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N6-methyladenosine (m6A) RNA methylation has been shown to have prognostic value in
cancer. Nonetheless, its potential role regarding immunity, metabolism, and stemness in soft
tissue sarcoma (STS) remains unknown. We comprehensively estimated the m6A
modification patterns and corresponding immunity, metabolism, and stemness
characteristics based on 568 STS samples and 21 m6A regulators. The m6Ascore was
constructed to quantify m6A modification patterns in individuals using machine learning
algorithms. Two distinct m6A modification patterns among the STS patients were identified,
which exhibited differences in prognosis, immune cell infiltration, metabolic pathways,
stemness, somatic mutation, and copy number variation. Thereafter, immunity-,
metabolism-, and stemness phenotype-related genes associated with m6A modification
were identified. Furthermore, patients with lower m6Ascores had increased antitumor
immune responses, survival benefit under immunotherapy, tumor mutation burden,
immunogenicity, and response to anti-PD-1/L1 immunotherapy. Immunotherapy
sensitivity was validated using the IMvigor210 dataset. STS patients with lower
m6Ascore might be more sensitive to docetaxel and gemcitabine. Finally, pan-cancer
analysis illustrated the significant correlations of m6Ascore with clinical outcomes, immune
cell infiltration, metabolism, and stemness. This study revealed that m6A modification
plays an important role in immunity, metabolism, and stemness in STS. Evaluating the
m6A modification pattern and development of m6Ascore may help to guide more effective
immunotherapy and chemotherapy strategies.

Keywords: m6Amethylation, soft tissue sarcoma, cancermolecular subtypes, tumormicroenvironment, immunotherapy
INTRODUCTION

Soft tissue sarcoma (STS) is a type of malignant tumor that originates from mesenchymal tissues.
Compared to other cancers (such as tumors of the respiratory or digestive system), STS has a lower
incidence rate and higher heterogeneity (1). Despite recent advances in diagnosis, molecular
characterization and combination chemotherapy regimens, there are still great challenges in STS
org December 2021 | Volume 12 | Article 7657231
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management, especially regarding improving the clinical
outcomes, due to STS’s complexity and heterogeneity (2). In
recent years, given the growing evidence that the immune
system plays an important role in cancer progression and the
encouraging results of immunotherapy in some types of cancers,
such as non-small cell lung cancer (NSCLC) (3) and melanoma
(4), it was thought to extend immunotherapy to sarcomas (5).
Although immunotherapy is a promising cancer treatment, its
response rate remains low (5). This is especially the case in STS,
due to its extensive heterogeneity and unclear characterization of
the tumor microenvironment (TME) in the molecular subtypes.
Therefore, in-depth research on the role of these subtypes in
predicting responses to immunotherapy in STS is needed.

N6-methyladenosine (m6A) has a key role in current tumor
research (6). m6A methylation research may provide new insights
to improve cancer treatment, and m6A methylation is also a
significant prognostic biomarker (7, 8). m6A methylation is an
important RNA modification and a common post-transcriptional
modification of mRNA (9). The regulation of m6A methylation is
mediated by methyltransferases (writers), demethylases (erasers),
and m6A‐binding proteins (readers), which can contribute to the
post‐transcriptional regulation of gene expression at the RNA level
without altering base sequences (10). Some studies have revealed
that m6A regulators are related to typical carcinogenic pathways.
The m6A writer METTL3 promotes bladder cancer cell
proliferation in an m6A-dependent manner by promoting the
maturation of pre-miR221/222 (11). The m6A eraser ALKBH5
prevents pancreatic cancer progression by transcriptional
activation of PER1 in an m6A-YTHDF2-dependent manner
(12). As an oncogene, the m6A eraser FTO promotes IDH
mutations through the FTO/MYC/CEBPA signaling pathway,
which leads to tumorigenesis (13). Recent studies also revealed
that immunotherapy is affected by m6A modification via
changes in the TME and CD8+ T cell recruitment (14, 15).
Research has highlighted that m6A modification plays an
important role in cancer biology and tumor stemness (16).
From this perspective, analysis of m6A modification could
broaden the understanding of the mechanisms underlying STS
occurrence and progression, while providing new insights into
the clinical use of immunotherapy.

In this study, multiomics and clinical data of 568 STS samples
were used to comprehensively identify distinct m6A modification
patterns, and three important tumor characteristics (immunity,
metabolism, and stemness) were assessed. In addition, the
m6Ascore was developed using machine learning algorithms to
quantify individual differences among different STS subtypes.
m6Ascore was shown to predict responses to immunotherapy
and chemotherapy. Finally, a pan-cancer analysis illustrated
significant correlations of m6Ascore with prognosis, immune
cell infiltration, metabolism, and stemness in other cancers,
which indicated that it may help to guide the use of
immunotherapy and chemotherapy in other cancers.
METHODS

The method details are described in the Supplementary Methods.
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RESULTS

Landscape of m6A Regulators in STS
The detailed workflow for m6A patterns and subsequent
analyses are shown in Figure S1A. 21 m6A methylation
regulators (“writers”: CBLL1, KIAA1429, METTL14, METTL3,
RBM15, RBM15B, WTAP, ZC3H13; “readers”: ELAVL1, FMR1,
HNRNPA2B1, HNRNPC, IGF2BP1, LRPPRC, YTHDC1,
YTHDC2, YTHDF1, YTHDF2, YTHDF3; and “erasers”:
ALKBH5 and FTO) were analyzed in STS. Gene Ontology (GO)
enrichment analyses of these regulators were conducted, and the
significantly enriched biological processes are summarized in
Figure 1A. The locations across the chromosomes of the copy
number variation (CNV) of the regulators are shown in
Figure 1B. CNV was very common and mostly involved
amplification, though FMR1, ZC3H13, RBM15, FTO, LRPPRC,
and RBM15B had a high frequency of deletion (Figure 1C). The
interaction patterns among the 21 m6A regulators were also
analyzed using the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database (Figure 1D). Among the 237
STS samples in the The Cancer Genome Atlas Program (TCGA)
cohort, 10 mutations were identified, mutation frequency of the 21
m6A regulators was 4.22%. IGF2BP1 had the highest mutation
frequency, followed by RBM15 and YTHDC2 (Figure 1E).

Next, we investigated the difference in the expression of the 21
m6A regulators between the normal and tumor tissues. Fat and
muscle tissue samples from the The Genotype-Tissue Expression
(GTEx) database were used as adjacent normal tissue samples. Of
the 21 regulators, 20 showed significant differences between STS
and normal tissues, while ZC3H13 did not (Figure 1F). Kaplan–
Meier (KM) survival analysis showed significant differences in
overall survival between patients with high or low expression of
the 21 regulators (Figure S1B). The above findings suggested
that changes in the expression of m6A regulators may play a
crucial role in occurrence and progression of STS.

Identification of m6A Methylation
Modification Patterns
The crosstalk among the 21 m6A regulators and their prognostic
value in STS is comprehensively illustrated in the m6A regulator
network (Figure 2A). All 21 m6A regulators were positively
correlated with each other. Next, consensus clustering was
performed using the “ConsensusClusterPlus” R package both
TCGA and Gene Expression Omnibus (GEO) cohorts. K = 2 was
selected based on the empirical cumulative distribution function
(CDF) plots (Figures 2B, C). Thus, two m6A modification
patterns, designated m6Acluster-A (n=284) and m6Acluster-B
(n=284), were identified. STS samples with distinct m6A
modification could be completely distinguished (Figure 2D).
Kaplan–Meier (K-M) survival analysis of the two patterns
revealed the clear survival advantage in m6Acluster-A, both
TCGA-SARC and GSE21050 cohorts (Figure 2E). The
expression of the 21 regulators was significantly different
between the two patterns (Figure 2F). To verify the large
difference in survival, the TCGA and GEO cohorts (as the
validation dataset) respectively were employed to compare the
survival between the two patterns (Figure S2A). Importantly,
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similar results were observed, indicating support for the two
patterns identified by the clustering algorithm. Additionally, in
the TCGA and GEO cohorts, there were significant differences in
the expression of m6A regulators between the two patterns
(Figure S2B).

Compared to m6Acluster-B, m6Acluster-A had increased
enrichment of immune cells (using CIBERSORT, MCP-
counter, xCell, EPIC, TIMER, quanTIseq and IPS algorithms),
especially regarding anti-tumor immune cells, in the TCGA and
GEO cohorts (Figure 2G). The ImmuneScore and StromalScore
(evaluated by the ESTIMATE method) were compared between
the two patterns (Figure 2H). The differences in immune cell
infiltration between the two patterns were also respectively
validated in the TCGA and GEO cohorts, and similar results
were observed (Figure S2C).

To further explore the biological behaviors in the two
patterns, Gene Set Variation Analysis (GSVA) and the
“limma” package were used, which led to the identification of
84 differential pathways (Figure S2D). Typical biological
Frontiers in Immunology | www.frontiersin.org 3
pathways and immune signatures were compared between the
two patterns to explore the potential mechanisms. Pathways
related to immunity, metabolism, and stemness (cell cycle, DNA
damage repair, DNA replication, and mismatch repair) showed
significant differences between the two patterns. In particular, the
epithelial-to-mesenchymal transition (EMT) and pan-fibroblast
TGF-b response signaling pathways were significantly
upregulated in m6Acluster-A, which had strong enrichment of
CD8+ T cells, effector antigen processing machinery, and
immune checkpoints (Figure 2I). DNA damage repair, DNA
replication, and Wnt signaling pathways were significantly
upregulated in m6Acluster-B. These results demonstrated that
m6Acluster-A predominantly featured immune and stromal
activation, and m6Acluster-B mainly featured DNA repair.
Based on above results, we revealed two m6A modification
patterns with distinct characteristics of immunity, metabolism,
and stemness, which suggested that m6A modification might
regulate immune microenvironment, metabolism processes, and
tumor cell stemness to contribute to different behaviors of STS.
A B

D

E F

C

FIGURE 1 | Landscape of m6A regulators in STS. (A) GO enrichment plot showing seven important terms related with m6A regulators. (B) The location of CNV
alteration of m6A regulators on 23 chromosomes in TCGA-SARC cohorts. (C) The CNV variation frequency of m6A regulators in TCGA-SARC corhort. The height of
the column represented the alteration frequency. Green dot and red dot represented the deletion frequency and the amplification frequency, respectively. (D) The
protein-protein interactions between 21 m6A regulators. (E) The mutation frequencies of m6A regulators in TCGA-STS cohort. Each column represented an individual
sample. The upper barplot showed tumor mutation load and the number on the right indicated the mutation frequency in each regulator. (F) The expression of 21 m6A
regulators between normal tissues from Genotype-Tissue Expression samples and STS tissue from TCGA-SARC cohort. The statistical difference was compared
through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 2 | Identification of m6A methylation modification patterns. (A) The interaction among m6A regulators in STS. The circle size represented the significance
level of P values calculated by Log-rank test, p < 0.001, p < 0.01, p < 0.05 and P < 1, respectively. Favorable factors for overall survival are indicated in green, and
risk factors indicated in purple. The lines connecting represent m6A regulators interactions estimated by Spearman correlation analysis. Positive correlation is
indicated in pink and negative correlation in blue. (B) The clustering heatmap corresponding to the consensus matrix for k=2 obtained by consensus clustering.
(C) Relative change in area under consensus CDF curve for k=2 to 9. (D) Principal component analysis for the transcriptome profiles of two m6A modification
subtypes, showing a remarkable difference between different modification patterns. (E) Survival analyses for the two m6A modification patterns based on TCGA-
SARC and GSE21050 STS cohort including 284 cases in m6Acluster-A, 284 cases in m6Acluster-B. Kaplan-Meier curves with Log-rank p value <0.001 showed a
significant survival difference between two m6A modification patterns. (F) The expression of 21 m6A regulators between the m6Acluster-A and m6Acluster-B groups
and corresponded clinical information also displays in heatmap. (G) Heatmap for immune responses based on CIBERSORT, MCPcounter, xCell, EPIC, TIMER, q
uanTIseq and iPS algorithms between two m6Aclusters. (H) The Immune score and Stromal score from ESTIMATE algorithms of two m6Aclusters were analyzed
and plotted. (I) The enrichment differences of immune signatures and typical biological processes between the m6Acluster-A and m6Acluster-B groups. The
statistical difference was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. ns, no significant.
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Correlations of the 21 m6A Regulators
With Immunity, Metabolic Pathways,
and Stemness
To further explore the potential significance of each of the 21
regulators, their correlations with immunity, metabolic
pathways, and stemness was analyzed. Regarding immunity,
we analyzed the correlations between the expression of the 21
m6A regulators and the infiltration of 28 immune cells
(Figure S3A).

Regarding metabolic pathways, 40 differential metabolic
pathways were identified by the “limma” R package.
Subsequently, 18 prognosis-related metabolic pathways were
selected by univariate Cox analysis and the randomSurvivalForest
algorithm (Table S2). The relationship between the error rate and
the number of classification trees is shown in Figure S3B. After
ranking these metabolic pathways by importance according to the
out-of-bag error, five metabolic pathways with relative importance
>0.5 were considered in the subsequent analysis (Figure S3C). Most
metabolic pathways were negatively correlated with the 21 m6A
regulators (Figure S3D).

Regarding stemness, there were significant correlations
between the expression of the 21 regulators and the six
stemness indices (Figure S3E). The highest correlation
coefficient was between RBM15 and mRNAsi. Additionally,
HNRNPC, YTHDF2, and HNRNPA2B1 were significantly
positively correlated with mDNAsi and mRNAsi. K-M survival
analysis for the six stemness indices showed a survival advantage
in the lower level of stemness index group (Figure S3F).
Significant correlations between the expression of the 21
regulators with immune microenvironment, metabolic
pathways, and stemness levels indicated that these regulators
might play important roles in regulation of m6A modification in
terms of immunity, metabolism, and stemness for STS.

Identification of Hub Genes and Immunity/
Metabolism/Stemness Subtypes by Co-
Expression Network Analysis (WGCNA)
To identify immune/metabolism/stemness phenotype-related
genes related to the m6A modification patterns, WGCNA was
used to identify biologically meaningful modules corresponding
to phenotype-related genes. The 12 phenotypes investigated were
ImmuneScore (calculated using the ESTIMATE method), five
metabolic pathways (selected in the random survival forest
analysis), and the six stemness indices.

First, by comparing the two m6A modification patterns, 2183
differentially expressed genes (DEGs) (|log2FC|>0.5 and
FDR<0.05) were identified to be used in WGCNA (Table S3).
In the subsequent WGCNA, there were five modules (merged
dynamic) (Figure 3A). Of the 12 phenotypes, the three that were
most correlated with module genes were selected for further
analysis. A heatmap revealed the three key modules (MEblue,
MEbrown, and MEyellow for ImmuneScore, Retinoic Acid
metabolism pathway, and mRNAsi, respectively) (Figure 3B).
We further analyzed the correlations of the hub genes in the
three modules (Figure S4A). Ultimately, we identified 579
immune phenotype (ImmuneScore)-related genes, 326
Frontiers in Immunology | www.frontiersin.org 5
metabolism phenotype-related (retinoic acid metabolism)
genes, and 286 stemness phenotype (mRNAsi)-related genes
(Table S4).

Three unsupervised consensus clustering analyses were
performed based on the immunity/metabolism/stemness
phenotype-related genes in the three modules, with the optimal
number of clusters being selected based on the corresponding
CDF curve (Figure S4B). As a result, Immunity groups A–D,
Metabolism groups A–C, and Stemness groups A–C,
respectively, were defined (Figure 3C). Regarding immunity,
the K-M survival analysis showed that STS patients in the
Immunity A and D groups had better prognoses than those in
the Immunity B and C groups (Figure 3D). The Immunity A and
D groups had massive infiltration of anti-tumor immune cells
(CD8+ T cells, macrophages, cytotoxic cells, dendritic cells, and
Th1 cells) (Figure S4C) and lower expression of m6A regulators
(Figure 3E). Regarding metabolism, the K-M survival analysis
showed that the Metabolism A group had a better prognosis than
the Metabolism B and C groups (Figure 3D). The three
subgroups exhibited different metabolism processes (Figure
S4C). The Metabolism A group had lower expression of the
m6A regulators than the other two groups (Figure 3E).
Regarding stemness, the K-M survival analysis showed that the
Stemness B group had a better prognosis than the Stemness A
and C groups (Figure 3D). Nevertheless, 15 typical tumor
stemness-related biological processes in the three subgroups
were comparable (Figure S4C). The Stemness B group had
lower expression of the m6A regulators than the other two
groups (Figure 3E).

Identification of DNAMethylation Subtypes
Using the TCGA-SARC cohort, 531 CpG sites in the 21 m6A
regulator genes were identified (Table S5). Subsequently, 41
prognosis-related CpG sites were identified by univariate Cox
regression. These sites were used to identify DNA methylation
subgroups. K = 2 was selected as the most suitable choice based on
the consistency of each cluster and the CDF curve (Figure S5A).
Thus, the DNA methylation site clustering analysis identified two
distinct subgroups, designated DNAmethy-Cluster-A and -B
(Figure S5B). The heatmap shows the differences in the
methylation sites in each subgroup (Figure S5C), with higher
DNA methylation levels in DNAmethy-Cluster-A. The annotated
distribution of clinical traits in the heatmap shows that the two
subgroups had unique characteristics. K-M survival analysis
showed that DNAmethy-Cluster-A had a higher survival rate
(Figure S5D). Furthermore, six of the m6A regulators (RBM15B,
KIAA1429, YTHDF2, HNRNPA2B1, HNRNPC, and ELAVL1)
exhibited lower expression in DNAmethy-Cluster-A (Figure S5E).

We further explored the differences in immune cell
infiltration, metabolic pathways, and stemness between the two
DNA methylation subgroups. As expected, DNAmethy-Cluster-
A had an immune-activated phenotype characterized by
abundant immune cell infiltration (Figure S5F). This subgroup
was significantly enriched in metabolic pathways, including
phenylalanine metabolism, tryptophan metabolism, and
nicotinate and nicotinamide metabolic pathways (Figure S5G).
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Furthermore, this group had lower DNA-related stemness index,
as shown in the boxplot in Figure S5H. These results indicated
the key roles of the m6A modification in DNA methylation.
Identification of m6A Modification
Pattern-Related DEGs and Construction
of the m6Ascore
STS patients were classified into two m6A modification patterns
by consensus clustering based on the expression of 21 m6A
regulators. We then examined the potential m6A modification
Frontiers in Immunology | www.frontiersin.org 6
pattern-related gene expression changes between the two patterns,
identifying 204 DEGs (log2FC>1 and FDR<0.05) (Table S6). GO
enrichment analysis of these DEGs revealed significant
enrichment of T cell mediated immunity, negative regulation
of immune response, and positive regulation of cell cycle
(Figure S6A). The results further demonstrated that the DEGs
were characterized by m6A modification, immunity, metabolism
pathways, and stemness. The results also confirmed that m6A
modification played a key role in the TME. Among the 204 m6A
modification pattern-related DEGs, 141 prognosis-related genes
were identified by univariate Cox regression (Table S7).
A B

D

E

C

FIGURE 3 | Identification of hub genes and immunity/metabolism/stemness subtypes by WGCNA.(A) Hierarchical clustering dendrograms of identified co-expressed
genes in modules. The branches of the cluster dendrogram correspond to the different gene modules. Each leaf on the cluster dendrogram corresponds to a gene.
Each colored row represents a color-coded module which contains a group of highly connected genes. (B) Correlations between the gene modules and clinical traits.
The correlation coefficient in each cell represented the correlation between the gene module and the clinical traits. The corresponding P-value and Correlation value are
annotated. (C) Heatmap corresponding to the consensus matrix for k=4 (left), 3 (middle), 3 (right) obtained by consensus clustering. (D) Kaplan–Meier curves using the
Log-rank test for immunity (left), metabolism (middle) and stemness (right) clusters respectively. (E) The expression of 21 m6A regulators between four immunity (left),
metabolism (middle) and stemness (right) clusters. The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001.
December 2021 | Volume 12 | Article 765723

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huang et al. m6A Modification Patterns in STS
Subsequently, these 141 genes were subjected to unsupervised
consensus clustering analysis and two stable phenotypes were
obtained (Figures S6B, C). Ultimately, the samples were divided
into two distinct m6A gene signature subgroups, designated
geneCluster-A and geneCluster-B (Figure S6D). The
geneCluster-A was associated with better prognosis (Figure S6E).
There were significant differences in the expression of the 19 m6A
regulators between the two subgroups (Figure S6F).

Considering the individual heterogeneity and complexity of
m6A modification, we quantified the m6A modification pattern
of individual STS patients using principal component analysis
based on the 141 abovementioned genes. Thus, m6Ascore was
defined for each STS patient. We visualized the changes in the
attributes of individual patients in different clusters using an
alluvial diagram (Figure S6G). To assess the prognostic value of
m6Ascore, samples were divided into high- and low-m6Ascore
using the optimal cutoff (1.46) determined by the “survminer” R
package. Survival was higher in the low-m6Ascore group (Figure
S6H), as verified in the TCGA and GEO cohorts (Figure S6I),
and the expression levels of the 17 regulators were also
significantly different between the two subgroups (Figure S6J).
Both m6ACluster-A and geneCluster-A had a lower m6Ascore
(Figure S6K). These results indicate m6Ascore could be used to
predict prognosis in STS.

Correlation Between m6Ascore
and Clinicopathological Type
The histological subtypes of STS in the TCGA-SARC and
GSE21050 cohorts mainly included undifferentiated pleomorphic
sarcoma (UPS; 35.48%), dedifferentiated liposarcoma (DDLPS;
20.11%), desmoid tumor (DT; 0.4%), leiomyosarcoma (LMS;
35.67%), myxofibrosarcoma (MFS; 4.74%), malignant peripheral
nerve sheath tumors (MPNST; 1.7%), and synovial sarcoma (SS;
1.9%). K-M survival analysis of these seven subtypes showed that
UPS (with a lower m6Ascore) had improved survival, while LMS
(with a higher m6Ascore) had poorer survival (Figure S7A). The
stacked column chart shows the distribution of the histological
subtypes in the high- and low-m6Ascore groups (Figure S7B).
UPS, DDLPS, and MFS patients were mainly in the low-m6Ascore
group, while LMS patients were mainly in the high-m6Ascore
group (Figure S7C). K-M survival analysis of high- and low-
m6Ascore subgroups in each histological subtype showed that low-
m6Ascore subgroups had a better prognosis, but the difference was
only significant for UPS (Figure S7D).

Multiomics Analysis of the Role
of m6Ascore
Based on the aforementioned strong associations of the m6A
regulators with immunity, metabolism, and stemness in STS
patients, we further investigated the correlations of m6Ascore
with immunity, metabolism, and stemness. As expected,
m6Ascore was significantly correlated with the ImmuneScore
and immune cells, including anti-tumor cells (CD8+ T cells,
macrophages, Th1 cells, natural killer cells, dendritic cells, and
TH17 cells) and pro-tumor immune cells (Th2 cells)
(Figure 4A). The heatmap of immune cell infiltration (based
Frontiers in Immunology | www.frontiersin.org 7
on CIBERSORT, MCP-counter, xCell, EPIC, TIMER, quanTIseq
and IPS algorithms) indicated that the low-m6Ascore group had
higher immune cell infiltration, especially regarding anti-tumor-
related cells (CD8+ T, dendritic, natural killer, and Th1 cells)
(Figure 4B). The low-m6Ascore group also had a higher
ImmuneScore and StromalScore (calculated using the
ESTIMATE method) (Figure 4C).

Next, we used the GSVA and “limma” R package to analyze
the differences in 114 metabolic pathways between the high- and
low-m6Ascore groups, which identified 37 metabolic pathways
(Figure 4D). Compared to the low-m6Ascore group, the high-
m6Ascore group was significantly enriched in the Propanoate
metabolism, Lysine degradation, and Glycogen degradation
pathways. In addition, there were differences in stemness-
related pathways between the two groups (Figure 4E).

We compared the somatic mutations in the TCGA-SARC
cohort and found that low-m6Ascore group had a higher tumor
mutation rate than the high-m6Ascore group (68.61% versus
65.31%) (Figure 4F). Differentially mutated genes between the
two groups are displayed as a forest plot (Figure S7E). The low
m6Ascore group had a markedly higher TMB (Figure 4G).
Higher TMB was associated with increased survival
(Figure 5A), and low-m6Ascore combined with higher TMB
was also associated with better survival (Figure 5B). In addition
to TMB, we further studied other immunogenic biomarkers and
found that intratumor heterogeneity (LOH), DNA damage
including homologous recombination deficiency (HRD), tumor
neoantigen burden (TNB), intratumor heterogeneity (ITH), and
aneuploidy were significantly negatively correlated with
m6Ascore (Figure 4G). In summary, the differences in tumor
immunogenicity between the high- and low-m6Ascore groups
were significant (Figure 5C).

We further explored CNV between the two m6Ascore groups.
The low-m6Ascore group had a higher focal-level gain (p<0.01)
and loss (p=0.02) burden and a higher arm-level gain burden
(p=0.04) compared to the high-m6Ascore group (Figure 5D).
Figure 5E shows the distribution of the G-score (based on the
frequency and amplitude of the gains and losses) across all
chromosomes in the high- and low-m6Ascore groups. Focal
amplifications and deletions in various chromosomal regions
were detected in both the low- and high-m6Ascore groups
(Figures 5F and S7F). These results show that the low-
m6Ascore group had relatively high immunogenicity, while the
high-m6Ascore group had relatively low immunogenicity.
Moreover, Gene Set Enrichment Analysis (GSEA) showed that
the Hedgehog signaling, Myogenesis, and Spermatogenesis
pathways were substantially enriched in the high-m6Ascore
group, while the Hypoxia, IL6-JAK-STAT3 signaling,
Inflammatory response, KRAS signaling, and P53 pathways were
enriched in the low-m6Ascore group (Figure 5G).

m6Ascore Predicts Responses
to Immunotherapy
We further assessed the ability of m6Ascore to predict the
clinical benefit of immunotherapy. The low-m6Ascore group
had higher expression of immune checkpoint-related genes
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(especially regarding PDCD1, PD1, and CTLA4) than the high-
m6Ascore group (Figure 6A). This suggested that patients with
different m6Ascores may have different responses to immune
checkpoint inhibitors.

We then used the Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm to predict the likelihood of
response to immunotherapy, and it demonstrated that the low-
m6Ascore group had a lower TIDE score and may therefore be
more likely to respond to immunotherapy than the high-
m6Ascore group (p<0.01) (Figure 6B). m6Ascore was
significantly positively correlated with TIDE score (cor=0.24,
Frontiers in Immunology | www.frontiersin.org 8
p<0.01) (Figure 6C). We also used Subclass Mapping (SubMap)
algorithm to compare the expression profile of the two m6Ascore
groups with an independent cohort of 47 melanoma patients
treated with immunotherapy. The low-m6Ascore group was
more likely to respond to anti–PD-1 antibody treatment
(nominal p<0.01, Bonferroni-corrected p<0.01) (Figure 6D).

We next explored the prognostic value of the m6Ascore in
immune checkpoint inhibitor therapy by classifying patients
receiving immune checkpoint inhibitor therapy in the TCGA-
SKCM cohort to high or low m6Ascore groups. Patients with
high m6Ascores had significantly worse survival than those
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FIGURE 4 | Multiomics analysis of the role of m6Ascore. (A) Correlations between m6Ascore and immune cells, metabolic pathways and stemness index,
respectively. (B) Heatmap for immune responses based on CIBERSORT, MCPcounter, xCell, EPIC, TIMER, quanTIseq and iPS algorithms the low- or high-
m6Ascore groups. (C) Differences in immuneScore and stromalScore from ESTIMATE algorithms between low- or high-m6Ascore group in the TCGA-SARC and
GSE21050 cohort using Kruskal–Wallis test. (D, E) GSVA enrichment analysis showing the activation states of metabolic (D) and stemness-related (E) pathways
between high and low m6Ascore groups. The heatmap was used to visualize these pathways, and red represented activated pathways and blue represented
inhibited pathways. (F) The waterfall plot showing tumor somatic mutation established by those with high m6Ascore (left) and low m6Ascore (right). Each column
represented individual patients. The upper barplot showed TMB, the number on the right indicated the mutation frequency in each gene. (G) Scatter plots depicting
the negative correlation by Spearman correlation analysis between m6Ascore and TMB, neoantigen burden, DNA damage including homologous recombination
deficiency (HRD), loss of heterozygosity (LOH; number of segments with LOH events, and fraction of bases with LOH events), intratumor heterogeneity (ITH), and
aneuploidy score.
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with lower m6Ascores in TCGA-SKCM cohort (p=0.03)
(Figure S7G). However, response event outcomes were
missing in the clinical information from the TCGA-SKCM
cohort, so we further validated the predictive performance of
m6Ascore in immunotherapy using an external cohort. The
IMvigor210 cohort of 348 anti–PD-L1 antibody (atezolizumab)-
treated muscle-invasive bladder cancer patients was used to
further validate the value of m6Ascore for predicting the
clinical benefit of immunotherapy. Based on our scoring
Frontiers in Immunology | www.frontiersin.org 9
strategy, the m6Ascore of each patient in the IMvigor210
cohort was calculated. The low-m6Ascore group had a
significant survival advantage, implying that the m6Ascore
reflects sensitivity to immunotherapy (Figure 6E). The low-
m6Ascore group also mainly included patients who responded
to immunotherapy (Figure 6F). In addition, the m6Ascore was
significantly lower in the complete/partial immunotherapy
response group than the non-response group (stable/progressive
disease) (Figure 6G).
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FIGURE 5 | Multiomics analysis of the role of m6Ascore. (A) Kaplan-Meier curves depicting survival analyses for low (184 cases) and high (51 cases) TMB patient
groups in the TCGA-SARC cohort using Log-rank test. (B) Kaplan-Meier curves depicting survival analyses for subgroup patients stratified by both m6Ascore and
TMB levels using Log-rank test. (C) Differences in the m6Ascore between TMB, neoantigen burden, DNA damage including homologous recombination deficiency
(HRD), loss of heterozygosity (LOH; number of segments with LOH events, and fraction of bases with LOH events), intratumor heterogeneity (ITH), and aneuploidy
score in the TCGA-SARC cohort. The upper and lower ends of the boxes represented an interquartile range of values. The lines in the boxes represented the median
value, and the dots showed outliers. (D) Distribution of and focal and broad (arm-level) copy number alterations in the low or high m6Ascore groups. The statistical
significance of pairwise comparisons is annotated with symbols in which ns and * represent not significant (P > 0.05) and P ≤ 0.05, respectively. (E) Copy number
profiles for the low or high m6Ascore groups, with gains in red and losses in blue. Gene segments are placed according to their location on chromosomes, ranging
from chromosome 1 to chromosome 22. (F) Detailed cytoband with focal amplification (left) and focal deletion (right) in the low-m6Ascore group generated with
GISTIC_2.0 software. The q value of each locus is plotted horizontally. (G) GSEA plots showing the activated and suppressed gene sets between the high and low
m6Ascore groups. Each run was performed with 1,000 permutations. ns, no significant.
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m6Ascore Could Predict the Sensitivity of
Two Chemotherapy Drugs
Chemotherapy regimens generally involve a combination of
several anti-cancer drugs. We assessed the response of the low
and high-m6Ascore groups to three common chemotherapeutic
drugs for STS: docetaxel, doxorubicin, and gemcitabine. We
trained a predictive model on a GDSC cell line dataset using
ridge regression, with a satisfactory predictive accuracy evaluated
by 10-fold cross-validation. The low-m6Ascore group was
predicted to be more sensitive to docetaxel (P <0.01) and
gemcitabine (P <0.01) (Figure 6H).
Utility of m6Ascore in Pan-Cancer Analysis
To further determine the performance of the m6Ascoring system
in various cancer types. The m6Ascores of 10327 samples of 32
cancer types was calculated. Univariate Cox regression indicated
that m6Ascore was a favorable factor in ACC, PRAD, MESO,
LAML, SKCM, and STAD, and a risk factor in LUAD, PAAD,
LGG, KICH, and KIRP (Figure S8A). The K-M survival analyses
Frontiers in Immunology | www.frontiersin.org 10
showed that there was a significant difference in overall survival
between the high and low m6Ascore groups in the 32 cancer types
(p<0.05) (Figure S9). Lower m6Ascore improved prognosis in
ESCA, COAD, KIRP, BLCA, READ, PAAD, THYM, UCEC,
BRCA, KIRC, LUAD, LGG, KICH, CESC, LIHC, and UVM.

The pan-cancer analysis showed that all 32 cancers exhibited
a significant correlation between m6Ascore and ImmuneScore
(calculated using the ESTIMATE method) (Figure S8B). Next,
the correlations between m6Ascore and the proportions of 28
immune cells (calculated using the xCell method) were analyzed
in the 32 cancer types. The correlation trends in 32 cancer types
differed (Figure S8C). The proportions of regulatory T cells, M2
macrophages, and Th2 cells (which are all pro-tumor, immunity-
suppressing cells) were correlated with m6Ascore in TGCT,
PRAD, OV, ACC, GBM, KIRP, LAML, LUAD and LUSC. The
proportions of CD8+ T, dendritic, natural killer, and Th1 cells
were correlated with m6Ascore in ACC, CESC, LUAD, TGCT
and THYM. We further investigated the correlations between
m6Ascore and five important metabolic pathways (selected in
the random survival forest analysis) in the 32 cancer types and
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FIGURE 6 | m6Ascore predicts responses to immunotherapy and chemotherapy. (A) Differences in the expression of immune checkpoint genes between the
low and high m6Ascore groups in the TCGA-SARC and GSE21050 cohort. The statistical difference of clusters was compared through the Kruskal–Wallis test.
*P < 0.05; ***P < 0.001. ns, no significant. (B) Differences in the TIDE scores between the low and high m6Ascore groups in the TCGA-SARC and GSE21050
cohort. The thick line represents the median value. (C) Scatter plots depicting the positive correlation between TIDEscore and m6Ascore in the TCGA-SARC and
GSE21050 cohort by the Spearman correlation analysis. The dotted color indicates the low (blue) and high (red) m6Ascore groups. (D) Submap analysis manifested
that low-m6Ascore groups could be more sensitive to the programmed cell death protein 1 inhibitor (Bonferroni-corrected P = 0.008). (E) Kaplan-Meier curves for
high and low m6Ascore patient groups in the IMvigor210 cohort. (F) The proportion of patients in the IMvigor210 cohort with clinical response in low or highm6Ascore
groups. (G) Violin plot showing differences in the m6Ascore among patients with different clinical responses in the IMvigor210 cohort using Kruskal–Wallis test.
The statistical difference of clusters was compared through the Kruskal–Wallis test. *P < 0.05. (H) The box plot of the estimated IC50 for Docetaxel, Docetaxel and
Gemcitabine are shown between the low and high m6Ascore groups.
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found that 21 cancers were significantly associated with the
Retinoic acid metabolism pathway (Figure S8D). Additionally,
31 cancers (all except OV) exhibited significant associations
between m6Ascore and the six stemness indices (Figure S8E),
with negative correlations in DLBC and GBM and positive
correlations in BRCA, CESC, ESCA, STAD, and LUSC.

TMB, microsatellite instability (MSI), and expression levels of
immune checkpoint-related genes can be used to predict the
response to immune checkpoint blockade immunotherapy. Of
the 32 cancer types, 18 exhibited a significant correlation
between m6Ascore and TMB, as shown in radar charts (Figure
S8F), 13 exhibited a significant correlation between m6Ascore
and MSI (Figure S8G), and nine (ACC, LIHC, LUAD, LUSC,
MESO, OV, PAAD, STAD, and TGCT) exhibited significant
correlations between m6Ascores and both TMB and MSI. We
further investigated the correlations between m6Ascore and 15
immune checkpoint-related genes in the 32 cancer types, and
there was a significant correlation between PD-L1 (CD274)
expression and m6Ascore in 29 cancer types (Figure S8H),
which again confirmed the ability of m6Ascore to predict the
clinical benefit of immunotherapy.
DISCUSSION

In this study, multiomics data and machine learning algorithms
were utilized to analyze m6A modification, and we revealed that
m6A regulators were involved in the regulation of immunity,
metabolism, and stemness in STS, which provides further
insights for clinical management, including immunotherapy,
chemotherapy and metabolism therapy.

To explore the biological effects of m6A modification in STS,
21 m6A regulators were analyzed based on expression, mutation,
and CNV. The high heterogeneity of expression and genomic
alterations revealed the pivotal roles of the m6A regulators in STS,
which necessitated subsequent analyses. Thereafter, unsupervised
clustering was used to identify two m6A modification patterns
(m6Acluster-A and -B) with distinct prognoses, distinct
characteristics of immunity, metabolism, and stemness in STS.
m6Acluster-A had better survival and enrichment of immune-
stimulating cells, promoting type I immunity-mediated anti-tumor
effects (17, 18). Inversely, elevated Th2 cells reduce type I
immunity and facilitate tissue repair (19). Higher B (20), CD8+
T, natural killer, and dendritic cell infiltration and lower Th2
cell infiltration suggested immune activation and contributed to
the better prognosis in m6Acluster-A, which was designated the
immune-activated phenotype. In contrast, m6Acluster-B, the
immune-desert phenotype, had worse prognosis because of
the lower immune cell infiltration. Hence, as found in previous
studies (21, 22), m6A modification may affect prognosis by
regulating the immune microenvironment in STS.

To further investigate the functions of these m6A regulators,
we performed GSVA involving typical biological pathways, and
we found that the cell cycle, mismatch repair, VEGF signaling,
immune-related pathways, metabolic-related pathways, and
EMT (23) differed between m6Acluster-A and -B. Higher
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enrichment scores for the cell cycle and mismatch repair
suggested increased cell proliferation in m6Acluster-B,
worsening prognosis. Accordingly, we speculated that the m6A
regulators also played vital roles in metabolism and stemness in
STS, in addition to their roles in immunity. To verify this
speculation, the relationships between the m6A regulators and
immune cell infiltration, metabolic pathways, and stemness were
further explored. In addition to the significant differences of
immune cell infiltration between the two m6A modification
patterns, the expression levels of the m6A regulators were also
correlated with the infiltration of various immune cells.
Specifically, most m6A regulators were negatively correlated
with dendritic, CD8+ T, and B cells, concurring with the
finding that low expression of most m6A regulators was
associated with better prognosis. Although the loss of YTHDF1
promotes antigen presentation in DCs (24), YTHDF2 (although
not YTHDF1) was negatively correlated with dendritic cell
infiltration in STS. Further studies are required to elaborate on
the specific mechanisms of each m6A regulator in the
immune microenvironment.

Several studies have reported that m6A modification may
regulate glycolysis (25, 26), but this was not seen in STS in this
study. To investigate the impact of m6A regulators on
metabolism in STS, we used the random survival forest
algorithm to systematically search for key m6A modification-
related prognostic metabolic pathways, and five pathways were
identified. Retinoic acid metabolism, drug metabolism by
cytochrome P450, and histidine metabolism have been
previously reported in STS (27–29). Mounting evidence
indicates that metabolism and immunity are closely related to
cancer development and progression (30, 31). The significant
correlations between m6A regulators and the metabolic
pathways suggested that m6A regulators may influence tumor
immunity by regulating metabolism, but this requires
verification. Consistently, increasing evidence shows that m6A
regulators promote cancer stem cell phenotype, EMT, and
metastasis in cancers (32, 33). Regarding tumor stemness, in
this study, YTHDF2, HNRNPA2B1, HNRNPC, IGF2BP1, and
KIAA1429 were positively correlated with tumor stemness, while
FTO was negatively correlated with tumor stemness. In addition,
our speculation regarding m6A regulators regulating immunity,
metabolism, and stemness was supported by GO enrichment
analysis of the DEGs between the two m6A modification
patterns. Thus, m6A regulators are promising for use as
therapeutic targets to influence immunity, metabolism, and
stemness, potentially facilitating treatment of STS.

To further investigate genes regulated by m6A modification,
the immune/metabolism/stemness phenotype-related genes
associated with m6A modification were explored using
WGCNA. The three subsequent unsupervised consensus
clustering analyses demonstrated that the immune phenotype
(ImmuneScore)-, metabolism phenotype (retinoic acid
metabolism)-, and stemness phenotype (mRNAsi)-related
genes clustered into four, three, and three phenotype clusters,
respectively. Each phenotype cluster had unique immunity/
metabolism/stemness features and different expression of m6A
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regulators, contributing to different prognoses. In addition, the
immune, metabolism and stemness phenotype-related genes
could provide reference for subsequent studies on m6A
modification involved in immune, metabolism and stemness in
STS. On the other hand, DNA methylation, as a form of
epigenetic regulation, can lead to abnormal gene expression,
thereby driving oncogenesis (34). Our previous research
demonstrated the effect of DNA methylation on the prognosis
of STS (35). Therefore, we investigated the regulatory action of
DNA methylation on the expression of m6A regulators, with
unsupervised clustering leading to the identification of two DNA
methylation phenotypes. The improved survival in the higher
DNA methylation group could be explained by lower expression
of six m6A regulators (RBM15B, KIAA1429, YTHDF2,
HNRNPA2B1, HNRNPC, and ELAVL1). Furthermore, the two
DNA methylation phenotypes differed in terms of immunity,
metabolism, and stemness features. In conclusion, DNA
methylation may regulate m6A modification-mediated
differences in immunity, metabolism, and stemness.

m6Acluster-A subtype had higher expression of immune
checkpoint-related genes than m6Acluster-B, and therefore might
be sensitive to immune checkpoint inhibitors. However, the
individual-level heterogeneity and complexity of m6A
modification cannot be ignored; quantification of m6A
modification patterns to distinguish individual differences could
guide immunotherapy use in STS. Therefore, we constructed an
m6A scoring system designated m6Ascore to quantify the m6A
modification patterns in individuals. As expected, m6Ascore had
many profound clinical implications. First, it was an outstanding
indicator of m6A modification patterns. Second, it overcame the
shortcoming of STS histological type, which is a high-performing
prognostic factor as indicated by an analysis of 10000 cases (36) but
it is often difficult to distinguish different histological types. More
specifically, lower m6Ascore was associated with better prognosis
in STS among the various histological types, which may be
explained by the enriched anti-tumor immune cell infiltration
and immune-related pathways in the low m6Ascore group.
Third, m6Ascore could help distinguish immunity, metabolism
and stemness phenotypes. Fourth, m6Ascore could also predict
patient response to immunotherapy and chemotherapy. Patients
with higher TMB [an emerging biomarker of immunotherapy
responses (37)] in the low m6Ascore group (which had higher
sensitivity to immunotherapy) had improved survival.
Additionally, immunogenic biomarkers, LOH, HRD, TNB, ITH,
and aneuploidy were also significantly negatively correlated with
m6Ascore. The key role of m6A modification mediated regulators
in modulating DNA repair and genome stability has gradually
attracted attention (38). Some m6A methyltransferases can modify
and regulate the levels of RNAs involved in DNA damage and
repair, which in turn affect genomic instability (39). For example,
the m6A methyltransferase METTL3 is activated by ATM-
mediated phosphorylation and localized to DNA damage sites,
where it promotes HRD repair (40). Previous studies have also
shown elevating m6A regulator METTL3 levels could increase the
RNAmodification of ZBTB4 and decrease levels of ZBTB4 mRNA
(41), which in turn increase aneuploidy and genome instability
Frontiers in Immunology | www.frontiersin.org 12
across many frequent human cancers (42). The m6A modification
can cause genome instability, which can affect tumor adaptation
along with neoantigen production and sensitive to immunotherapy
(43, 44). Our study showed the lower m6Ascore and the
corresponding higher immunogenicity could contribute to the
beneficial effects of immunotherapy, as indicated by a series of
machine learning algorithms TIDE (45), SubMap (46), and
pairwise comparison analyses (47, 48). Our results indicated that
m6A modification, in addition to regulating immunity,
metabolism, and stemness, may also be accompanied by changes
in immunogenicity. CNV is frequently observed in all kinds of
RNA regulatory genes (such as those related to m6A, m5C, m1A,
m3C, and m7G), it was reported that CNV of m6A regulator genes
is correlated with immune cell infiltration in STS patients (49). Our
genome analysis results showed that the low-m6Ascore group, as
immune activation group, had more gene mutations and CNV
loading burden (including focal and arm-level) than the high-
m6Ascore group. The prognostic significance of m6Ascore was
also illustrated in other cancer types, and m6Ascore had key roles
in immunity, metabolism, and stemness in a pan-cancer analysis in
other cancers. Additionally, there were significant correlations
between m6Ascore and almost all immune checkpoint-related
genes assessed in pan-cancer analysis, further implying that m6A
methylation affects immunotherapy sensitivity. The discoveries
regarding m6Ascore in the large range of other cancer types are
worthy of further study.

This study has several limitations. First, the heterogeneity of
samples from the TCGA database combined with the GEO database
was disregarded, although the batch-effect correction algorithm was
used. Second, there were few STS samples due to the low incidence
of STS, and the samples tended to be UPS or DDLPS. Third, there
was a lack of clinical cohorts to validate the findings regarding
the correlations between m6A modification and the tumor
immune landscape and the prognostic value of m6Ascore in STS.
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Supplementary Figure S1 | (A) Overview of study design. (B) Survival analyses
for the gene expression level of 21 m6A regulators in STS cohort.

Supplementary Figure S2 | Different prognosis, infiltration of immune cells and
biological processes between two m6A methylation patterns. (A) Survival analyses
for the two m6A modification patterns in TCGA-SARC (left) and GSE21050 (right)
cohort, respectively. Kaplan-Meier curves with Log-rank p value <0.05 showed a
significant survival difference between two m6A modification patterns. (B) The
expression of 21 m6A regulators between m6Acluster-A and m6Acluster-B groups
and corresponded clinical information also displays in heatmaps. TCGA-SARC
cohort (left) and GSE21050 cohort (right). (C) The enrichment differences of 28
immune cell form Xcell algorithm between the m6Acluster-A and m6Acluster-B
groups in TCGA-SARC cohort (left) and GSE21050 cohort (right), respectively. The
statistical difference of clusters was compared through the Kruskal–Wallis test.
*P < 0.05; **P < 0.01; ***P < 0.001. (D) GSVA enrichment analysis showing the
activation states of biological pathways for distinct m6A modification patterns in
TCGA-SARC and GSE21050 cohorts. The heatmap was used to visualize these
biological processes, and red represented activated pathways and blue
represented inhibited pathways.

Supplementary Figure S3 | Correlations of the 21 m6A regulators with
immunity, metabolic pathways, and stemness. (A) The correlations between 28
immune cell and the expression of each m6A regulator by Pearson analyses. A
negative correlation was marked with blue and positive correlation with red. The
asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). (B)
Error rate for the data as a function of the classification tree by Random Survival
Forest (RSF) algorithm. (C) Out-of-bag importance values for the metabolic
pathways, the top five metabolic pathways were displayed based on importance
value. (D) The correlations between 18 metabolic pathways selected by univariate
Cox and RSF analyses and the expression of each m6A regulator using Spearman
analyses. A negative correlation was marked with blue and positive correlation with
red. (E) The correlations between six stemness indices and the expression of each
m6A regulator using Pearson analyses. A negative correlation was marked with blue
and positive correlation with red. (F) Kaplan–Meier curves for each type of six
stemness indices using the Log-rank test. The high or low level of stemness indices
was defined by optimal cut-off using “survminer” R package.

Supplementary Figure S4 | Identification of hub genes and immunity/
metabolism/stemness subtypes by WGCNA. (A) A scatter plot of correlation
between blue module eigengene and immunity phenotype (left). A scatter plot of
correlation between brown module eigengene and Retinoic Acid metabolism
phenotype (middle). A scatter plot of correlation between yellow module eigengene
and mRNAsi stemness indices (right). Correlation coefficient and p-value is
indicated in the plot. (B) Relative change in area under consensus CDF curve for
k=2 to 9 in Immunity clustering (left), Metabolism clustering (middle), Stemness
clustering (right). (C) The abundance of 28 immune cell among Immunity cluster-A,
-B, -C, -D groups and corresponded clinical information also displays in heatmap
(left). The difference of metabolic pathways among Metabolism cluster-A, -B, -C
groups and corresponded clinical information also displays in heatmap (middle).
The difference of Stemness pathways among Stemness cluster-A, -B, -C groups
and corresponded clinical information also displays in heatmap (right).

Supplementary Figure S5 | Identification of distinct DNA methylation subtypes.
(A) Relative change in area under CDF curve for k=2 to k=9. (B) Heatmap
corresponding to the consensus matrix for k=2 obtained by using consensus
clustering. (C) Heatmap of DNA methylation location sites clusters with clinical and
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molecular pathological parameters. (D) Survival analyses for the two DNAmethy
clusters based on TCGA-SARC cohort including 258 cases in 147 cases
DNAmethycluster-A, 111 cases in DNAmethycluster-B. Kaplan-Meier curves with
Log-rank p value 0.001 showed a significant survival difference between two DNA
methylation patterns. (E) The expression of 21 m6A regulators between
DNAmethycluster-A and DNAmethycluster-B. The statistical difference of clusters
was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001.
(F) Abundance differences in 28 types of immune cells between DNAmethycluster-A
and DNAmethycluster-B in the TCGA-SARC cohort. The statistical difference of
clusters was compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P <
0.001. (G) GSVA enrichment analysis showing the activation states of biological
pathways in two distinct DNAmethylationclusters. The heatmap was used to visualize
these biological processes, and red represented activated pathways and blue
represented inhibited pathways. (H) Box plot showing differences in mDNAsi and
EREG mDNAsi stemness indices between DNAmethycluster-A and
DNAmethycluster-B. The thick line represents the median value. The statistical
difference of four groups was compared through the Kruskal–Wallis test.

Supplementary Figure S6 | Identification of m6A modification pattern-related
DEGsandconstructionof them6Ascore. (A)GOenrichmentanalysisofDEGs identified
from two m6Amodification patterns. The x axis indicates the number of genes within
each GO term. (B) The cumulative distribution function (CDF) curve is the integral of
probability density function using consensus clustering approach. CDF curves of
consensusscoresbasedondifferent subtypenumber (k=2 to9) andthecorresponding
color are represented. (C) The consensus matrix of TCGA-SARC and GSE21050
cohorts using consensus clustering based when k = 2. (D)Gene expression heatmap
analysis of 141 prognosis-related DEGs between geneCluster-A and geneCluster-B.
Heatmap indicates relative geneexpression value,with red for high expression andblue
for low expression. (E)Survival analysis of the twogene cluster subtypes. Kaplan-Meier
curves showing the distinct outcomes of STS patients. The P-value was calculated
using the log-rank test, by comparing geneCluster-A and geneCluster-B. (F) The
expression of 21 m6A regulators between geneCluster-A and geneCluster-B. The
statistical difference of clusters was compared through the Kruskal–Wallis test. *P <
0.05; **P< 0.01; ***P < 0.001. (G)Alluvial diagramshowing the changesofm6Acluster,
gene cluster, m6Ascore level and survival outcomes. (H) Survival analysis of high- and
low- m6Ascore groups in TCGA-SARC and GSE21050 cohorts including 568 cases.
Kaplan-Meier curves showing the distinct outcomes of STS patients in high- and low-
m6Ascore groups. The P-value was calculated using the log-rank test. (I) Survival
analysisofhigh-and low-m6Ascoregroups inTCGA-SARCcohort including259cases
(left), GSE21050 cohort including 309 cases (right), respectively. Kaplan-Meier curves
showing thedistinct outcomesof STSpatients inhigh- and low-m6Ascore groups. The
P-valuewas calculated using the log-rank test. (J)Theexpression of 21m6A regulators
between the high- and low-m6Ascore groups. The statistical difference of clusterswas
compared through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. (K)
Differences in m6Ascore between m6Aclusters and geneClusters in TCGA and
GSE21050 cohort. (left) The Kruskal-Wallis test was used to compare the statistical
m6Ascore difference between m6Acluster-A and m6Acluster-B (P < 0.01). (right)
Differences in m6Ascore between geneCluster-A and geneCluster-B using
Kruskal-Wallis test.

Supplementary Figure S7 | Correlation between m6Ascore and
clinicopathological type. (A) Survival analyses for patients with each clinical
histopathological phenotype in the TCGA-SARC and GSE21050 cohort using
Kaplan–Meier method and Log-rank test. (B) The proportion of patients with clinical
histopathological type in TCGA and GSE21050 cohorts. (C) Box plot showing
differences in m6AScore among clinical histopathological type in the TCGA-SARC
and GSE21050 cohorts. The statistical difference of clusters was compared
through the Kruskal–Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. (D) Survival
analyses for each histology type including in the TCGA and GEO cohort using
Kaplan–Meier method and Log-rank test. R package “survminer” was used to
determine the optimal cutpoint for the levels of m6Ascore. (E) Forest plot of the
differentially mutated genes between high and low m6Ascore subgroups. The
statistical difference of the two groups was compared through the Fisher exact test.
*P < 0.05; **P < 0.01; ***P < 0.001. (F) Detailed cytoband with focal amplification
(left) and focal deletion (right) in the high-m6Ascore group generated with
GISTIC_2.0 software. The q value of each locus is plotted horizontally. (G) Kaplan–
Meier curves of overall survival of patients treated with lpilimumab in TCGA-
SKCM cohort.
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Supplementary Figure S8 | The utility of m6Ascore in pan-cancer. (A) The
overall survival analyses for the m6Ascore in TCGA cancer types using a univariate
Cox regression model. Hazard ratio > 1 represented risk factors for survival and
hazard ratio < 1 represented protective factors for survival. (B) Radar chart of the
correlation between m6Ascore and immune score from ESTIMATE. The dots in the
radar chart represent the R-value of correlation: R > 0, positive correlation; and R <
0, negative correlation. (C) Correlations between the m6Ascore and immune cell for
each cancer type (Pearson test). The upper part of each grid showed the P-value,
and the bottom part showed the correlation coefficient. The asterisks represented
the statistical P-value. (Pearson test, *P < 0.05; **P < 0.01; ***P < 0.001). (D)
Correlations between the m6Ascore and metabolic pathways for each cancer type
(Pearson test). The asterisks represented the statistical p value (*P < 0.05; **P < 0.01;
***P < 0.001). (E) Correlation between the m6Ascore and six stemness indices for
each cancer type (Pearson test). The asterisks represented the statistical p value (*P <
0.05; **P < 0.01; ***P < 0.001). (F–G) Radar chart of the correlation between
m6Ascore and tumor mutation burden (F), microsatellite instability (G). (H) Correlation
between the m6Ascore and immune checkpoint–related genes for each cancer type.
The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001).

Supplementary Figure S9 | Survival analyses for the level of m6Ascore in 32
cancer types from TCGA cohorts.
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Supplementary Table S1 | The numbers of samples and the clinical baseline
and endpoint data of each STS sample in TCGA-SARC and GSE21050 cohorts.

Supplementary Table S2 | Prognosis-relatedmetabolic pathways selected by
univariate Cox analysis, multivariate Cox analysis and the randomSurvivalForest algorithm.

Supplementary Table S3 | 2183 DEGs (|log2FC|>0.5 and FDR<0.05) by
comparing the two m6A modification patterns.

Supplementary Table S4 | 579 immune phenotype (ImmuneScore)-related
genes, 326 metabolism phenotype-related (retinoic acid metabolism) genes, and
286 stemness phenotype (mRNAsi)-related genes.

Supplementary Table S5 | The results of univariate and multivariate Cox analysis
for 531 CpG sites in the 21 m6A regulator genes.

Supplementary Table S6 | 204 DEGs (log2FC>1 and FDR<0.05) by comparing
the two m6A modification patterns.

Supplementary Table S7 | Identification of prognosis-related genes were
identified by univariate and multivariate Cox regression.
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