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neurological symptoms and the loss of weight. Both IFN-
β1b and IFN-β1a treatments inhibited the pro-inflammatory 
cytokines (IL-6, IL-1β, TNF-α and IFN-γ), decreased the 
activation of astrocytes, increased the myelin protein level 
in the brain cortex, and improved the neurological status of 
EAE rats by different mechanisms; IFN-β1a reduced iNOS 
expression, at least in part, by the enhancement of IL-10, 
while IFN-β1b diminished IL-10 concentration and did not 
decrease EAE-induced iNOS expression.

Keywords  Interferon beta · Cytokines · Inducible nitric 
oxide synthase · EAE

Introduction

Multiple sclerosis (MS) is a chronic, inflammatory neu-
rodegenerative disease, which is characterized by demy-
elination and remyelination, and neuronal damage (Holz 
et al. 2000; Stadelmann 2011; Stüve and Oksenberg 2010), 
with onset of disease typically occurring between the ages 
of 20 and 40 years (Sospedra and Martin 2005). Demyeli-
nating lesions are often found in the white matter of the 
brain stem, the spinal cord, and the cerebellum (Compston 
and Coles 2008). After a course of the relapsing-remitting 
phase of the disease, most MS patients enter a phase char-
acterized by progressive neurodegeneration associated with 
an irreversible variety of physical disabilities (Ireland and 
Monson 2011; Lucchinetti et al. 2000; Trapp et al. 1999). 
Pathological and magnetic resonance imaging studies indi-
cate that axonal damage predominantly develops in the 
early stage of MS as a consequence of inflammatory pro-
cess (Bendfeldt et al. 2009; Comi 2000), which leads to the 
most numerous (~85% of cases) relapsing-remitting form 
of the disease (Weiner 2008).

Abstract  The aim of this study was to investigate the 
effects of interferon (IFN)-β1a and IFN-β1b treatment on 
inflammatory factors and myelin protein levels in the brain 
cortex of the Lewis rat experimental autoimmune encepha-
lomyelitis (EAE), animal model of multiple sclerosis. To 
induce EAE, rat were immunized with inoculums contain-
ing spinal cord guinea pig homogenized in phosphate-buff-
ered saline and emulsified in Freund’s complete adjuvant 
containing 110 µg of the appropriate antigen in 100 µl of 
an emulsion and additionally 4-mg/ml Mycobacterium 
tuberculosis (H37Ra). The rats were treated three times 
per week with subcutaneous applications of 300,000 units 
IFN-β1a or IFN-β1b. The treatments were started 8 days 
prior to immunization and continued until day 14 after 
immunization. The rats were killed on the 14th day of the 
experiment. EAE induced dramatic increase in interleukin 
(IL)-1β, IL-6, and tumor necrosis factor (TNF)-concentra-
tions and inducible nitric oxide synthase (iNOS) expression 
in the brain, which closely corresponded to the course of 
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A considerable infiltration by macrophages, monocytes, 
and lymphocytes into central nervous system during MS 
induces secretion of many activated microglia and astro-
cytes pro-inflammatory cytokines, including interleukin 
(IL)-1β, tumor necrosis factor (TNF)-α and IL-6 (Aguzzi 
et al. 2013; Hartung et al. 1995), which are involved in the 
production of oxidative radicals (Merrill and Benveniste 
1996) and expression of the inducible nitric oxide synthase 
(iNOS) (Willenborg et al. 1999). Elevated levels of afore-
mentioned pro-inflammatory cytokines in the plasma, cere-
brospinal cord and brain cortex were found in patients with 
MS (Giovannoni and Thorpe 2001; Navikas et  al. 1996a, 
b; Rieckmann et al. 1995; Sharief and Hentges 1991) and 
a positive correlation was found between the levels and the 
disease’s activity and severity (Navikas et al. 1996b; Rieck-
mann 1995; Sharief and Hentges 1991). A similar effect, 
i.e. elevation of pro-inflammatory cytokines (including 
IFN-γ, IL-1β, TNF-α, and IL-6) was observed in experi-
mental autoimmune encephalomyelitis (EAE), an ani-
mal model of MS (Schneider et al. 2009; Sulkowski et al. 
2013; Tanuma et al. 1997). The increase in the production 
of cytokines with pro-inflammatory potential is generally 
accompanied by concomitant increase in the production of 
cytokines with anti-inflammatory/immunoregulatory prop-
erties, among which TGF-β and IL-10 play a dominant role 
(Imitola et al. 2005). Thus, disordered balance between pro- 
and anti-inflammatory mediators may lead to induction and 
progression of MS/EAE (Brosnan and Raine 1996).

There are two structural forms of IFN-β, i.e. IFN-β1b 
and IFN-β1a, that are used therapeutically. They demon-
strate a good efficacy in long-term relapsing-remitting of 
MS (RR-MS) therapy (Bendfeldt et al. 2010; Stępień et al. 
2013), and also to some extent in the treatment of second-
ary progressive MS (European Study Group on Interferon 
β-1b in Secondary Progressive MS 1998). However, the 
biological activities of IFN-β1b and IFN-β1a are not the 
same. It is known that the IFN-β1a has a higher biological 
potency in its antiviral properties (Antonetti et  al. 2002). 
Following this notion, these two IFN-β variants altered 
diversely the plasma cytokine profile of RR-MS patients 
following 3-year therapy, despite similar improvement of 
neurological status and marked reduction of the annual 
relapse rate in a majority of RR-MS patients with mild to 
moderate disability (Stępień et al. 2013).

Growing evidence demonstrates that the inflamma-
tory process is most active at the beginning of MS (Comi 
et al. 2001) and takes part in degeneration of the myelin 
sheath of nerve cells. As one of the plausible modes of 
IFN-β action in responsive patients is anti-inflamma-
tory effect (Graber et  al. 2007; Liu et  al. 2010; Ranso-
hoff et al. 1991; Rio and; Montalban 2005; Salama et al. 
2003), the improved results of IFN-β therapy could be 
especially expected from early treatment of MS, when 

the inflammatory process initiates. This issue is poorly 
investigated in the clinical practice and relatively little is 
known about inflammatory process leading to demyelina-
tion as well as efficacy of IFN-β1b and IFN-β1a treatment 
on this process at the beginning of MS, when disease in 
most patients may be ongoing subclinically. To better 
recognize this issue we have investigated the effects of 
IFN-β1a and IFN-β1b monotherapies on selected serum 
cytokines and nitrite levels in the early phased of EAE 
rats. This study was also aimed to investigate the influ-
ence of IFN-β1a and IFN-β1b treatment on the iNOS 
and myelin protein levels (indicated by MOG and CNP-
ase levels) and their possible adjustment by regulation of 
selected pro- and anti-inflammatory cytokines in the cer-
ebral cortex in rats subjected to EAE.

Materials and methods

Induction of EAE in animals

Eight-week-old, female Lewis rats (183 ± 10 g) were sup-
plied by the animal house of the Mossakowski Medical 
Research Centre, Polish Academy of Sciences. All pro-
cedures involving rodent care and experimentation were 
carried out in accordance with the European Communi-
ties Council Directive (86/609/EEC) for the Care and Use 
of Laboratory Animals. All protocols were approved by 
the 4th Local Ethics Committee for Animal Experiments, 
National Medicines Institute, Warsaw, Poland. Rats were 
housed in a temperature-controlled room with a 12-h 
light/dark cycle and free access to water and food, includ-
ing the Ssniff® R-2 complete diet for rat breeding (Ssniff 
Spezialdoten GmbH, Soest, Germany).

To induce EAE, female Lewis rats were immunized 
with inoculums, which contained spinal cord guinea pig 
homogenized in phosphate-buffered saline, and emulsi-
fied in Freund’s complete adjuvant, which contained 110 
µg of the appropriate antigen in 100 µl of emulsion and 
4-mg/ml Mycobacterium tuberculosis (H37Ra) (Ker-
schensteiner et al. 2004; Meyer et al. 2001). The animals 
were observed daily and monitored for neurological defi-
cits with clinical severity scores and weight. The clinical 
scores of EAE were assigned according to the following 
criteria—0: asymptomatic; 1: complete loss of tail tone; 
2: hind limb paraplegia; 3: complete hind limb paralysis; 
4: hind limb paralysis with forelimb involvement; and 5: 
moribund/dead (Kerschensteiner et al. 2004; Meyer et al. 
2001). Four different experimental groups of animals 
were used: control, EAE, EAE treated with IFN-β1a, and 
EAE treated with IFN-β1b.
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Administration of IFN‑β1a or IFN‑β1b to rats 
with EAE

The treatments of IFN-β1a or IFN-β1b were started 8 days 
after immunization and continued until day 14 after immu-
nization (Wender et  al. 2001). The rats with EAE were 
treated three times per week with subcutaneous applica-
tions of 300,000 units of IFN-β1a (Biogen IDEC LTD, 
Berkshire, UK) or IFN-β1b (Bayer Schering Pharma, Ber-
lin, Germany). The rats were euthanized on the 14th day of 
the experiment.

Real‑time reverse transcriptase‑polymerase chain 
reaction

Total RNA was extracted from the brain cortex (gray and 
white matter) using TRI Reagent (Sigma, St. Louis, MO, 
USA), and 2-µg RNA were reverse-transcribed (RT) using 
random primers and AMV reverse transcriptase (Life Tech-
nology, Carlsbad, CA, USA). The RT conditions included: 
reverse transcription at 42 °C for 45 min, denaturation at 94 
°C for 30 s. For quantitative reverse transcriptase-polymer-
ase chain reaction (RT-PCR) analysis, the TaqMan technol-
ogy was employed. Rat cytokines (IL-1β-Rn00580432_m1; 
IL-6-Rn01410330_m1; TNF-α-Rn00563254_m1; and IFN-
γ-Rn00594078_m1, IL-10-Rn00563409_m1), the recep-
tors IL-1r1-Rn00565482_m1 and IL-1r2-Rn00588589_m1, 
iNOS-Rn00561646_m1) specific primers, and the probes 
were obtained from Life Technology (Carlsbad, CA, USA). 
To normalize the expression of the cytokines, the receptors 

IL-1r1 and IL-1r2, and iNOS mRNA, the actin levels 
(endogenous controls) were determined using TaqMan 
assay reagents (Applied Biosystems, Carlsbad, CA, USA). 
Real time-PCR was conducted with an ABI 7500 system 
(Applied Biosystems, Carlsbad, CA, USA) using 5 µl of 
RT product, a TaqMan PCR Master Mix, primers, and a 
TaqMan probe (Life Technology, Carlsbad, CA, USA) in 
a total volume of 20 μl. The cycle conditions of the PCR 
were as follows: initial denaturation at 95 °C for 10 min, 50 
cycles of 95 °C for 15 s, and 60 °C for 1 min. Each sample 
was analyzed in triplicate. The relative expression levels 
of the cytokines were calculated using the standard curve 
method and were normalized to actin.

Gel electrophoresis and western blotting for IL‑1β, 
IL‑6, IFN‑γ, TNF‑α, iNOS, MOG, and CNPase

Brain cortex homogenate aliquots (40-µg protein) were 
mixed with an equal volume of sample buffer (62.5-mM 
Tris–HCl, 2% SDS, 100-mM DTT, 20% glycerol, and 
0.2% bromophenol blue, pH 6.8) and heated for 5 min at 
95 °C, electrophoresed on 10% polyacrylamide gel (Lae-
mmli 1970). They were then electrotransferred to nitro-
cellulose membranes and blocked with a 5% non-fat milk 
powder solution in Tris-buffered saline containing 0.05% 
Tween 20 (TBS-T) for 1 h at 37 °C. Then, the membranes 
were incubated with polyclonal anti-IL-6, anti-IL-1β, anti-
TNF-α, anti-iNOS, anti-MOG, and anti-CNPase antibodies 
(diluted as described in Table 1) overnight at 4 °C. Next, 
the membranes were incubated with the relevant secondary 

Table 1   Description of primary and secondary antibody used in this paper

HRP horseradish peroxidase

Name of protein Primary antibody; Cat. No.; dilution, company Second antibody; dilution, company

GFAP Polyclonal anti-GFAP antibody; No. G9269; 1:250 in TBS-T; 
Sigma-Aldrich, St. Louis, MO, USA

Anti-rabbit-HRP; 1:8000 in TBS-T with 5% skim milk; Sigma-
Aldrich, St. Louis, MO, USA

IL-1β Polyclonal anti-IL-1β antibody; No. I4893; 1:500 in TBS-T, 
Sigma-Aldrich, St. Louis, MO, USA

Anti-rabbit-HRP; 1:8000 in TBS-T with 5% skim milk; Sigma-
Aldrich, St. Louis, MO, USA

IL-6 Polyclonal anti-IL-6 antibody; No. I3393; 1:500 in TBS-T; 
Sigma-Aldrich, St. Louis, MO, USA

Anti-rabbit-HRP; 1:8000 in TBS-T with 5% skim milk; Sigma-
Aldrich, St. Louis, MO, USA

IFN-γ Polyclonal anti-IFN-γ antibody; No. I9141; 1:500 in TBS-T, 
Sigma-Aldrich, St. Louis, MO, USA

Anti-rabbit-HRP; 1:8000 in TBS-T with 5% skim milk; Sigma-
Aldrich, St. Louis, MO, USA

TNF-α Polyclonal anti-TNF-α antibody; No. T3198; 1:500 in TBS-T; 
Sigma-Aldrich, St. Louis, MO, USA

Anti-rabbit-HRP; 1:8000 in TBS-T with 5% skim milk; Sigma-
Aldrich, St. Louis, MO, USA

CNP-ase Monoclonal CNP-ase antibody; No. C5922; 1:300 in TBS-T; 
Sigma-Aldrich, St. Louis, MO, USA

Anty-mouseHRP, 1:2000 in TBS-T with 5% skim milk; Sigma-
Aldrich, St. Louis, MO, USA

MOG Polyclonal anti-MOG antibody; No. M0695; 1:1000 in TBS-
T, Sigma- Polycolnal anty-iNOS antibody; 1:25,000 in 
TBS-T; BD Biosciences, Aldrich, St. Louis, MO, USA

Anty-goat-HRP; 1:50,000 in TBS-T with 5% skim milk; 
Sigma-Aldrich, St. Louis, MO, USA

iNOS Mouse monoclonal anti-iNOS antibody; No. 350; 1:500; 
Becton-Dickinson, Ermbodegem, Belgium

Anty-mouse-HRP; 1:1000 in TBS-T with 5% skim milk; 
Becton-Dickinson, USA

GAPDH Polyclonal anti-GAPDH antibody; No. G9545; 1:40,000 in 
TBS-T; Sigma- Aldrich, St. Louis, MO, USA

Anty-goat-HRP; 1:5000 in TBS-T with 5% skim milk; Sigma-
Aldrich, St. Louis, MO, USA
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antibody conjugated with horseradish peroxidase (diluted 
in TBS-T containing 5% non-fat milk; see Table 1) for 1 h 
at room temperature. The protein bands were visualized on 
an autoradiographic Hyperfilm-Kodak (Sigma–Aldrich, St. 
Louis, MO, USA) using an ECL kit (Thermo Fisher Scien-
tific Inc. Rockford, IL, USA). The cytokine, iNOS, MOG, 
and CNPase bands were quantified using a NucleoVision 
apparatus and the GelExpert 4.0 software (Nucle Tech Cor-
poration, San Matea, CA, USA).

After the quantification, the membranes were subjected 
to a standard stripping process, blocked again with the 
milk-supplemented TBS-T, and incubated overnight at 4 
°C with rabbit polyclonal anti-GAPDH antibody (G9545, 
Sigma-Aldrich, St. Louis, MO, USA) diluted 1:10,000 with 
TBS-T. Next, the membranes were incubated for 1  h at 
room temperature with goat anti-rabbit IgG antibody–con-
jugated horseradish peroxidase conjugate (dil. 1:8000 with 
TBS-T supplemented with 5% (w/v) non-fat milk powder). 
GAPDH-containing immune complexes were visualized on 
an autoradiographic Hyperfilm-Kodak (Sigma-Aldrich, St. 
Louis, MO, USA) using an ECL kit (Thermo Fisher Sci-
entific Inc. Rockford, IL, USA). The GAPDH bands were 
quantified as above. The contents of cytokines, iNOS, 
MOG, and CNPase were normalized to the contents of 
GAPDH (see Table 1).

Determination of IL‑10 concentration

IL-10 was assayed using a commercially available Rat 
Quantikine ELISA kit (R&D Systems Inc, Minneapolis, 
MN, USA) in lysate obtained from the brain cortex accord-
ing to the manufacturer’s instructions.

Determination of NF‑κB activity in nuclear extracts 
from the brain cortex of EAE rats

Nuclear factor (NF)-κB activity was determined using a 
commercially-available ELISA kit (No. 10007889, Cayman 
Chemical Company, Ann Arbor, MI, USA) in a nuclear 
extract obtained from the brain cortex according to the 
manufacturer’s instructions.

Determination of thiobarbituric acid reactive 
substances

Thiobarbituric acid reactive substances (TBARS), includ-
ing malondialdehyde, which is the last product of lipid 
peroxidation, were determined according to Asakawa 
and Matsushita (1980). The homogenate was mixed with 
10-mM Tris buffer (pH 7.4) at a protein concentration of 
approximately 1  mg/ml and incubated for 5  min. After 
incubation with 1 ml of 30% trichloric acid, 0.1 ml of 5-N 
HCl was added and centrifuged for 10 min at 4000×g; the 

supernatant was then collected, and 1  ml of 0.75% thio-
barbituric acid was added. The tubes were capped and the 
heated at 100 °C for 15 min in a boiling water bath. Then, 
the optic density of the supernatant was determined at 
535 nm in a Shimadzu UV 1202 spectrophotometer (Tokyo, 
Japan). TBARS concentration was calculated based on a 
standard curve obtained with a series of 1,1,3,3-tetraeth-
oxypropane solutions.

Statistical analysis

The results are expressed as the mean ±SEM. The dif-
ferences between groups were analyzed using one-way 
ANOVA, followed by the Student–Newman–Keuls test 
when appropriate. p < 0.05 was considered significant.

Results

The effects of IFN‑β1a and IFN‑β1b treatment 
on the course of EAE

After inoculation, the neurological signs and body weight 
were measured daily. The neurological states were deter-
mined according to a scale from 0 to 5, as described in the 
Materials and Methods section. The first observed symp-
tom of the disease, which was the loss of body weight, 
started around the 9th day post-immunization (d.p.i.) and 
progressed to the near end of the experiment, 13–14 d.p.i. 
(Sulkowski et  al. 2013). During this phase of the disease, 
the rats lost approximately 20–25% of their body weight 
(Fig. 1a). The body weight started to significantly increase 
in the EAE rats treated with IFN-β1b after the 13th d.p.i. 
(p = 0.034; Fig. 1a). The body weights were approximately 
10% greater in the EAE rats treated with both isoforms of 
IFN-β (IFN-β1a and IFN-β1b) compared with the untreated 
EAE rats at 14th d.p.i. (p = 0.041; Fig. 1a).

The neurological signs of EAE were demonstrated as a 
progressive developmental paralysis of the tail and the hind 
limbs and a reduction of physical activity. These signs of 
EAE started on the 9th d.p.i. and peaked on the 14th d.p.i. 
The EAE rats treated with the isoforms of IFN-β started to 
develop paralysis and peaked at the same d.p.i. as the EAE 
rats not treated with isoforms IFN-β. It was observed posi-
tive effects on the neurological deficits and an improved 
condition of the EAE rats following treatment with IFN-
β1a and IFN-β1b at the 13th and 14th d.p.i. (p = 0.021; 
Fig. 1b). Moreover, EAE rats given IFN-β1b had a larger 
improvement in the neurological deficits and condition at 
14th d.p.i., compared with those given IFN-β1a (p = 0.036; 
Fig. 1b).
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The effects of IFN‑β1a and IFN‑β1b treatment 
on astrocyte activation in the EAE rats

In our study, the activation of astrocytes was observed in 
the brain cortex in the EAE rats compared with the con-
trol group (healthy rats) (Fig. 2). The GFAP protein level 
increased 1.7-fold in the brain cortex of the EAE rats com-
pared to the control groups (p = 0.027). Both isoforms of 
IFN-β (IFN-β1a and IFN-β1b) significantly decreased the 
GFAP protein level in the brain cortex of the EAE rats 
compared with the untreated EAE rats (p = 0.031; Fig. 2).

Effects of IFN‑β1a and IFN‑β1b treatment on cytokine 
expression in the brain cortices of the EAE rats

The analyses of the expression of pro- and anti-inflam-
mation cytokines (mRNA and protein levels) were con-
ducted in the peak stage of the disease (14th d.p.i.). It was 
observed that drastically increased pro- and anti-inflam-
mation cytokines in the EAE rats at the peak stage of the 

Fig. 1   Weights of rats (a) 
and scores of the neurologi-
cal symptoms (b) during the 
acute phase of EAE and after 
treatment with IFN-β1a and 
IFN-β1b. The results are the 
means ± SEM of data from 15 
rats per group. *p < 0.05 versus 
control; #p < 0.05 versus EAE; 
^p < 0.05 versus EAE treated 
IFN-β1a (one-way ANOVA 
followed by the Student–New-
man–Keuls test)

Fig. 2   The effects of IFN-β1a and IFN-β1b on GFAP protein levels 
in the brain cortex in the acute phase of EAE rats. The images show 
Western blot analyses representative of 5 separate experiments. The 
results of densitometric analysis are shown as the mean ± SEM from 
5 independent experiments and are expressed as the percentage of the 
control. The GFAP protein level was normalized to β-actin. *p < 0.05 
versus the control; #p < 0.05 versus EAE (one-way ANOVA followed 
by the Student–Newman–Keuls test). A control, B EAE, C EAE IFN-
β1a, D EAE IFN-β1b



330	 Arch. Immunol. Ther. Exp. (2017) 65:325–338

1 3

disease (14th d.p.i.), which reached values from more 
than 1.4 to 12 times higher than the control (healthy) rats.

The level of IFN-γ mRNA drastically increased in the 
EAE rats at the peak stage of the disease (14th d.p.i.) 
and reached values more than five times higher than the 
control (healthy) rats (p = 0.0092; Fig.  3a). After the 
administration of IFN-β1b, the level of IFN-γ mRNA 
decreased by approximately 60% compared with the EAE 
untreated rats (p = 0.041; Fig.  3a). The smaller changes 
after the IFN-β1b treatment were observed in the case of 
the IFN-γ protein level, which decreased approximately 
30% compared with the EAE untreated rats (p = 0.039; 
Fig. 3b). The treatment of the EAE rats with IFN-β1a did 
not change either the mRNA or the protein level of IFN-γ 
(Fig. 3a, b).

The enhancement of the mRNA level of TNF-α in the 
EAE rats was then confirmed by Western blot analysis of 
the brain cortex homogenates (p = 0.045). These showed 
an increase in the levels of TNF-α mRNA and protein in 
the EAE rats at the 14th d.p.i. compared with the healthy 
control rats (p = 0.042; Fig.  4a, b). After treatment with 
IFN-β1a and IFN-β1b, the mRNA and protein levels of 
TNF-α decreased by approximately 50% compared with the 

untreated EAE rats. However, it remained approximately 
50% above the control values (p = 0.037; Fig. 4a, b).

The level of IL-1β mRNA and protein drastically 
increased in the EAE rats at the peak of the disease (14 
d.p.i.) and reached values more than 12 times higher than 
the control (healthy) rats (p = 0.029; Fig.  5a, b). After 
the administration of IFN-β1a and IFN-β1b, the levels 
decreased by approximately 45% compared with the EAE 
untreated rats (p = 0.026; Fig. 5a, b).

The levels of mRNA of IL-1β receptors R1 and R2 dras-
tically increased in the EAE rats at the peak (14 d.p.i.) and 
reached values more than 6 times higher than the control 
(healthy) rats (p = 0.044; Fig. 5c, d). After the administra-
tion of IFN-β1a and IFN-β1b, the level of mRNA IL-1βR1 
decreased to the control value (p = 0.039; Fig.  5c). The 
level of IL-1βR2 mRNA decreased by approximately 50% 
compared with the EAE untreated rats (p = 0.043; Fig. 5d).

The level of mRNA and protein IL-6 increased 2.4-fold 
in the brain cortex of EAE rats compared with the controls 
(p = 0.037; Fig. 6a, b). The administration of IFN-β1a and 
IFN-β1b decreased the mRNA and protein levels of IL-6 
in the brain cortex compared with the EAE untreated rats 
(p = 0.028; Fig. 6a, b).

Fig. 3   The effects of IFN-β1a 
and IFN-β1b on mRNA (a) and 
protein (b) levels of IFN-γ in 
the brain cortex in EAE rats. 
a The IFN-γ mRNA level was 
determined by quantitative 
real time-PCR (see “Materials 
and Methods”) and normal-
ized against actin. The results 
are shown as the mean ± SEM 
of data from 6 independent 
experiments, each carried out 
in triplicate. b The images 
show the Western blot analyses 
representative of 5 separate 
experiments. The results of 
the densitometric analysis are 
shown as the mean ± SEM from 
5 independent experiments and 
are expressed as the percentage 
of the control. IFN-γ protein 
levels were normalized to 
GAPDH. A control; B EAE; C 
EAE IFN-β1a; D EAE IFN-β1b; 
*p < 0.05; **p < 0.01 versus the 
control; #p < 0.05 versus EAE; 
^p < 0.05 versus EAE treated 
IFN-β1a (one-way ANOVA 
followed by the Student–New-
man–Keuls test)
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In the EAE rats, IL-10 mRNA and protein levels were 
significantly increased, about fourfold, in the brain cortex 
compared with the control group (p = 0.008; Fig.  7a, b). 
The subsequent increase in IL-10 mRNA and protein levels 
in the brain cortex of the EAE rats was seen after treatment 
with IFN-β1a as compared with the untreated EAE rats 
(p = 0.042; p < 0.05). Moreover, treatment with IFN-β1b 
decreased the levels in the brain cortex compared with the 
EAE untreated rats and reached values of more than two 
times higher than in the control (healthy) rats (p = 0.008; 
Fig. 7a, b).

Effects of IFN‑β1a and IFN‑β1b treatment 
on pro‑inflammatory mediators (NF‑κB, iNOS, ROS) 
in the brain cortices of the EAE rats

It was observed that EAE induced a 2.4-fold increase in 
NF-κB (p65) activity in the brain cortex compared with the 
control rats (p = 0.043; Fig.  8a). The treatment with both 
IFN-β1a and IFN-β1b decreased compared with the EAE 

untreated rats, but it was still more than 1.8 times higher 
compared with the control rats (p = 0.046; Fig. 8a).

It was observed increased lipid peroxidation in the 
brain cortex of the EAE rats compared with the control 
value (p = 0.0079; Fig.  8b). Both IFN-β1a and IFN-β1b 
inhibited significant (100%) lipid peroxidation in the 
cerebral cortex of the rats with EAE compared with the 
untreated EAE rats (p = 0.0074; Fig. 8b).

The increased pro-inflammatory cytokine (TNF-α, 
IFN-γ, IL-1β) levels and NF-κB activity were accompa-
nied by the induction of iNOS in the brain cortex of the 
EAE rats at the peak stage of the disease (14th d.p.i.). 
The iNOS mRNA and protein levels were significantly 
enhanced, 3.3-fold, in the EAE rats compared with the 
control group (p = 0.029; Fig. 8c, d). The administration 
of IFN-β1a caused a significant decrease in iNOS expres-
sion in the brain cortex of the EAE rats, compared with 
the non-treated EAE value (p = 0.0085). Moreover, treat-
ment with IFN-β1b did not decreased the EAE-induced 
iNOS mRNA and protein levels in the brain cortex of the 
EAE rats (Fig. 8c, d).

Fig. 4   The effects of IFN-β1a 
and IFN-β1b on mRNA (a) and 
protein (b) levels of TNF-α in 
the brain cortex in EAE rats. a 
The mRNA TNF-α level was 
determined by quantitative 
real time-PCR (see “Materials 
and Methods”) and normal-
ized against actin. The results 
are shown as the mean ± SEM 
of data from 6 independent 
experiments, each carried out 
in triplicate. b The images 
show Western blot analyses 
representative of 5 separate 
experiments. The results of 
the densitometric analysis are 
shown as the mean ± SEM from 
5 independent experiments and 
are expressed as the percentage 
of the control. TNF-α protein 
levels were normalized to 
GAPDH. A control; B EAE; C 
EAE IFN-β1a; D EAE IFN-β1b; 
*p < 0.05; **p < 0.01 versus the 
control; #p < 0.05 versus EAE 
(one-way ANOVA followed by 
the Student–Newman–Keuls 
test)
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The effects of treatment of IFN‑β1a and IFN‑β1b 
on myelin protein levels in the brain cortex of the EAE 
rats

Western blot analysis showed a decrease in myelin protein 
(CNP-ase, MOG) levels in the brain cortex homogenates 
obtained from the EAE rats at 14th d.p.i. compared with 
the healthy rats (p = 0.028; Fig. 9). IFN-β1b caused a sig-
nificant increase in the level of MOG protein compared 
with EAE values (p = 0.035, p < 0.05; Fig. 9a). In EAE rats 
treated with IFN-β1a, the MOG protein level was similar to 
that observed in the untreated EAE rats (p = 0.41; Fig. 9a).

The CNP-ase protein level was significantly decreased, 
approximately 40%, in the brain cortex of the EAE rats at 

the peak stage of the disease (14th d.p.i.) compared with 
the control rats (p = 0.036; Fig. 9b). The CNP-ase protein 
level increased to the control value in both groups of EAE 
rats treated with IFN-β1a or IFN-β1b (p = 0.061; Fig. 9b).

Discussion

While the influence of IFN-β variants on the regulation of 
pro- and anti-inflammatory cytokines have been studied 
before (Graber 2007; Stępień et al. 2013), this study, to the 
best of our knowledge, is the first to investigate the effects 
of these factors in the early phase of the disease. By using 
an inoculums-induced EAE female rat model of MS, we 

Fig. 5   The effects of IFN-β1a and IFN-β1b on IL1β mRNA (a) and 
protein levels (b) and IL-1βR1 (c) and IL-1βR2 (d) mRNA level in 
the brain cortex in EAE rats. a The IL-1β, IL-1βR1 and IL-1βR2 
mRNA mRNA levels were determined by quantitative real time-
PCR (see “Materials and Methods”) and normalized against actin. 
The results are shown as the mean ± SEM of data from 6 independ-
ent experiments, each carried out in triplicate. b The images show 

Western blot analyses representative of 5 separate experiments. The 
results of the densitometric analysis are the mean ± SEM from 5 inde-
pendent experiments and are expressed as the percentage of control. 
IL-1β protein levels were normalized to GAPDH. A control; B EAE; 
C EAE IFN-β1a, D EAE IFN-β1b; *p < 0.05 versus the control value; 
#p < 0.05 versus EAE (one-way ANOVA followed by the Student–
Newman–Keuls test)
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provide evidence that both IFN-β variants improve neu-
rological status, reduce pro-inflammatory cytokines and 
astrocyte activation as well as enhance MOG and CNP-ase 
myelin protein levels in early stage of disease. Despite the 
above general effects, it seems that the efficacy of used var-
iants differs and the IFN-β1b had a higher protective effect 
than the IFN-β1a throughout the advance of EAE signs. It 
is clearly indicated by the complete recovery to control val-
ues of MOG and CNP-ase myelin protein levels by IFN-β1b 
and only partial recovery of MOG protein level by IFN-β1a 
treatments. It is likely that such an effect cannot be attrib-
uted to antiviral IFN-β variants activities because as was 
shown in vitro, antiviral activity of IFN-β1a is higher than 
that of IFN-β1b (Antonetti et al. 2002). However, another 
finding of this study with potential relevance for under-
standing of the differences in efficacy between both variants 
of IFN-β is the fact that brain cortex IL-10 was remarkably 
diminished after IFN-β1b treatment, while no changes was 
seen in case of IFN-β1a administration. Interestingly, the 
aforementioned changes in brain IL-10 levels coexisted 
with parallel alteration in iNOS mRNA and protein levels. 
These observations raise the possibility that there was a 
link between iNOS and the recovery process of MOG and 

CNP-ase myelin protein levels after IFN-β1b therapy dur-
ing early stage of EAE disease process. In agreement with 
a possible involvement of iNOS in modulation of myelin 
protein remodeling are data showing participation of NO/
cGMP/PKG pathway in myelin restoration (remyelination) 
in SM patients during remitting phase of disease (Nunes 
et al. 2012; Raposo et al. 2014). This observation supports 
a view that the structural differences between IFN-β1a and 
IFN-β1b may be a direct impact on their efficacy by modu-
lating response of immune system which is also in accord-
ance with data obtained after long term IFN-β treatment 
MS patients (Stępień et al. 2013; Tiberio et al. 2005; Ziva-
dinov et al. 2007) and indirectly by modulating NO/cGMP/
PKG pathway (Guthikonda et al. 1998).

In our study, we started selected treatment with IFN-β1a 
or IFN-β1b on the 8 day after immunization and proceeded 
adopted therapy until 14  day of disease (peak of stage 
EAE). This was done based on previous experiments with 
EAE showing that the neurological deficits and clinical 
severity achieved the highest level between 12 and 14 days. 
Thus, this experimental protocol let us answer the question 
of whether noticed above signs are reduced in response to 
applied IFN-β variants. Our experimental trials revealed the 

Fig. 6   The effects of IFN-β1a 
and IFN-β1b on IL-6 mRNA 
(a) and protein (b) levels in 
the brain cortex in EAE rats. 
a The IL-6 mRNA level was 
determined by quantitative 
real time-PCR (see “Materials 
and Methods”) and normal-
ized against actin. The results 
are shown as the mean ± SEM 
of data from 6 independent 
experiments, each carried out in 
triplicate. b The images show 
Western blot analyses represent-
ative of 5 separate experiments. 
The results of the densitometric 
analysis are the mean ± SEM 
from 5 independent experi-
ments and are expressed as the 
percentage of the control. IL-6 
protein levels were normalized 
to GAPDH. A control; B EAE; 
C EAE IFN-β1a; D EAE IFN-
β1b; *p < 0.05, ***p < 0.001 
versus the control; #p < 0.05 
versus EAE (one-way ANOVA 
followed by the Student–New-
man–Keuls test)
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stronger protective effect of IFN-β1b compared with IFN-
β1a. It was achieved by different regulation of the concen-
tration of pro-and anti-inflammatory cytokine expression in 
the brain cortex at the peak stage of the disease (14th d.p.i.), 
which reached values of more than 2–12 times higher com-
pared with the control (healthy) rats. Although both IFN-
β1b and IFN-β1a partially inhibited the pro-inflammatory 
cytokines (IL-6, IL-1β, TNF-α) in the brain cortex in the 
EAE rats, only IFN-β1b decreased the concentration of the 
anti-inflammatory cytokine IL-10 and IFN-γ, while IFN-
β1a did the opposite (Fig. 9). A previous study showed that, 
among these cytokines, dominant roles in MS pathology 
have been attributed to TNF-α, IL-1β, IL-6, and IFN-γ, the 
accumulation of which is associated with MS signs (Bro-
snan and Raine 1996; Molina-Holgado et al. 2001; Popko 
et  al. 1997). All of these cytokines can damage myelin 

and oligodendrocytes and consequently cause damage to 
the axons and the deaths of neurons (Groomet al. 2003). 
Among these cytokines, TNF-α may play a particular role 
in MS pathology through its myelotoxicity, demonstrated 
in cultures of mouse spinal cord tissue (Selmaj and Rain 
1988), and by the partial suppression of demyelination by 
a monoclonal anti-TNF-α antibody (Stoll et  al. 1993). It 
is known that demyelination, oligodendrocyte loss, axonal 
damage, and astrogliosis are the histological hallmarks of 
MS (Kapadia and Sakic 2011; Shin et  al. 2012; Wekerle 
2008) and EAE (Aharoni et al. 2011).

The present data indicate that the key factor in the induc-
tion and course of EAE was the interplay between multi-
ple cytokines and iNOS (Willenberg et  al. 1999). iNOS 
up-regulation requires the involvement of TNF-α, IL-6, 
IL-1β and IFN-γ, and the latter, which is strongly associ-
ated with MS symptoms, is one of the predominant factors 
in the induction of iNOS expression by macrophages (Van 
der Veen et al. 2003). Inflammatory response to both IFN-β 
variants reduced the concentration of all investigated pro-
inflammatory cytokines by about 50%, but it was only suffi-
cient for iNOS induction in rats treated with IFN-β1b. NO, 
which is not engaged in free radical reactions, was shown 
to be involved in remyelination, because both IFN-β vari-
ants reduced oxidative stress. The most likely mechanism, 
which also helped NO serve its protective function, is the 
decrease in IL-10. It was shown that the observed changes 
in this study can take place in activated microglial and 
astrocyte cells in the acute phase of EAE (Kanwar et  al. 
2004; Shin et al. 2012; Sulkowski et al. 2013).

The immunization caused a decrease in MOG and CNP-
ase protein levels in the brain cortex in the acute phase (14 
d.p.i.) of EAE, which was associated with increased pro-
inflammatory cytokines, decreased lipid peroxidation, and 
the activation of astrocyte cells. The administration of 
IFN-β1b to the EAE rats prevented some of the decrease 
in MOG and CNP-ase protein levels in the brain cortex, 
while IFN-β1a revealed the same pattern only in the case of 
CNP-ase, compared with the EAE rats (Fig. 9). These data 
suggested that IFN-β1b was most effective in the remy-
elination process. Our study revealed the same impact on 
pro-inflammatory cytokines of both IFN-β variants which 
may suggest that the stronger protective effect stimulated 
by IFN-β1a is caused by its influence on iNOS expression/
NO synthesis.

In this study, we found that the iNOS mRNA and protein 
levels were meaningly enhanced, in the EAE rats compared 
with the control group (Fig. 8). These results are in agree-
ment with several recent studies reporting up-regulation of 
iNOS (Calabrese et al. 2002; Kahl et al. 2003) and eleva-
tion of serum and CSF levels of its metabolites NO3 and 
NO2 in MS patients (Cross et  al. 2006; Giovannoni et  al. 
1997; Johnson et  al. 1995; Nazliel et  al. 2002; Stepień 

Fig. 7   The effects of IFN-β1a and IFN-β1b on the IL-10 mRNA 
level in the brain cortex in EAE rats. The IL-10 mRNA level was 
determined by quantitative real time-PCR (see “Materials and Meth-
ods”) and normalized against actin. The results are shown as the 
mean ± SEM of data from 6 independent experiments, each car-
ried out in triplicate. b The IL-10 concentration was determined 
by ELISA kit. The results are the mean ± SEM from 4 independent 
experiments in duplicated. *p < 0.05; **p < 0.01 versus the control 
value; #p < 0.01 versus EAE; ^p < 0.05 versus EAE IFN-β1a (one-way 
ANOVA followed by the Student–Newman–Keuls test)
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et  al. 2013). Although the knowledge of NO’s influence 
in the etiology and pathophysiology of MS is modest, the 
prevailing view is that iNOS reflects an inflammatory pro-
cess coupled with activation macrophages/microglia and 
astrocytes leading to the tissue damage (Aguzzi et al. 2013; 
Okuda et  al. 1995; Rieckmann et  al. 1995). Besides the 
iNOS metabolites, NO may act directly as a reactive radical 
and indirectly by generation peroxynitrite anions (ONOO) 
(Beckman et  al. 1994; Marques et  al. 2008; Pautz et  al. 
2010) and also by its highly cytotoxic end product hydroxyl 
radical (•OH) (Beckman et al. 1994). All of them promote 
lipid peroxidation, the nitration of tyrosine residues on 

proteins and DNA, leading to their damage (Hoang et  al. 
2009). However, some controversies about the toxicity of 
NO in EAE/MS has been delivered by studies using NOS 
inhibitors. While administration of aminoguanidine (the 
more potent inhibitor of iNOS) was able to prevent the clin-
ical symptoms of the disease in Swiss Jim Lambert mice 
(Brenner et al. 1997; Cross et al. 1994; Ljubisavljevic et al. 
2011), others studies showed no significant therapeutic 
effects after administration of different NOS inhibitors to 
EAE rats (Ruuls et al. 1996; Zielasek et al. 1992).

We found that both isoforms of IFN-β, IFN-β1a and 
IFN-β1b, significantly decreased the GFAP protein level 

Fig. 8   The effects of IFN-β1a and IFN-β1b on NF-κB (p65) activity 
(a), lipid peroxidation (b), mRNA (c) and protein level (d) iNOS in 
the brain cortex in EAE rats. a The NF-κB (p65) activity was deter-
mined applying a commercially-available ELISA kit to a nuclear 
extract obtained from the brain cortex according to the manufactur-
er’s instructions. b The iNOS mRNA level was determined by quan-
titative real time-PCR (see “Materials and Methods”) and normalized 
against actin. The results are shown as the mean ± SEM of data from 

6 independent experiments. d The images show Western blot analyses 
representative of 5 separate experiments. The results of the densito-
metric analysis are the mean ± SEM from 5 independent experiments 
and are expressed as the percentage of the control. iNOS protein lev-
els were normalized to GAPDH. A control; B EAE; C EAE IFN-β1a; 
D EAE IFN-β1b; *p < 0.05; **p < 0.01; ***p < 0.001 versus the con-
trol; #p < 0.01 versus EAE; ^^p < 0.01 versus EAE treated with IFN-
β1a (one-way ANOVA followed by the Student–Newman–Keuls test)
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in the brain cortex in the EAE rats, compared with the 
untreated EAE rats. However, only IFN-β1b inhibited the 
immunization-induced enhancement of GFAP protein 
levels to the control values, which again indicates a more 
pronounced protective effect of IFN-β1b than of IFN-β1a. 
All said, it may point to the conclusion, that microglia and 
astrocytes, which are known to release potentially cyto-
toxic molecules, such as pro-inflammatory cytokines and 
reactive oxygen intermediates (Dheen et al. 2007), may be 
effectively influenced by IFN-β1b treatment.

In summary, our results indicated that both IFN-β1b and 
IFN-β1a treatment decreased pro-inflammatory cytokine 
(IL-6, IL-1β, TNF-α and IFN-γ) concentrations, micro-
glia/astrocyte activation and oxidative stress in the brain 
cortex of the rats with EAE. Both IFN-β1b and IFN-β1a 
treatment improved the neurological status of the EAE rats 
and increased the myelin protein levels in the brain; how-
ever, IFN-β1b indicated a stronger protective effect on the 
inflammatory conditions in the brain compared with IFN-
β1a. Differences in the improvements of the neurological 
status after treatment with IFN-β isoforms may result from 
the different influences on the levels of IL-10 and iNOS 
expression in (the peak of stage EAE) the brain cortex of 
EAE rats.
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