporidian parasites in four species of 
snipes were investigated in order to gain basic knowledge of infection in 
these species, which may indirectly contribute to the conservation of 
these declining species. Namely, this study aimed: i) to investigate the 
parasite prevalence and factors affecting the prevalence among these 
migratory species, ii) to explore the diversity in haemosporidian line-
ages and possible areas of transmission, and iii) to assess the possibility 
of morphological and physiological effects of infection, particularly 
those related to reproductive behaviors. 

2. Materials and methods 

2.1. Sample collection 

Swinhoe’s snipes, Latham’s snipes, pin-tailed snipes and common 
snipes were captured from 2012 to 2020 at two distinct areas of central 
and southwest Japan nearly 2000 km apart (Fig. 1). In central Japan, we 
collected snipes at multiple localities of Chiba (35◦36′N 140◦07′E) and 
Ibaraki (36◦33′N 139◦53′E) prefectures, mostly during the spring and 
autumn migration from April to May and August to October, respec-
tively. In southwest Japan, birds were caught in the autumn at two 
islands, Ishigaki Island (24◦20′N 124◦09′E) and Yonaguni Island 
(24◦27′N 122◦55′E). The birds were caught at night either using a scoop 
net and flashlight or by mist nets. Species and age of the collected birds 
were determined according to plumage criteria (Hayman et al., 1986). 
The captured snipes were fitted with a metal ring with distinct identi-
fication numbers. The following measurements were collected for each 
individual: maximum wing length (to the nearest 1 mm), tail length (to 
the nearest 1 mm), outermost tail length (to the nearest 1 mm), tarsus 
length (to the nearest 0.1 mm), exposed culmen (to the nearest 0.1 mm), 
fat score (on a scale of 1–5), body mass (to the nearest 1 g) and molt 
score (on a scale of 0–50) (Ginn and Melville, 1983). After data collec-
tion, a small amount of blood was taken from the brachial vein. The 
blood was placed in microtubes containing 70–99.5 % ethanol and sent 
to Nihon University, College of Bioresource Sciences, Department of 
Veterinary Medicine, Laboratory of Biomedical Science, then kept at 
− 20 ◦C until further processes. Blood smears were not prepared in this 
study. The birds were released after data collection and blood sampling. 

All procedures for collecting samples from birds in this study were 
performed in accordance with the ethical standards of the Act on Wel-
fare and Management of Animals (1973). No birds were harmed during 
sampling. 

2.2. DNA extraction and molecular sexing 

DNA was extracted from the blood samples using standard phenol- 
chloroform method, with tris-EDTA as the final buffer. DNA concen-
tration was confirmed using Nanodrop One Microvolume UV–Vis 
Spectrophotometers (Thermo Fisher Scientific, MA, USA) and adjusted 
to a final concentration of 50 ng/μl. For Swinhoe’s snipes and Latham’s 
snipes, molecular sexing was done using a previously-described poly-
merase chain reaction (PCR) protocol targeting the chromo-helicase 
DNA (CHD) 1 gene (Fridolfsson and Ellegren, 1999; Ura et al., 2005). 
Using the primers 2550 F and 2718 R, a PCR reaction was carried out. 
The reaction mixture included 2 mM MgCl2, 0.2 mM deoxynucleotide 
triphosphate, 10xExTaq buffer (Mg2+ free; Takara, Ohtsu, Japan), 
0.625U Ex-Taq (Takara), 0.6 μM each primer and 50 ng of template 
DNA, making the final volume 25 μl each. PCR cycle conditions were 
according to the original manuscript (Fridolfsson and Ellegren, 1999). 
Because DNA from anatomically sexed snipes were not available, DNA 
from one male and one female herring gull (Larus argentatus) of a pre-
vious study (Inumaru et al., 2017) were included as positive controls. 
Negative controls using distilled water instead of DNA were also 
included. Visualization of the PCR products were done using 1.5 % 
agarose gels (Agarose S: Nippon Gene, Tokyo, Japan) containing 
ethidium bromide (Nacalai tesque, Kyoto, Japan). Electrophoresis was 
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done in chambers containing TAE buffer at 100 V for about 20 min. Gels 
were visualized under ultraviolet light. 

2.3. Molecular screening of avian haemosporidia 

A nested-PCR targeting the partial mitochondrial cytochrome b 
(cytb) gene of avian haemosporidia was carried out using a previously 
described protocol (Hellgren et al., 2004). The composition of the re-
action mixture was the same as the molecular sexing described above 
(see section 2.2). As a positive control, Plasmodium gallinaceum 
GALLUS01 derived from an experimentally infected chicken (Gallus 
gallus) and Leucocytozoon sp. OTULEM04 from a Sunda scops-owl (Otus 
lempiji) rescued in central Japan were included. A negative control 
containing distilled water instead of DNA was also prepared. One posi-
tive and one negative control were included in each gel. Visualization 
was done in the same method as molecular sexing. No negative controls 
showed any amplification. Positive samples were cut out of the gel and 
DNA was extracted using Thermostable β-Agarase (Nippon Gene, 
Chiyoda, Japan). 

2.4. Phylogenetic analysis of the detected haemosporidia 

Extracted DNA was directly sequenced in both directions with Big-
Dye™ terminator cycle sequence kit (Ver 3.1 Applied Biosystems, 
Förster City, CA, USA) and an ABI 3130-Avant Auto Sequencer (Applied 
Biosystems). The obtained sequences were assembled and compared 
with other sequences in the GenBank database using the Basic Local 
Alignment Search Tool (Madden, 2013) and sequences in the MalAvi 
database (Bensch et al., 2009). All samples that had low-quality reads or 
were not 100 % identical to a previously identified lineage were 
re-tested by PCR in order to remove any possible false positives. 
Detected lineages that were not identical to previously identified line-
ages were translated into amino acid sequences using MEGA X to check 
for possible sequence errors (Kumar et al., 2018). 

For phylogenetic analysis, morphologically identified lineages of the 
three haemosporidian genera and molecularly close lineages were 
aligned with the detected lineages to construct a Bayesian phylogeny. 
Pairwise distance between lineages was calculated using the Kimura-2- 
parameter model of substitution in MEGA X (Kumar et al., 2018). 
Theileria annulata was included as an outgroup. Model selection was 

Fig. 1. Map of sampling areas, including the prevalence and lineage composition of each area by host species.  
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done using ModelFinder in IQ-TREE 1.6.12 (Kalyaanamoorthy et al., 
2017). A bayesian phylogeny was constructed with Mr. Bayes version 
3.2 (Ronquist et al., 2012) using the General Time Reversible model 
with gamma distribution for variable sites and proportion of sites as 
invariable (GTR+Γ+I), as implemented by ModelFinder under Bayesian 
Information Criterion (Kalyaanamoorthy et al., 2017). Two independent 
runs of Markov Chain Monte Carlo (MCMC) sampling were done for 
three million generations, sampling every 1000 generations (Ronquist 
et al., 2012). As a burn-in step, the first 25 % of the trees were discarded. 
The final tree was visualized with FigTree 1.4 (Rambaut, 2012). 

2.5. Statistical analysis 

Prevalence of avian haemosporidia was compared between species 
with Fisher’s exact test. Following, a post-hoc multiple comparison test 
with Bonferroni correction was carried out. We then used general linear 
models (GLM) with binomial distribution and logit function to test 
whether species, sex, age, sampling area, and season had impacts on 
infection status. For all GLM tests, each parasite genus was tested indi-
vidually. For age, the birds were classified in to either juveniles (juvenile 
to first winter plumage) or adults (first summer to adult plumage). No 
interaction effects were significant and were removed from the models. 
Pin-tailed snipes and common snipes were removed from all tests due to 
the small sample size, and GLM tests were carried out between Swin-
hoe’s and Latham’s snipes. 

To test for differences in morphological traits, Welch’s t-tests were 
performed between infected and uninfected individuals. Tail length, 
length of outermost rectrix, tarsus length, fat score and body mass were 
tested. Only adults of Swinhoe’s snipe and Latham’s snipe caught in 
central Japan were used for analysis. Juveniles were excluded because 
adults and juveniles are known to have varying biometrics (Prater et al., 
2007). Because sexual dimorphism is known in these species (Frith et al., 
1977; Prater et al., 2007; Ura et al., 2005), males and females were 
individually tested. Additionally, because seasonal variations in meta-
bolic rates are known in many species (Bairlein, 2002; Frith et al., 1977; 
Jenni-Eiermann et al., 2002; Kvist and Lindström, 2001), fat score and 
body mass were evaluated separately for autumn and spring. For groups 
that had only one or less infected individual, comparisons were not 
possible. All statistical analyses were conducted in the software R ver. 
3.6.3 (R Core Team, 2020). The package ‘fmsb’ was used for the post-hoc 
multiple comparison test (Nakazawa, 2019). Statistical values are 
rounded to the third decimal and the 5 % significance level was used. 

3. Results 

In total, 383 birds were caught at the two areas (Table 1). All four 
species were caught in central Japan, while only two species were 
caught in southwest Japan. 68 birds were positive by PCR for any hae-
mosporidia (overall prevalence = 17.8 %) (Table 1). All common snipes 
were negative for haemosporidia by PCR. There was no difference in 
overall prevalence among Swinhoe’s (18.6 %), Latham’s (19.4 %) and 
pin-tailed snipes (11.1 %) (Fisher’s exact test: p = 0.327, Fig. 2). How-
ever, when comparing each genus separately, there was a significant 
difference among species for Plasmodium and Haemoproteus (Fisher’s 
exact test: Plasmodium p = 0.003, Haemoproteus p < 0.001). Specifically, 
Plasmodium prevalence was higher for G. megala than for G. hardwickii, 
whereas Haemoproteus prevalence was significantly higher for 
G. hardwirckii than for G. megala (Multiple comparison with Bonferroni 
correction: Plasmodium p = 0.009, Haemoproteus p < 0.001; Fig. 2). 
There was no significant difference among species for Leucocytozoon 
prevalence (Fisher’s exact test: p = 0.110; Fig. 2). 

Species was a significant factor in all tested GLM models of Plasmo-
dium and Haemoproteus (Table 2). Accurate results could not be obtained 
for Leucocytozoon due to the high standard error. Sex, age, and season 
did not explain the likelihood of becoming infected by any haemo-
sporidian genera. However, note the high standard error in the season Ta
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model for Plasmodium spp. The prevalence among Swinhoe’s snipes 
captured in autumn significantly differed between sampling areas for 
Haemoproteus spp., being higher for snipes captured in southwest Japan 
(12.73 %) than from individuals from central Japan (0.57 %) 
(Tables 1and2). 

Detected parasites were identified as seven lineages consisting of 
four Plasmodium spp., two Haemoproteus spp. and one Leucocytozoon spp. 
lineage(s) (Fig. 3, Table 3). Of these, three Plasmodium spp. lineages 
were previously known lineages, while the other four were detected for 
the first time. These new lineages were named according to MalAvi 
database (Bensch et al., 2009) and deposited in GenBank database (NCBI 
website, http://www.ncbi.nlm.nih.gov/BLAST) under accession 
numbers LC621903-LC621906 (Table 3). All seven lineages were 
detected from Swinhoe’s snipe while three each were detected from 
Latham’s and pin-tailed snipe. Five lineages were detected from central 
Japan and six lineages were detected from southwest Japan, including 
four that were detected in both areas (Fig. 1, Table 3). Also, six lineages 
were detected in juveniles, including P. homonucleophilum pSW2 and 
Plasmodium sp. SYBOR02, which were solely detected from juveniles. 
The clades A and D contain lineages that have previously been detected 

predominantly by passeriform birds (Fig. 3). Meanwhile, clade B and C 
included lineages from various host orders, including Charadriiformes. 
By pairwise distance, species closest to the newly detected lineages of 
Plasmodium, Haemoproteus and Leucocytozoon were P. rouxi (pPA-
DOM16, HM146901), H. larae (hSPMAG12, AB604510) and L. majoris 
(lCB1, AY393804), respectively. 

No significant difference between infected and uninfected in-
dividuals was seen among all tested morphological traits (Table 4). 

4. Discussion 

4.1. Comparison of parasite prevalence among waders 

Although Plasmodium sp. has previously been reported from two 
common snipes and one Latham’s snipe (Murata, 2002, 2007), this study 
reports the prevalence and genetic diversity of Gallinago snipes in Japan 
for the first time. Overall, avian haemosporidia was detected from 17.8 
% of the individuals (Table 1). This prevalence is similar to the preva-
lence of 16.5–30 % reported in great snipes (Halvarsson, 2016; Höglund 
et al., 2017). However, other studies reported lower parasite prevalence 

Fig. 2. Haemosporidian parasite prevalence among snipe species. Asterisk (*) indicates significant differences (p < 0.05), and n. s. indicates no significant differences 
(p ≥ 0.05). 
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in other wader species (Clark et al., 2016; Martínez-De La Puente et al., 
2017; Mendes et al., 2005; Pardal et al., 2014). For example, a 
comparative analysis across 46 species of five continents using a global 
database revealed an average prevalence of 6.2 % for wader species 
(Clark et al., 2016). The lower prevalence found in these birds has been 
explained by ecological factors such as their habitat use and migration 
strategies (Clark et al., 2016; Mendes et al., 2005). Following this idea, 
marine species are generally known to have an extremely low parasite 
prevalence because the saline environment is not suitable for vector 
insects of avian haemosporidia (Clark et al., 2016; Martínez-De La 
Puente et al., 2017; Mendes et al., 2005). On the contrary, snipe species 
(such as those from our study) inhabit open woodlands near streams and 
freshwater wetlands such as rice paddies and meadows (Brazil, 2009; 
Hayman et al., 1986; Message and Taylor, 2005; Ura, 2007), which are 
suitable environments for haemosporidian vectors such as mosquitoes 
(Dale and Knight, 2008; Ferraguti et al., 2016; Gimonneau et al., 2012; 
Richards et al., 2010). Hence, the high prevalence in snipes compared to 
other wader species may be due to increased contact with vector insects. 
However, other explanations including taxonomical differences and 
immunocompetence have also been suggested (Martínez-Abraín et al., 
2004). 

4.2. Comparison of parasite prevalence within snipe species 

We found no significant difference in overall prevalence between 
Swinhoe’s and Latham’s snipes. However, the prevalence of Plasmodium 
spp. Was higher in Swinhoe’s snipes, while Haemoproteus spp. Preva-
lence was higher in Latham’s snipes (Fig. 2, Table 2). Similarly, differ-
ences in parasite genus composition have been recorded in closely 
related host species (Dubiec et al., 2016; Scordato and Kardish, 2014; 
Smith et al., 2018). We propose some non-mutually exclusive alterna-
tives to explain these differences in parasite prevalence. 

First, host ecology including migratory distributions, timing of 
migration, and habitat preferences may be associated to parasite prev-
alence, in relation to contact with vectors. For example, the migratory 
distributions differ among snipe species. Latham’s snipes breed pri-
marily in northernmost Japan and parts of Russia, as well as in selective 
highlands in areas further south (Frith et al., 1977; Hayman et al., 1986; 
Ura, 2007), and migrate south to their wintering sites in eastern 
Australia (CeRDI, 2020; Frith et al., 1977; Ura, 2007). Meanwhile, 
Swinhoe’s snipes breed throughout a wide range in parts of Russia and 
Mongolia, and migrate south through eastern Mongolia, China, and 
Japan. The main wintering range lies in Southeast Asia (Leader and 

Carey, 2003; Morozov, 2004), although small populations have also 
been periodically recorded in northern Australia and other parts of 
Melanesia (Frith et al., 1977; Hayman et al., 1986). Differences in 
parasite prevalence have been detected in populations or species that 
have different migratory routes (Pedro et al., 2019; Valkiūnas and Iez-
hova, 2001). Additionally, the timing of migration also differs between 
snipe species. Latham’s snipes begin leaving their breeding grounds 
from mid-July to August, earlier than Swinhoe’s snipes which begin 
leaving from early August to September (Frith et al., 1977; Golovina, 
1998; Hayman et al., 1986; Leader and Carey, 2003). Furthermore, these 
two species use similar environments during migration when rice pad-
dies and freshwater wetlands are favorable (Brazil, 2009; Hayman et al., 
1986; Message and Taylor, 2005; Ura, 2007). Meanwhile, habitat usage 
differs during the breeding season, as Swinhoe’s snipes prefer a wide 
variety of habitats from open woodlands near river valleys and marshes 
to taiga and forest-steppe zones, while Latham’s snipes prefer drier 
grasslands and heathlands from low to high elevations (Brazil, 2009; 
Frith et al., 1977; Golovina, 1998; Hayman et al., 1986; Leader and 
Carey, 2003; Message and Taylor, 2005). Selective feeding of certain 
host species in response to host preferences and availability have also 
been reported in vector species (Kim and Tsuda, 2010; Medeiros et al., 
2015; Santiago-Alarcon et al., 2013). Each of these ecological factors are 
strongly correlated with how likely the birds are to come in contact with 
vectors (Elbers et al., 2015; Richards et al., 2010; Satterfield et al., 
2018), and can therefore influence contact with haemosporidian para-
sites (Ágh et al., 2019; Chahad-Ehlers et al., 2018; Kim and Tsuda, 2010; 
Lalubin et al., 2013; Sol et al., 2000). However, vector and parasite 
abundance of the areas inhabited by each snipe species are not known. 
Moreover, the area of transmission would be crucial to further investi-
gate these differences. 

Alternatively, the difference in prevalence among species may be 
explained by differences in immune response. Immune response may 
function in a number of different ways. Hosts may be capable of toler-
ating infection, keeping fitness costs at minimum. Another strategy 
would be for the host to be able to reduce or even clear the infection 
(Delhaye et al., 2018; Krams et al., 2012; Møller and Erritzée, 1998; 
Sorci, 2013; Sorensen et al., 2016). Differences in immune response may 
be resultant of life-history traits such as habitat selection pressure and 
evolutionary history, which are linked to parasite exposure (Atkinson 
et al., 2013; Boyd et al., 2018; Grilo et al., 2016; Lee, 2006; Mendes 
et al., 2006). However, the response is not necessarily consistent, as 
some species, or even individuals within a species, may cope with the 
infection by keeping a steady infection level while others may 

Table 2 
Models and their coefficients for the General Linear Models (GLMs) to test host factors associated with haemosporidian prevalence in snipes.    

Plasmodium Haemoproteus Leucocytozoon 

Model Coefficients Estimate SE z value Pr (>| 
z|) 

Estimate SE z value Pr (>| 
z|) 

Estimate SE z value Pr (>| 
z|) 

Species (intercept) − 3.970 0.714 − 5.563 <0.01 − 1.544 0.253 − 6.110 <0.01 − 20.570 1706.110 − 0.012 0.990  
G. megala 1.965 0.742 2.650 0.008 − 1.806 0.440 − 4.108 <0.01 17.450 1706.110 0.010 0.992 

species ×
sexa 

(intercept) − 3.841 0.744 − 5.165 <0.01 − 1.483 0.346 − 4.281 <0.01 − 3.045 0.418 − 7.286 <0.01  

G. megala 1.933 0.743 2.600 0.009 − 1.821 0.444 − 4.101 <0.01      
male − 0.232 0.396 − 0.587 0.557 − 0.107 0.418 − 0.255 0.799 − 0.174 0.659 − 0.264 0.791 

species ×
agea 

(intercept) − 4.276 0.779 − 5.489 <0.01 − 1.335 0.347 − 3.851 <0.01 − 3.701 0.716 − 5.171 <0.01  

G. megala 1.957 0.742 2.638 0.008 − 1.800 0.440 − 4.090 <0.01      
adult 0.456 0.434 1.049 0.294 0.352 0.418 − 0.842 0.400 0.804 0.803 1.002 0.316 

areab (intercept) − 1.792 0.216 − 8.294 <0.01 − 5.159 1.003 − 5.144 <0.01 − 2.803 0.326 − 8.608 <0.01  
southwest 
Japan 

− 1.061 0.632 − 1.679 0.093 3.234 1.081 2.990 0.003 − 16.763 1450.071 − 0.012 0.991 

seasonc (intercept) − 3.466 0.718 − 4.826 <0.01 − 1.723 0.344 − 5.018 <0.01      
spring − 17.100 2735.856 − 0.006 0.995 0.424 0.510 0.832 0.406      

a Leucocytozoon was tested only among G. megala. 
b Only G. megala caught in autumn were included. 
c Only G. hardwickii caught in central Japan were included. Leucocytozoon was not detected and was not tested. 
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Fig. 3. Bayesian phylogenetic analysis of 
cytb gene lineages (470 bp) of avian hae-
mosporidian parasites, rooted with Thei-
leria annulata. Posterior clade probabilities 
of >0.60 were indicated. The branch 
lengths are drawn proportionally to the 
amount of change according to the substi-
tution model applied. Lineages derived in 
this study are shown in red letters. Major 
clades (A–C) containing derived lineages 
are shown. The host order is shown to the 
right of the lineage name, according to the 
provided legend. (For interpretation of the 
references to colour in this figure legend, 
the reader is referred to the Web version of 
this article.)   
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completely clear the infection from their bodies (Atkinson et al., 2013; 
Lee, 2006; Møller and Erritzée, 1998). The prevalence in Swinhoe’s 
snipe and Latham’s snipe may therefore differ not only by ecological 
factors such as habitat and distribution, but also by physiological aspects 
such as immunological factors (Martínez-Abraín et al., 2004). However, 
this possibility should be considered with caution, as differences in 
immune response between Plasmodium and Haemoproteus parasites have 
not been well documented. Furthermore, possible co-infections of the 
two parasite genera are difficult to detect by molecular methods 
(Bernotienė et al., 2016; Valkiūnas et al., 2006), and blood smears were 
not investigated in this study. These limitations should also be 
considered. 

It was not possible to statistically analyze pin-tailed snipes and 
common snipes in this study, due to considerably small sample size 
compared to the other two species. Further sampling of these two species 
would be needed to reveal a more accurate population prevalence of 
avian haemosporidia. 

4.3. Other factors in relation to parasite prevalence 

Sex and age did not explain variation in the probability of infection 
of each parasite genus. These findings are similar to many previous 
studies reporting that sex is not a significant factor to explain blood 
parasite infection (Ágh et al., 2019; Granthon and Williams, 2017; 

Table 3 
Parasite lineages, genus, GenBank accession numbers and number of infected adult and juvenile snipes detected per sampling location and bird species in this study.  

genus lineage accession no. Gallinago megala Gallinago hardwickii Gallinago stenura 

central Japan southwest Japan central Japan southwest Japan 

adult juvenile adult juvenile adult juvenile juvenile 

Plasmodium pSW2 AF495572  2  1     
pSW5 AF495574 1 3 1   1   
pSYBOR02 DQ368392    1     
pGALMEG01a LC621903 19b    1   

Haemoproteus hGALMEG02a LC621904   2 1   1  
hGALHAR01a LC621906 1  1 3 11c 8 1 

Leucocytozoon lGALMEG03a LC621905 8b 2     1  

a Novel lineages. 
b 2 individuals were infected by both pGALMEG01 and lGALMEG03. 
c 9 individuals were caught in the spring. All others were caught in the autumn. 

Table 4 
Mean values of morphological measurements in infected and uninfected snipes, and t-test results.      

mean t df p     

infected uninfected 

Tail length          
G. megala          

male  60.182 (±1.662) 60.345 (±2.303) − 0.278 18.642 0.784   
female  57.313 (±1.448) 58.088 (±1.640) − 1.837 26.816 0.077  

G. hardwickii          
male  67.571 (±2.370) 66.968 (±1.722) 0.637 7.494 0.543   
female  65.400 (±2.074) 64.905 (±1.786) 0.492 5.504 0.642 

Length of outermost rectrix          
G. megala          

male  55.636 (±1.963) 56.182 (±2.302) − 0.816 16.031 0.426   
female  51.688 (±2.469) 51.368 (±1.809) 0.482 19.741 0.635  

G. hardwickii          
male  63.143 (±3.024) 62.839 (±3.760) 0.229 10.662 0.823   
female  57.250 (±2.754) 57.762 (±3.223) − 0.331 4.722 0.755 

Tarsus length          
G. megala          

male  34.836 (±1.049) 34.907 (±1.234) − 0.198 16.073 0.845   
female  36.550 (±1.176) 36.472 (±1.191) 0.234 24.337 0.817  

G. hardwickii          
male  36.557 (±1.474) 35.775 (±0.988) 1.340 7.224 0.221   
female  36.120 (±1.262) 36.943 (±1.153) − 1.332 5.704 0.234 

Fat score          
G. megala          

male autumn 3.182 (±0.751) 3.000 (±1.066) 0.672 19.656 0.509   
female autumn 3.500 (±1.095) 3.278 (±0.920) 0.738 21.653 0.468  

G. hardwickii          
male autumn 3.500 (±0.707) 3.583 (±1.165) − 0.138 2.070 0.902    

spring 1.600 (±0.548) 1.300 (±0.470) 1.126 5.570 0.307   
female spring 1.250 (±0.500) 1.615 (±0.650) − 1.185 6.497 0.278 

Body mass          
G. megala          

male autumn 166.364 (±24.703) 171.269 (±27.200) − 0.588 15.586 0.565   
female autumn 189.250 (±28.193) 191.185 (±30.961) − 0.236 26.671 0.816  

G. hardwickii          
male autumn 204.500 (±21.920) 208.000 (±30.591) − 0.196 1.738 0.865    

spring 142.000 (±21.714) 126.300 (±12.079) 1.558 4.637 0.185   
female spring 135.250 (±2.363) 138.583 (±20.007) − 0.565 11.864 0.582  
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Halvarsson, 2016; Pedro et al., 2019; Podmokła et al., 2014), but see 
(Baillie et al., 2012; Jones, 2019). There were no age-related differences 
observed in this study, in accordance with some previous studies 
(Granthon and Williams, 2017; Pedro et al., 2019). However, other 
studies have revealed higher prevalence in adults, probably due to 
accumulation of infection in adults and higher mortality in younger 
birds (Mendes et al., 2005; Podmokła et al., 2014; Sol et al, 2000, 2003). 
Interestingly, the parasite prevalence for great snipes was lower in 
adults compared to juveniles (Halvarsson, 2016), suggesting differences 
in immune systems and protective behaviors (Mendes et al., 2005). As 
no difference between age was observed in this study, juveniles and 
adults of these snipe species may be equally exposed to vectors. This is 
also suggestive that juveniles may equally contribute to the dispersal 
and transmission of parasites between regions on their first migratory 
flight (Pulgarín-R et al., 2019). 

For Swinhoe’s snipes, Haemoproteus prevalence varied between 
populations, being higher for snipes captured in southwest Japan 
compared to individuals from central Japan. Additionally, although not 
statistically significant, Swinhoe’s snipes caught in central Japan had a 
higher Plasmodium prevalence compared to those of southwest Japan. In 
a previous study, morphological differences were observed between 
Swinhoe’s snipes captured in these two areas, which suggests that these 
are different populations (Odaya et al. unpublished). These populations 
may possibly have different migratory pattern, and hence these dispar-
ities in parasite prevalence can be attributed to differences in vector 
and/or parasite exposition between populations, as discussed above (see 
section 4.2). 

In Latham’s snipes, there was no seasonal effect on Haemoproteus 
spp. Prevalence. These findings are consistent with previous studies, 
which have found similar parasite prevalence during the fall and spring 
of long-distance migrants (Hellgren et al., 2013; Pulgarín-R et al., 2019). 

4.4. Parasite lineage composition 

In general, haemosporidian parasites infect closely related host 
species, with frequent host switches among those related species (Clark 
and Clegg, 2017; Ellis and Bensch, 2018; Hellgren et al., 2007; Pulgar-
ín-R et al., 2018; Ricklefs et al., 2014; Ricklefs and Fallon, 2002; San-
tiago-Alarcon et al., 2014). Nevertheless, host shifts of generalist 
parasites among more distant species, including species of different or-
ders, have also been reported (Clark and Clegg, 2017; Ricklefs et al., 
2014; Santiago-Alarcon et al., 2014). Of the seven identified lineages, 
four lineages were detected for the first time. Interestingly, pGALMEG01 
and lGALMEG03 were placed in clades with lineages detected predom-
inantly from passeriform birds (Fig. 3). Multiple individuals were 
infected with each of these two lineages, considerably decreasing the 
possibility of an accidental spillover from passeriform birds. Rather, it 
seems more likely that these lineages have undergone host shifts from 
passeriform birds to these snipes. However, sampling bias must also be 
considered, as passeriform birds are relatively easier to sample and have 
thus been more investigated compared to birds of other orders (Clark 
et al., 2014). Meanwhile, the Plasmodium clade B and Haemoproteus 
clade C consisted of host birds belonging to various orders including 
charadriiformes. Although the lineage pSYBOR02 has been predomi-
nantly detected from passeriform birds, close lineages including SW5 of 
P. circumflexum have been detected from various host species. By pair-
wise distance, the closest morphological species to the detected Hae-
moproteus lineages was H. larae. This species has been detected by 
microscopy in various charadriiform birds (Peirce, 1981; Valkiūnas, 
2005; Yakunin, 1972) and was recently genetically described from 
rescued charadriiform birds (Inumaru et al, 2017, 2020). In this study, 
blood slides were not obtained, and morphological identifications could 
not be made. However, from the combination of host and molecular 
information, there is a possibility that these detected lineages may be 
another molecular variant of H. larae. Meanwhile, H. scolopaci, 
H. contortus, and H. rotator are species that have previously been 

morphologically detected in Gallinago snipes of the Philippines, 
including Swinhoe’s snipes and pin-tailed snipes (Valkiūnas, 2005). 
These three parasite species have not been molecularly described yet, 
and thus lineages in this study cannot be compared. Future studies 
analyzing blood smears would provide new insights. 

We also found differences in the number of detected haemosporidian 
lineages among snipe species. Swinhoe’s snipes exhibited the highest 
parasite diversity (seven lineages), whereas only three lineages each 
were detected from Latham’s snipes and pin-tailed snipes (Table 3). 
While several known parasite species such as Plasmodium relictum and 
P. elongatum are widely distributed (Garcia-Longoria et al., 2015; 
Hellgren et al., 2015; Santiago-Alarcon et al., 2012; Valkiūnas, 2005), 
many other haemosporidian parasites have a restricted distribution due 
to host specificity and geographical barriers (Clark and Clegg, 2017; 
Ellis et al., 2018; Gupta et al., 2019; Hellgren et al., 2009). Compared to 
resident bird species, migratory species are exposed to a larger array of 
parasites and vectors as they cross-over through different habitats and 
environments (Inumaru et al., 2017; Pulgarín-R et al., 2019; Ramey 
et al., 2015; Soares et al., 2020; Waldenström et al., 2002). The vector 
and parasite fauna that migratory birds come in contact with will vary 
depending on their migration route and strategy. As mentioned above 
(see section 4.2), Swinhoe’s snipes has wider distribution compared to 
Latham’s snipes (Frith et al., 1977; Hayman et al., 1986; Leader and 
Carey, 2003; Morozov, 2004; Ura, 2007), so they may encounter 
different parasites and may collectively exhibit a greater diversity in 
parasite lineages. Furthermore, the Swinhoe’s snipes captured in this 
study probably consist of various populations that inhabit different 
areas, as the differences in lineage composition of Swinhoe’s snipes 
between individuals captured in central Japan and southwest Japan 
suggests (Table 3). Along with the difference in prevalence between 
these two areas, this difference in lineage composition may also be a 
result of differing migratory routes. 

4.5. Timing and area of transmission 

Six of the seven lineages were detected from juveniles. These in-
dividuals were born in the preceding breeding season and were on their 
first migration towards their wintering grounds. This means that they 
have never experienced the wintering grounds and hence, the detected 
parasites were transmitted between their breeding grounds and their 
captured locations during migration. 

Furthermore, Plasmodium circumflexum pSW5, which has been found 
in various parts of the world (Bensch et al., 2007; Biedrzycka et al., 
2015; Inumaru et al., 2017; Ramey et al., 2016; Tanigawa et al., 2013; 
Waldenström et al., 2002), was detected in this study and its only known 
vectors are Culiseta spp. mosquitoes (Meyer and Bennett, 1976; Smith 
et al., 2019; Valkiūnas, 2005), which inhabit the Holarctic (Medvedev, 
2009). However, within Japan, this mosquito genus can only be found in 
the northernmost areas (Ejiri et al., 2011; Maekawa et al., 2016; Ono, 
1969). It is therefore thought that pSW5 cannot be transmitted in most 
of Japan and can only be transmitted in the northernmost areas 
inhabited by Culiseta spp. mosquitoes (Inumaru et al., 2017). Hence, this 
Plasmodium species was most likely transmitted to snipes in northern-
most Japan or continental areas from Russia to Mongolia. 

4.6. Morphological effects to host birds 

In addition to lethal effects (Bennett et al., 1993; Lee et al., 2018; 
Valkiūnas, 2005; Van Riper et al., 1986; Vanstreels et al., 2016), hae-
mosporidian parasites can provoke other negative effects on their avian 
hosts (Coon et al., 2016; Dunn et al., 2013; Fleskes et al., 2017; Höglund 
et al., 2017; Marzal et al, 2008, 2013; Merino et al., 2000; Morales et al., 
2007; Palinauskas et al., 2008). Contrary to expectations, there was no 
difference among infected and uninfected individuals among all mea-
surements for both Swinhoe’s snipes and Latham’s snipes of both sexes. 
Some studies demonstrating negative effects of infection on body 
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condition has suggested that these effects may be linked with not only 
infection, but also with other conditions such as immune response, molt 
and availability of resources (Cornet et al., 2014; Dunn et al., 2013; 
Hatchwell et al., 2001; Morales et al., 2007; Palinauskas et al., 2020). In 
addition, infections at low intensities may show little to no effects on the 
host bird (Hahn et al., 2018; Palinauskas et al., 2020). Hence, the 
parasite intensity might have potentially been light enough that no 
observable differences in morphological traits were observed. Another 
possibility is that heavily infected individuals may have not been 
sampled, as these individuals are less likely to survive the physiological 
stress of long-distance migration (i.e. migratory culling) (Altizer et al., 
2011; Dawson and Bortolotti, 2000; Marzal et al., 2016; Satterfield et al., 
2018). Consequently, only snipes with light parasite intensities that 
were able to cope with the infection during migration might have been 
sampled. Parasite intensity was not confirmed in this study and will need 
to be confirmed in future studies. 

5. Conclusion 

While there are conservation projects for the Latham’s snipe, infor-
mation on the biology of these snipes including migration is still insuf-
ficient. We investigated the prevalence and genetic diversity of avian 
haemosporidia in three Gallinago snipe species of Japan for the first time 
in effort to expand knowledge on these species and the parasites they 
carry. Although reasons could not be completely understood, various 
possibilities to explain varying parasite prevalence were discussed 
including habitat, migratory and physiological differences. While some 
lineages suggested possible locations of transmission, other lineages 
were newly detected and require further studies to unveil the distribu-
tion and transmission area. We found no relation between parasite 
infection and morphological features of birds. However, in order to 
further contribute to conservational actions, more work is necessary 
addressing a better image of the area of transmission and possible 
physiological effects including virulence. Linking studies between bio-
logical research, such as on the habitat and migratory routes of these 
snipes, and parasitology research are anticipated. 
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