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Hair cells are the mechanosensory receptors of the inner ear and can be damaged by

noise, aging, and ototoxic drugs. This damage often results in permanent sensorineural

hearing loss. Hair cells have high energy demands and rely on mitochondria to produce

ATP as well as contribute to intracellular calcium homeostasis. In addition to generating

ATP, mitochondria produce reactive oxygen species, which can lead to oxidative stress,

and regulate cell death pathways. Zebrafish lateral-line hair cells are structurally and

functionally analogous to cochlear hair cells but are optically and pharmacologically

accessible within an intact specimen, making the zebrafish a good model in which

to study hair-cell mitochondrial activity. Moreover, the ease of genetic manipulation of

zebrafish embryos allows for the study of mutations implicated in human deafness, as

well as the generation of transgenic models to visualize mitochondrial calcium transients

and mitochondrial activity in live organisms. Studies of the zebrafish lateral line have

shown that variations in mitochondrial activity can predict hair-cell susceptibility to

damage by aminoglycosides or noise exposure. In addition, antioxidants have been

shown to protect against noise trauma and ototoxic drug–induced hair-cell death. In this

review, we discuss the tools and findings of recent investigations into zebrafish hair-cell

mitochondria and their involvement in cellular processes, both under homeostatic

conditions and in response to noise or ototoxic drugs. The zebrafish lateral line is a

valuable model in which to study the roles of mitochondria in hair-cell pathologies and to

develop therapeutic strategies to prevent sensorineural hearing loss in humans.
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INTRODUCTION

Hair cells are the mechanosensory receptors for hearing and balance in the inner ear. They convert
vibrational stimuli into electrical signals sent to the brain. At their apical surfaces, hair cells have
rows of actin-rich stereocilia (McGrath et al., 2017). Mechanical stimuli such as sound deflect these
stereocilia, leading to opening of mechanotransduction (MET) channels and graded depolarization
of the hair cell, a process that is modulated by Ca2+ (Mammano et al., 2007). This depolarization
opens the voltage-dependent L-type Ca2+ channels CaV1.3 localized at the basolateral membrane
of hair cells, which drives synaptic vesicle fusion and release of glutamate onto auditory nerve fibers
(Fettiplace, 2017).
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MET and synaptic transmission are energy-demanding
processes, and hair cells rely on mitochondria to generate ATP
through oxidative phosphorylation to meet these high metabolic
demands (Puschner and Schacht, 1997). One consequence of
mitochondrial oxidative phosphorylation is the production of
ROS. While low levels of ROS are important for maintaining
homeostatic processes by acting as signaling molecules in
intracellular pathways, high ROS levels can damage cells by
oxidation of macromolecules (Collins et al., 2012). Damage
by mitochondrial ROS has previously been linked to aging,
although the role of ROS in aging processes is not completely
understood (Liochev, 2013). Mitochondria also contribute to
the homeostatic control of intracellular calcium. In hair cells,
mitochondria directly regulate subcellular Ca2+ concentrations
by uptake through the mitochondrial Ca2+ uniporter (Matlib
et al., 1998; Wong et al., 2019). Mitochondria also indirectly
regulate intracellular Ca2+ clearance by providing energy to fuel
ATP-dependent Ca2+ pumps (PMCA) at the plasma membrane
(Zenisek and Matthews, 2000). Ca2+ signaling is complex and
is involved in a wide array of cellular processes and thus
must be tightly regulated (Berridge et al., 2003). Mitochondria
work in conjunction with the endoplasmic reticulum (ER) to
buffer intracellular Ca2+ by sequestering it into these subcellular
domains (Rizzuto and Pozzan, 2006; Rizzuto et al., 2009).
Cytosolic Ca2+ is also buffered by proteins such as parvalbumin
and calbindin-D28k (Hackney et al., 2005). As Ca2+ regulates
both MET currents and synaptic vesicle release at opposite sides
of the hair cell, this local Ca2+ regulation is critical for proper
hair-cell function.

Mitochondria are important mediators in various cell death
pathways, including apoptosis, necrosis, and autophagy. There
are two distinct apoptosis signaling pathways; both pathways
rely on a group of cysteine proteases called caspases, which
cleave hundreds of proteins in apoptosis. In the cell-extrinsic
apoptosis signaling pathway, cell death is triggered by ligands
binding to cell-surface death receptors, resulting in formation
of the death-inducing signaling complex (DISC) and activation
of caspase-8 and caspase-10 (Ashkenazi, 2002). By contrast, in
cell-intrinsic apoptosis signaling pathways, activation of pro-
apoptotic Bcl-2 family proteins drives mitochondrial outer
membrane permeabilization and triggers mitochondrial release
of pro-apoptotic factors such as cytochrome c, which results
in formation of the apoptosome and subsequent activation of
caspase-9 (Liu et al., 1996; Du et al., 2000; Bock and Tait, 2020).
These two pathways converge upon activation of the executioner
caspases, caspase-3 and−7 (Bock and Tait, 2020). Necrosis and
necroptosis, or programmed necrosis, are cell death pathways
distinct from apoptosis and are characterized by mitochondrial
swelling and impaired mitochondrial function. However, unlike
apoptosis, cells that have been largely depleted of mitochondria
are not resistant to necroptosis, suggesting that mitochondria
are not critical for this cell death pathway (Tait et al., 2013).
Autophagy, a lysosomal degradation process that can lead to cell
death, has also been shown to be regulated by mitochondrial ROS
(Chen et al., 2009).

Because the mitochondria play such critical roles in many
cellular processes, they are increasingly being studied in the

context of neural diseases, including sensorineural hearing loss
(Johri and Beal, 2012; Bottger and Schacht, 2013). Hearing loss
affects 23% of Americans over age 12 and has been associated
with a variety of environmental causes (Goman and Lin, 2016).
Acquired sensorineural hearing loss is caused by damage to
hair cells and/or innervating afferent nerves. Hair cells can
be damaged by excessive noise or by ototoxic drugs including
aminoglycoside antibiotics and platinum-based chemotherapy
drugs such as cisplatin (Lanvers-Kaminsky et al., 2017). Gradual
loss of hearing, due to loss of hair cells, is also a common problem
linked to aging (Schuknecht and Gacek, 1993). Because hearing
loss is so prevalent and hair cell loss is permanent, there is
a need to understand mechanisms of damage and to develop
preventative and restorative therapies.

Zebrafish have emerged as a powerful model to investigate
hearing and balance disorders. Zebrafish became established
as a model organism for studying hair-cell development and
function due to identification of numerous conserved genes
involved in hearing and balance (Nicolson, 2017). In addition
to their inner ears, which are required for hearing and balance,
zebrafish also have hair cells in their lateral line organs. Unlike
the sensory organs of the inner ear, lateral-line organs are located
along the surface of the body, are used to detect local water
currents (Dijkgraaf, 1963), and mediate behaviors such as the
escape response (to avoid predation) and rheotaxis (counterflow
swimming) (Olszewski et al., 2012; Suli et al., 2012; Stewart et al.,
2013; Olive et al., 2016). The lateral line is made up of clusters
of hair cells and supporting cells called neuromasts, which are
innervated by afferent and efferent neurons (Figure 1) (Metcalfe
et al., 1985; Raible and Kruse, 2000). The lateral line system in
particular has become increasingly popular for studying hair-
cell biology due to the optical and pharmacological accessibility
of the neuromasts. In addition, in contrast to hair cells in the
mammalian inner ear, fish hair cells in the ear and lateral line
organs can regenerate after damage (Balak et al., 1990; Lombarte
et al., 1993). Moreover, the generation of numerous transgenic
fish lines expressing genetically encoded fluorescent reporters in
hair cells offers the ability to visualize cellular and subcellular
dynamics in vivo (Esterberg et al., 2014; Kindt and Sheets,
2018; Pickett et al., 2018). The zebrafish lateral line is thus a
useful model system in which to study hair-cell biology and has
been used to elucidate the roles of mitochondria in hair-cell
pathologies and in homeostasis.

IDENTIFYING ROLES OF MITOCHONDRIA
IN THE LATERAL LINE UNDER
HOMEOSTATIC CONDITIONS

In addition to generating ATP and contributing to the
spatial regulation of calcium within the cell, recent work has
established novel roles for mitochondria in the development
and maintenance of hair-cell synapses. Hair cells contain
specialized electron-dense presynaptic structures, known as
synaptic ribbons, that tether synaptic vesicles at the active zone
and correspond with presynaptic clusters of voltage-gated L-
type calcium channels (CaV1.3) (Frank et al., 2010; Sheets et al.,
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FIGURE 1 | Zebrafish lateral-line neuromasts. (A) Schematic depicts a larval zebrafish. Pink patches indicate the location of hair cells in the inner ear required for

hearing and balance, as well as hair cells in the lateral-line system. Green patches represent the location of the anterior and posterior lateral-line ganglia. The cell

bodies of neurons in these ganglia project to and innervate hair cells in the lateral line. (B) A side view of the anatomy of a single lateral-line neuromast. Hair cells (pink)

are surrounded by supporting cells (internal, blue and peripheral, orange) and innervated by both afferent (green) and efferent neurons. Mechanosensory hair bundles

(purple) at the apex of hair cells project out into the water to detect local water flow. Mitochondria (yellow, orange) make up dynamic tubular networks within hair cells.

Adapted from Kindt and Sheets (2018).

2011). Vesicle fusion occurs at hair-cell ribbon synapses upon
influx of Ca2+ through CaV1.3 (Brandt et al., 2003). It has
been demonstrated in mammals that spontaneous Ca2+ influx
through CaV1.3 occurs in developing hair cells (Marcotti et al.,
2003; Tritsch et al., 2007, 2010; Eckrich et al., 2018). Previous
work in zebrafish revealed a role for presynaptic Ca2+ influx in
modulating synaptic ribbon size within developing lateral-line
hair cells; enlarged ribbons were observed in cav1.3a mutant
hair cells, or in hair cells exposed to the L-type Ca2+ channel
blocker isradipine (Sheets et al., 2012), while treatment with the
L-type Ca2+ channel agonist Bay K8644 led to decreased ribbon
size. A recent study further defined the role of mitochondria
in this process (Wong et al., 2019). Spontaneous presynaptic
Ca2+ influx was observed in developing zebrafish lateral-line
hair cells and, in response to this influx, mitochondria localized
near synaptic ribbons showed Ca2+ uptake, a process dependent
on both CaV1.3 and the mitochondrial Ca2+ uniporter (MCU)
(Wong et al., 2019). Blocking mitochondrial Ca2+ uptake with
the MCU inhibitor Ru360 led to increased synaptic ribbon size
in developing hair cells, demonstrating a role of mitochondrial
Ca2+ signaling in ribbon formation during development.

Mitochondrial Ca2+ uptake likely regulates synaptic ribbon
size by influencing NAD+/NADH redox (Jensen-Smith et al.,
2012). The major structural component of synaptic ribbons is a
protein called RIBEYE (Schmitz et al., 2000; Sheets et al., 2011;
Lv et al., 2016). RIBEYE contains a unique A-domain and a B-
domain which is nearly identical to the transcriptional repressor
protein CtBP2, and each domain contains binding sites that
regulate the formation of RIBEYE aggregates. Notably, RIBEYE
B-domain contains an NAD(H) binding site, and it has been
shown in vivo that NAD(H) inhibits heteromeric interactions
between RIBEYE A- and B-domains (Magupalli et al., 2008).
In zebrafish hair cells, blocking mitochondrial Ca2+ uptake
with Ru360 or inhibiting CaV1.3 with isradipine resulted in
increased NAD+/NADH ratio (Wong et al., 2019). Exogenously
manipulating NAD+/NADH also altered presynaptic ribbon

sizes in developing hair cells, such that treatment with NAD+

led to enlarged ribbons, while treatment with NADH decreased
ribbon size. Cumulatively, these data support that spontaneous
hair-cell activity and mitochondrial Ca2+ accumulation regulates
NAD+/NADH redox, which in turn modulates synaptic ribbon
assembly in developing hair cells.

In addition to playing a key role in development of hair-
cell synapses, mitochondrial activity also appears to be critical
for synaptic maintenance. In mature hair cells, activity evoked
mitochondrial Ca2+ uptake functions to sustain presynaptic
Ca2+ responses and maintain synapse integrity. Blocking
mitochondrial Ca2+ uptake by treating with Ru360 or the
voltage-dependent anion channel (VDAC) inhibitor TRO 19622
impaired presynaptic Ca2+ signals (Wong et al., 2019). In
addition, partially blocking mitochondrial Ca2+ uptake with
a low dose of Ru360 led to a high density of presynaptic
CaV1.3 channel clusters, while completely blocking MCU with
a high dose of Ru360 led to increased synaptic ribbon size
and a reduction in the number of synapses per hair cell.
These data establish a role of presynaptic Ca2+ signaling in the
maintenance of hair-cell ribbon synapses. It is likely that this
process occurs via a mitochondrial mechanism, as inhibition of
mitochondrial Ca2+ uptake with Ru360 did not affect cytosolic
Ca2+ concentrations, whilemodulation of CaV1.3 with isradipine
or Bay K8644 resulted in changes in mitochondrial Ca2+ levels
(Wong et al., 2019).

In conjunction with the mitochondrion, the endoplasmic
reticulum (ER) is also a critical regulator of Ca2+ signaling within
the cell (Schwarz and Blower, 2016). These two organelles are
associated with mitochondrial associated membranes (MAMs),
and Ca2+ transfer between them has been implicated in a
wide range of cellular processes, including bioenergetics and
cell death (Vance, 1990; Rizzuto et al., 2009; Bravo et al.,
2012; Giorgi et al., 2012; Grimm, 2012). In zebrafish lateral-
line hair cells, it has been demonstrated that mitochondria
buffer Ca2+ released from the ER (Esterberg et al., 2014).
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FIGURE 2 | MitoTimer fluorescence in hair cells. (A, B) Maximum-intensity projections of hair cells from Tg[myo6b:mitoTimer]w208 fish at 3dpf (A) and 5dpf (B). (C)

Mean mitoTimer fluorescence plotted as ratio of red:green at 3, 4, and 5 dpf. Scale bar, 5µm. Reproduced with permission from Pickett et al. (2018).

Using a mitochondrial matrix-targeted Ca2+ indicator GCaMP3
(mitoGCaMP3), they observed increased fluorescence, indicative
of increased local Ca2+ concentration, upon activation of
inositol trisphosphate receptors (IP3Rs) with adenophostin A,
and decreased GCaMP fluorescence upon inhibition of IP3Rs
with xestospongin C or by blocking the MCU with Ru360. IP3Rs
in the ER are involved in Ca2+ release into the cytosol and
are coupled with mitochondrial VDAC in MAMs (Szabadkai
et al., 2006). Thus, the observed changes in mitochondrial
Ca2+ upon modulation of IP3Rs support the flow of Ca2+

from the ER to the mitochondria (Esterberg et al., 2014). It
has been previously suggested that Ca2+ originating in the
ER is first transferred to the cytosol before being taken up
by mitochondria (Patergnani et al., 2011). To simultaneously
monitor cytoplasmic and mitochondrial Ca2+ dynamics in the
same cell, Esterberg et al. (2014) combined mitoGCaMP3 with
the red cytosolic Ca2+ indicator RGECO and found that transient
increases in cytosolic RGECO fluorescence corresponded with
mitochondrial GCaMP3 increases. Upon ER modulation with
adenophostin A, they observed increases in both cytosolic and
mitochondrial Ca2+, but upon treatment with thapsigargin,
only an increase in mitochondrial Ca2+ was observed. Further,
by using local uncaging of photolabile EGTA preloaded with
Ca2+ (caEGTA) to transiently elevate intracellular Ca2+ levels,
they observed increased mitochondrial Ca2+ uptake that
corresponded with an increase in mitochondrial transmembrane
potential (19m), suggesting that even transient increases
in mitochondrial Ca2+ can affect mitochondrial activity in
hair cells. Cumulatively, these results show that under non-
pathological conditions mitochondria take up Ca2+ released
from the ER and that changes in mitochondrial Ca2+ can alter
mitochondrial activity.

A recent study defined the short- and long-term consequences
of evoked hair-cell activity on mitochondrial function. Using
the same cytosolic and mitochondrial Ca2+ indicators described
earlier, Pickett et al. (2018) observed increases in both cytosolic
and mitochondrial Ca2+ in response to acute stimulation of hair

cells, i.e., directional displacement of hair-cell stereocilia via a
waterjet. Notably, the two evoked Ca2+ signals showed different
kinetics, with rapid onset and decay in cytosolic Ca2+ signal
followed by a slower rise and longer decay in mitochondrial
Ca2+ signal. Mutants lacking mechanotransduction showed
a reduced mitochondrial transmembrane potential, indicating
reduced mitochondrial activity in the absence of hair-cell
activity. To define long-term consequences on mitochondrial
function, they next examined how cumulative hair-cell activity
influenced the state of mitochondria using MitoTimer, a
genetically encoded indicator of mitochondrial oxidation. Newly
synthesized MitoTimer fluoresces green, but irreversibly shifts
to red upon dehydrogenization of the Tyr-67 residue (Figure 2).
Sustained lateral-line hair-cell stimulation in larvae exposed to
24 h of water currents generated by orbital rotation resulted
in significantly increased MitoTimer fluorescence ratio that
corresponded with increased hair-cell ROS, as measured with
cellROX (a probe for oxidative stress; Table 1), and was
dependent on hair-cell MET. Increased MitoTimer fluorescence
also occurred with age; older hair cells had a higher red:green
MitoTimer ratio compared with younger hair cells. These
data support that hair-cell activity influences cumulative
mitochondrial activity and hair-cell oxidation.

MITOCHONDRIA IN RESPONSE TO
AMINOGLYCOSIDE OTOTOXICITY

Aminoglycoside antibiotics, such as neomycin and gentamicin,
are widely used to treat Gram-negative bacterial infections, such
as tuberculosis (Forge and Schacht, 2000). These drugs also
cause hearing loss in up to 20% of patients who take them,
and this hearing loss is due to aminoglycoside-mediated hair-cell
death (Xie et al., 2011). While it is known that aminoglycosides
function by binding to ribosomal subunits and interfering with
bacterial translation, the mechanisms underlying hair-cell death
were still unclear (Borovinskaya et al., 2007, 2008). Further,
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TABLE 1 | Drugs, vital dyes, and indicators used to study hair-cell mitochondrial biology.

Drug or indicator Function Dosage or working

concentration

References

2-{4-(dimethylamino)styryl}-N-

ethylpyridinium iodide

(DASPEI)

Mitochondrial stain 0.005% Owens et al., 2007; Hong et al., 2013; Song

et al., 2014; Rah et al., 2015; Chang et al.,

2016; Kruger et al., 2016; Hayward et al.,

2019

MitoTracker Green FM Mitochondrial mass indicator 25–100 nM Owens et al., 2007; Kuang et al., 2017; Zhou

et al., 2019

FM1-43 Mechanotransduction-dependent

dye

1–2.25µM Kruger et al., 2016; Stawicki et al., 2016;

Kuang et al., 2017

Tetremethylrhodamine ethyl ester

(TMRE)

Mitochondrial membrane potential

indicator

1–25 nM Esterberg et al., 2013, 2014, 2016; Alassaf

et al., 2019

JC-1 Ratiometric mitochondrial

membrane potential indicator

1.5µM Pickett et al., 2018

MitoTracker Red CMXRos Mitochondrial membrane potential

indicator

25 nM Owens et al., 2007

3-Diethyloxacarbocyanine iodide

[DiOC2(3)]

Mitochondrial membrane potential

indicator

0.1µM Kuang et al., 2017

Yo-Pro1 Nuclear stain 3µM Hayward et al., 2019

cellROX Green ROS indicator 2–2.5µM Esterberg et al., 2016; Pickett et al., 2018

cellROX Deep Red ROS indicator 10µM Alassaf et al., 2019

H2DCFDA ROS indicator 10µM Hirose et al., 2016

mitoSOX Mitochondrial superoxide indicator 1µM Esterberg et al., 2016; Alassaf et al., 2019)

mitoTEMPO Superoxide scavenger;

TPP+-modified version of TEMPOL

10–100µM Esterberg et al., 2016; Alassaf et al., 2019

TEMPOL Superoxide scavenger 50µM Esterberg et al., 2016

o-Nitrophenyl EGTA (NP-caged

EGTA)

Photolabile Ca2+ chelator; used to

deliver Ca2+ upon UV exposure

25 pmol (injected at

1-cell stage)

Esterberg et al., 2013, 2014

Diazo2 Ca2+ chelator 25 pmol (injected at

1-cell stage)

Esterberg et al., 2013

Ionomycin Ca2+ ionophore 5µM Esterberg et al., 2013

Cyclosporin A (CsA) Inhibitor of cyclophilin D 200 nM Esterberg et al., 2016

Carbonyl cyanide 4-(trifluoromethoxy)

phenylhydrazone (FCCP)

Uncoupler of mitochondrial oxidative

phosphorylation

100 nM−10µM Kim M. J et al., 2008; Zhou et al., 2019

Antimycin A Inhibitor of mitochondrial electron

transport chain

100–500 pM Alassaf et al., 2019

Ru360 Antagonist of mitochondrial Ca2+

uniporter (MCU)

500 nM−10µM Esterberg et al., 2016; Wong et al., 2019

TRO 19622 Antagonist of voltage-dependent

anion channel (VDAC)

10µM Wong et al., 2019

there is evidence that different aminoglycosides kill hair cells
by different pathways (Coffin et al., 2013b). There is thus a
need to understand the various mechanisms of ototoxic damage
by aminoglycosides to prevent loss of hair cells. In addition,
it has been demonstrated that the mitochondrial ribosome
closely resembles the prokaryotic ribosome, suggesting a role of
mitochondria in the response to aminoglycosides (Lynch and
Puglisi, 2001).

Neomycin has been widely used to study ototoxic effects
in the zebrafish lateral line, and an early analysis of the
hair-cell ultrastructure in response to neomycin demonstrated
mitochondrial swelling that preceded other cellular phenotypes
(Owens et al., 2007). More recent work has shown that a hair cell’s
history of mitochondrial activity can predict its susceptibility
to neomycin-induced death, such that hair cells with more
cumulative mitochondrial activity, including hair cells that are

older, are more vulnerable to aminoglycoside-induced death
(Pickett et al., 2018).

As mitochondria play a critical role in regulating intracellular
Ca2+, recent studies have sought to characterize mitochondrial
Ca2+ dynamics in the context of neomycin-induced hair-
cell damage. In dying hair cells exposed to neomycin,
the mitochondrial potential (19m) collapses, followed by a
spike in cytosolic Ca2+ (Esterberg et al., 2013). Elevating
intracellular Ca2+ by uncaging caEGTA resulted in hair-
cell death and increased susceptibility to neomycin, while
decreasing intracellular Ca2+ by uncaging the Ca2+ chelator
diazo2 exhibited a protective effect. In addition, it has been
observed that both cytosolic Ca2+ and mitochondrial Ca2+

levels spike in dying hair cells exposed to neomycin (Esterberg
et al., 2014). Inducing Ca2+ release from the ER by treatment
with thapsigargin or activating IP3Rs with adenophostin A
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FIGURE 3 | Diagram of Ca2+ signaling in hair cells exposed to neomycin. Neomycin enters the hair cell through MET channels at the apex. Inset shows flow of Ca2+

from the ER to the mitochondria, resulting in increased ROS levels and increased 19m, which leads to hair-cell death. Created with BioRender.com.

increased neomycin-induced hair-cell death, while inhibiting
IP3Rs with xestospongin C protected hair cells. Blocking
mitochondrial Ca2+ uptake with Ru360 also protected hair
cells, suggesting that the flow of Ca2+ from the ER to the
mitochondria is a defining event in neomycin-induced hair-cell
death. This Ca2+ transfer from the ER to the mitochondria drives
increasedmitochondrial hyperpolarization during hair-cell death
(Figure 3). Further, modulating mitochondrial polarization
altered hair-cell susceptibility to neomycin, such that increasing
19m by treatment with cyclosporin A increased neomycin
toxicity, while mitochondrial depolarization by treatment with
FCCP protected hair cells from neomycin-induced death. These
data provide a mechanism by which mitochondrial Ca2+ plays a
key role in neomycin-induced hair-cell death.

While the mechanisms underlying neomycin-induced hair-
cell death have been well researched, gentamicin ototoxicity
has been relatively understudied in the zebrafish lateral line.
It has been shown that the hair-cell signaling pathways
activated in response to gentamicin and time course of hair-
cell death are different from that of neomycin; it is thus
important to understand the mechanisms of damage by different
aminoglycosides to develop protective therapies (Owens et al.,
2009; Coffin et al., 2013a,b; Wiedenhoft et al., 2017). While a
requirement for caspases in aminoglycoside-induced hair-cell
death has been established in vivo in chick and in vitro in
mammalian inner ear cultures, a study in the zebrafish lateral
line demonstrated that both neomycin and gentamicin induce
hair-cell death by caspase-independent pathways, as treatment

with the caspase inhibitor Z-VAD-Fmk did not confer protection
against either aminoglycoside (Coffin et al., 2013b). One study
defined the relative roles of p53 signaling in neomycin and
gentamicin ototoxicity. In apoptosis, p53 rapidly translocates
to the mitochondria, preceding other mitochondrial phenotypes
such as changes in19m and release of cytochrome c (Marchenko
et al., 2000). In the mitochondria, p53 directly interacts with
Bcl-2 to block its anti-apoptotic activity and induces apoptosis
by interacting with pro-apoptotic proteins such as Bax (Mihara
et al., 2003; Chipuk et al., 2004; Deng et al., 2006). Inhibition
of the pro-apoptotic protein Bax offered some protection against
neomycin- but not gentamicin-induced hair-cell loss, suggesting
a Bax-dependent cell death pathway is involved in neomycin
ototoxicity. In contrast, the p53 inhibitor pifithrin-α (PFTα)
offered protection against gentamicin-induced hair-cell death
suggesting an alternative, p53-dependent pathway underlying
gentamicin ototoxicity. This is underscored by the observation
that stabilizing p53 by treating with nutlin-3a, an inhibitor
of the p53 antagonist Mdm2, sensitized hair cells to toxicity
from chronic gentamicin exposure (Coffin et al., 2013a). In
the same study, they found that overexpression of Bcl2, a
target of p53, robustly protected zebrafish against gentamicin-
induced hair-cell loss, but that some hair-cell death occurred
after the course of treatment, implying that delayed hair-cell
death following continuous gentamicin treatment is independent
of p53. Future studies profiling the pathways involved in
aminoglycoside-induced hair-cell death and defining the roles
of proteins such as p53 and Bax will be useful in identifying
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therapeutic targets to protect against aminoglycoside ototoxicity.
In addition, it is important to consider the differences between
model systems in response to aminoglycosides, such as the
requirement for caspases.

While there are obvious differences betweenmodel organisms,
such as the differences between zebrafish neuromasts and the
mammalian cochlea, there may also be differences between
strains of a single species. A recent study found that the Tupfel
long-fin (TL) wild-type strain of zebrafish were less vulnerable to
gentamicin-induced hair-cell loss than the AB∗ strain of zebrafish
(Wiedenhoft et al., 2017). Both of these strains of zebrafish are
commonly used for a variety of studies, including studies of
hair-cell biology. They observed that, while stabilizing p53 with
nutlin-3a sensitized AB∗ hair cells to gentamicin-induced death,
nutlin-3a treatment did not affect the survival of TL hair cells
exposed to gentamicin, suggesting there may be strain-specific
differences in p53 signaling. It is thus important to also consider
the strain of zebrafish in studies of hair-cell biology.

MITOCHONDRIAL ROS PRODUCTION AND
ANTIOXIDANT PROTECTION AGAINST
ENVIRONMENTAL HAIR-CELL DAMAGE

One consequence of oxidative phosphorylation is the generation
of ROS.Mitochondrial ROS are generally produced in the form of
superoxide or hydrogen peroxide due to oxidation of metabolic
intermediates in the electron transport chain complexes I and
III (Brand, 2016). Hydroxyl radicals can also be produced in the
mitochondria by the Fenton reaction, in which iron compounds
are reduced by superoxide (Thomas et al., 2009). Under
homeostatic conditions, ROS production is tightly regulated.
Under conditions of oxidative stress, however, cytosolic ROS can
stimulate the further production of ROS, potentially leading to a
cascade of oxidative damage to macromolecules within the cell
(Kroller-Schon et al., 2014).

Mitochondrial ROS production may play a role in
aminoglycoside ototoxicity. It has been shown that
aminoglycosides bind to iron salts and stimulate the production
of free radicals by Fenton chemistry (Priuska and Schacht, 1995;
Kohanski et al., 2007). A study in zebrafish lateral line observed
an increase in ROS levels, as measured by the indicator cellROX
green and by the hydrogen peroxide biosensor HyPer, in dying
hair cells upon neomycin exposure (Esterberg et al., 2016). The
increased hydrogen peroxide level corresponded with increased
19m and mitochondrial oxidation, as reflected by the indicator
mitoSOX (Table 1). These observed phenotypes were driven by
mitochondrial Ca2+ uptake; blocking entry of Ca2+ into the
mitochondria with Ru360 reduced ROS levels and mitochondrial
oxidation after neomycin exposure. Cumulatively, these data
suggest that mitochondrial Ca2+ uptake is an event upstream of
neomycin ototoxicity, with ROS playing an additional role.

Exogenous antioxidants have shown promising otoprotective
effects in zebrafish lateral line and mammalian cochlear explants
(Ton and Parng, 2005; Noack et al., 2017; Hur et al., 2018).
However, this approach has had limited success in clinical trials,
likely because different antioxidants act via distinct cellular

targets and molecular pathways (Noack et al., 2017). While
treatment with exogenous antioxidants or ROS scavengers is one
potential approach to protect hair cells from ototoxicity, another
strategy is to leverage endogenous mechanisms within cells to
protect against damage by ROS. To guard against oxidative stress,
organisms have developed endogenous defense mechanisms,
including antioxidant enzymes such as catalase, glutathione
peroxidase, superoxide dismutases, and heme oxygenase-1 (HO-
1) (Mates, 2000). Expression of these antioxidant enzymes can
be induced by activators of peroxisome proliferator-activated
receptor-α (PPAR-α) (Toyama et al., 2004). Fenofibrate, one such
PPAR-α agonist, offered modest protection against gentamicin-
induced hair-cell loss in both rat cochlear explants and in
zebrafish lateral-line neuromasts (Park et al., 2017). This
protection required activity of HO-1, as inhibition of HO-1
by SnPPIX abolished these protective effects. Thus, stimulating
endogenous antioxidant pathways could also provide some
protection against aminoglycoside-induced damage. Another
approach to protecting against aminoglycoside ototoxicity is the
use of ROS scavengers. Treatment of zebrafish with NecroX-
5, an ROS and RNS scavenger, offered modest protection
against neomycin-induced damage (Song et al., 2014). NecroX-
5 exposure partially rescued neomycin-induced phenotypes
including hair-cell loss, hair-cell apoptosis, and damage to
hair bundles and hair-cell mitochondria. Treatment with
quercetin, another ROS scavenger which has been shown to
have antioxidant properties in vitro, also protected against
neomycin-induced hair-cell loss (Hirose et al., 2016). Quercetin
also reduced ROS levels, as detected by H2DCFDA labeling
(Table 1).

In mammals, it has been shown that ROS are generated
in the cochlea after noise exposure, and that antioxidants
administered before or after exposure can potentially ameliorate
noise-induced damage (Yamane et al., 1995; Ohlemiller et al.,
1999; Ohinata et al., 2000; Oishi and Schacht, 2011). A recent
study sought tomodel severe noise damage in the zebrafish lateral
line using an ultrasonic device to produce cavitation creating
small localized shock waves, and found that exposure to this
stimulus resulted in hair-cell death 48–72 h after exposure (Uribe
et al., 2018). Treatment with the antioxidant D-methionine
prevented this sonic-induced hair-cell loss, suggesting a role
for oxidative stress in this model. Because zebrafish can be
exposed to drugs by bath application, they are an optimal
system in which to screen for protective or harmful drugs.
By screening a redox library for compounds that protected
against damage, glutathione, baicalein, D-α-tocopherylquinone,
and ferulic acid ethylester were identified as protective agents
(Uribe et al., 2018). As reducing oxidative stress gains attention
as a strategy to prevent noise-induced hair-cell death, zebrafish
models may provide information toward identifying effective
protective therapeutic strategies.

It has been suggested, specifically in the context of
aminoglycoside ototoxicity, that hair cells “find a way to die” such
that inhibition of one death pathway will lead to the activation
of other death pathways, and that it may be necessary to target
multiple pathways to fully protect hair cells from ototoxins,
such as by using drug cocktails or by using drugs that have
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multiple modes of action (Vandenabeele et al., 2006; Ou et al.,
2012). It has been determined that aminoglycosides enter hair
cells through MET channels, so one approach to protecting
against aminoglycoside ototoxicity could be to block uptake
through MET (Alharazneh et al., 2011; Hailey et al., 2017). In
zebrafish, it has been shown that treatment with quinoline ring
derivatives such as amsacrine, quinine, and mefloquine protects
against aminoglycoside-induced hair-cell death by blocking
uptake (Ou et al., 2012). Analogs of the quinoline ring derivative
berbamine have also recently been shown to block uptake of
aminoglycosides into hair cells; however, the degree of uptake
block did not correlate with the magnitude of hair-cell protection
from aminoglycosides, suggesting a second uptake-independent
mechanism (Kruger et al., 2016; Hudson et al., 2020). Quinoline

TABLE 2 | Transgenic zebrafish lines used to visualize and study hair-cell

mitochondrial dynamics.

Transgene Description References

Tg[myo6b:cytoRGECO] Hair-cell specific Ca2+

biosensor

Esterberg et al., 2014

Tg[myo6b:cytoGCaMP3] Hair-cell specific Ca2+

biosensor

Esterberg et al., 2013

Tg[myo6b:mitoRGECO] Mitochondrially localized

Ca2+ biosensor in hair cells

Esterberg et al., 2014

Tg[myo6b:mitoGCaMP3] Mitochondrially localized

Ca2+ biosensor in hair cells

Esterberg et al., 2014

Tg[myo6b:erGCaMP3] ER-localized Ca2+

biosensor in hair cells

Esterberg et al., 2014

Tg[myo6b:GCaMP6s-

CAAX]

Membrane-localized Ca2+

biosensor in hair cells

Jiang et al., 2017

Tg[myo6b:HyPer] Hair-cell specific hydrogen

peroxide biosensor

Esterberg et al., 2016

Tg[myo6b:Rex-YFP] NAD(H) redox fluorescent

indicator in hair cells

Wong et al., 2019

Tg[myo6b:mitoTimer] Mitochondrially localized

fluorescent indicator of

mitochondrial oxidation or

turnover in hair cells

Pickett et al., 2018

Tg[myo6b:mitoEos] Mitochondrially localized

photoconvertible

fluorophore in hair cells

Pickett et al., 2018

ring derivatives have been shown to have antioxidant properties
in other systems (Detsi et al., 2007; Naik et al., 2009; Ghinet et al.,
2012). It would be interesting to know whether these compounds
also function as antioxidants in a zebrafish or mammalian model
of ototoxicity, as it will be important to identify drugs that
could target both aminoglycoside uptake and oxidative stress
in hair cells as candidate treatments for the prevention of
aminoglycoside-induced hearing loss in humans.

OXIDATIVE STRESS AND CISPLATIN

Cisplatin is an anti-cancer chemotherapeutic drug that is
commonly used to treat a number of different cancers. Notably,
cisplatin treatment causes hearing loss in up to 80% of patients
(Frisina et al., 2016). Cisplatin ototoxicity has been linked
to ROS, in that ROS deplete cochlear tissue of antioxidants,
leading to increased free radical production and subsequent lipid
peroxidation (Rybak, 2007). In addition, cisplatin may induce
hair-cell death, at least in part, by activating ROS-mediated cell
death pathways inmitotically quiescent hair cells (KimC. H et al.,
2008). This mode of induction is in contrast to mitotically active
cells, where cisplatin induces cell death through DNA damage
and activation of apoptosis.

Similar to work with aminoglycosides, protection against
cisplatin ototoxicity using antioxidants and ROS scavengers
has been an intriguing topic of recent study. Epicatechin, a
ROS scavenger derived from tea leaves, has been shown to
protect zebrafish from cisplatin-induced lateral-line hair-cell loss
(Kim C. H et al., 2008). Kenpaullone, an inhibitor of cyclin-
dependent kinase 2, was shown to reduce ROS in cochlear
explants and also protected against cisplatin-induced damage in
the zebrafish lateral line (Teitz et al., 2018). Quercetin, similar
to its effect on aminoglycoside ototoxicity, protected against
cisplatin-induced hair-cell loss and mitochondrial damage (Lee
et al., 2015). Finally, the free radical scavenger edaravone also
showed a protective effect against cisplatin-induced hair-cell loss,
mitochondrial damage, and damage to hair bundles (Hong et al.,
2013). While it has been shown that cisplatin ototoxicity in the
lateral line is both dose and time dependent (Ou et al., 2007),
one notable deficit in the area of cisplatin ototoxicity research
in zebrafish is a current lack of consistent cisplatin damage

FIGURE 4 | Representative images of hair cells expressing transgenes used to visualize mitochondrial dynamics. Live hair cells expressing RGECO1 (A),

MitoGCaMP3 (B), and Rex-YFP (C). Scale bar, 5µm. Adapted with permission from Wong et al. (2019).
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protocols, i.e., optimal dosage and time of exposure used across
studies (Domarecka et al., 2020). As cisplatin acts as a cytotoxin
through diverse cellular pathways, optimizing damage protocols
in zebrafish will be required to determine the relative role of ROS
accumulation in cisplatin ototoxicity.

USING GENETIC TOOLS TO STUDY
ZEBRAFISH HAIR-CELL MITOCHONDRIAL
BIOLOGY

While acquired hearing loss can be caused by exposure to
noise or ototoxic drugs, some hearing loss is inherited (Lenz
and Avraham, 2011; Mahboubi et al., 2012). In addition,
susceptibility to age-related, noise-induced, or aminoglycoside-
induced hearing loss may also have a genetic component.
Recent whole-genome sequencing and genome-wide association
studies have identified genes implicated in acquired hearing
loss (Zhao et al., 2013; Lavinsky et al., 2015; Vuckovic et al.,
2018; Nagtegaal et al., 2019; Wells et al., 2019). Interestingly,
mitochondrial mutations have also been associated with hearing
loss susceptibility (Jing et al., 2015). Identifying and studying
both mitochondrial genes and genes involved in regulating
mitochondrial function will undoubtedly aid in developing
protective therapies.

Zebrafish have been a popular model for genetic studies due to
their high fecundity and ease of genetic manipulation. Forward
genetic screens in zebrafish have proven useful for identifying
genes required for hearing and balance as well as in pathways
involved in aminoglycoside-induced death (Nicolson et al., 1998;
Owens et al., 2008; Stawicki et al., 2016; Nicolson, 2017).
Through reverse genetics, using tools such as CRISPR/Cas9, one
can generate mutations in zebrafish as a way to study those
implicated in hearing loss in humans (Liu et al., 2019). In addition
to generating mutations to study gene function, transgenic
fluorescent reporters can also be used to visualize cellular and
subcellular structures and dynamics (Table 2; Figure 4).

Forward genetic screens have been particularly useful for
identifying novel gene function in the zebrafish lateral line. One
such gene identified using forward genetics is pappaa, which
encodes pregnancy-associated plasma protein-aa (Wolman et al.,
2015). Pappaa acts in the IGF1 signaling pathway and has recently
been shown to regulate hair-cell mitochondrial function (Alassaf
et al., 2019). pappaap170 mutant zebrafish were more susceptible
to neomycin-induced hair-cell death and had elevated ROS levels
in their hair cells. In addition, pappaap170 mutant hair cells
had increased mitochondrial Ca2+, hyperpolarized 19m, and
reduced expression of the mitochondrial antioxidant genes gpx,
sod1, and sod2, all of which could contribute to increased ROS
levels. Treatment with the ROS scavenger mitoTEMPO rescued

pappaap170 mutant susceptibility to neomycin-induced hair-cell
death, suggesting that elevated ROS underlies the enhanced hair-
cell death in pappaap170 mutants. The study supports the utility
of zebrafish forward genetic screens in identifying novel genes
involved in mitochondrial function and hair-cell vulnerability.

Another study used CRISPR/Cas9 technology to delete the
gene mtu1 to study its function in hair cells (Zhang et al.,
2018). This gene encodes a highly conservedmitochondrial tRNA
modifying enzyme. In humans, deficient tRNA modification
is associated with deafness (Wang et al., 2016). mtu1-
deficient zebrafish had deficient thiolation of mitochondrial
tRNA, as well as decreased levels of mitochondrial tRNA
and mitochondrial proteins (Zhang et al., 2018). mtu1−/−

zebrafish also had deficient oxidative phosphorylation and
reduced ATP. In the lateral line, mtu1−/− zebrafish had fewer
hair cells per neuromast. These results support a role for
mitochondrial tRNA modification in deafness and demonstrate
the value in using reverse genetics to study gene function in
hair cells.

CONCLUSION

The zebrafish lateral line is a valuable model system in
which to study hair-cell mitochondria and offers unique tools
such as the ability to visualize mitochondrial dynamics in
vivo. Studies utilizing this system have shed light on the
roles of mitochondria in calcium homeostasis and synapse
regulation as well as supported roles of mitochondria in cell
death pathways, particularly in response to ototoxic drugs
like aminoglycosides. The strides made from zebrafish studies
contribute to the understanding of hearing loss in humans and
will lead to development of preventative or protective therapies in
the future.
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