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Abstract: The emergence and development of aggregation induced emission (AIE) have attracted
worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of
aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE
an important and promising aspect in various fields of fluorescent material, sensing, bioimaging,
optoelectronics, drug delivery system, and theranostics. In this review, we have discussed insights
and explored recent advances that are being made in AIE active materials and their application in
sensing, biological cell imaging, and drug delivery systems, and, furthermore, we explored AIE active
fluorescent material as a building block in supramolecular chemistry. Herein, we focus on various
AIE active molecules such as tetraphenylethylene, AIE-active polymer, quantum dots, AIE active
metal-organic framework and triphenylamine, not only in terms of their synthetic routes but also we
outline their applications. Finally, we summarize our view of the construction and application of
AIE-active molecules, which thus inspiring young researchers to explore new ideas, innovations, and
develop the field of supramolecular chemistry in years to come.

Keywords: aggregation induced emission (AIE); chemosensors; anion sensing; biological cell imaging;
drug delivery system

1. Introduction

The recent development in the field of supramolecular chemistry, especially in chemo-
/biosensing, biological cell imaging, and drug delivery systems, has gained a lot of attention
due to its high quantum yield and good photostability [1–3]. Hence, numerous fluorescent
materials have been developed and have attracted the attention of researchers towards
the use of the florescent material such as tetraphenylethyne (TPE) derivatives Schiff’s
bases, naphthalenediimide (NDI), pyrene, conjugated polymer, and various metal-organic
framework (MOFs) and carbon dots (CDs) as a good platform for sensing contaminants
and its application in cell imaging and drug delivery systems [4–8].

Luminescence is a spontaneous light emission process that comes from excited elec-
tronic states upon absorption of UV-vis light which has received great attention in various
fields in chemistry, physics, material science, medicine and biology [9]. Most of the organic
luminophores show this property and have been widely used in sensing applications.
However, many organic luminophores are studied in dilute solutions, thus, exhibiting
very different photophysical phenomena compared with concentrated solutions. This is a
common phenomenon where the luminescence is either weakened or quenched at high
concentration this effect is known as “concentration quenching” which is caused due to for-
mation of aggregate which is considered as the detrimental process known as aggregation
caused quenching (ACQ) [10,11]. The most common conventional luminophore presenting
the ACQ phenomenon is N,N-dicyclohexyl-1,7-dibromo-3,4,9,10-perylenetetracarboxylic
diimide (DDPD) as shown in Figure 1,which emits strong fluorescence in dilute solutions
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and suffers from ACQ at high concentration or in the aggregated state. An organic lu-
minophore that shows ACQ is considered detrimental and shows very low sensitivity
and hence its use is limited [12–14]. However, another phenomenon was discovered by
Tang’s group in 2001 group showing overcoming of the ACQ process by the so called
aggregation induced emission (AIE) phenomenon [15–17] which is exactly opposite to
that of ACQ, wherein a molecule is initially non-emissive but becomes highly emissive
in an aggregated state, as shown in Figure 2. There are other non-radiative decay pro-
cesses such as restricted intramolecular vibration and rotational relaxation responsible in
the AIE process. Many research groups have reported AIE-active molecules that can be
used for chemical sensors [18–20]. Among them, hexaphenylsilole (HPS) is the common
example of the AIE active molecule which exhibits enhancement in fluorescence in an
aggregate state. The motions involved, such as restriction of intramolecular motion along
with rotation and vibration mechanisms in the AIE active phenomenon, are well explained
and accepted [21,22]. The AIE luminogens have high photostability, large stoke shift, a
photobleaching resistance property, and show high sensing reproducibility [23]. This char-
acteristic makes luminogens a promising candidate for sensing application. Nevertheless,
the AIE active luminogens find wide application in various fields acting as an excellent
platform for sensing of food contaminants such as toxic cations and anions, veterinary
drugs, pesticides, fertilizers, pathogens such as Gram-positive and Gram-negative bacteria,
food additives and so on. In addition, the AIE-active luminogens have various applications
such as mechanofluorochromism, optical light-emitting device (OLED) application, solar
cells, cell imaging, biosensing, and drug delivery applications. The abnormal AIE phe-
nomenon involves different mechanisms. Interestingly, due to the unique photophysical
phenomenon of AIE activity, the AIE active luminogens shows different “turn-on” sensing
mechanism via various interactions involving electrostatic interactions, hydrogen bonding,
van der Waals interactions, and metal-ligand interactions. Another approach is through
recognition of analyte with “turn-on” fluorescence via restriction of intramolecular rotation.
Other different electron transfer processes involved in sensing mechanism are photoin-
duced electron (PET), intramolecular charge transfer (ICT) and Forster resonance electron
transfer (FRET). The potential proposed mechanism responsible for sensing occurs through
different pathways such as the restriction of intramolecular rotation (RIR), hydrogen bond
interaction, J-aggregation, molecular planarization, and twisted intramolecular charge
transfer (TICT) [24–29]. Restricted intramolecular rotation (RIR) and restricted intramolec-
ular vibration (RIV) were merged as restricted intramolecular motion (RIM) regarded as
the important mechanism involved for the AIE effect, Figure 3.

Although a few review articles were previously published on AIE-active molecules
which describe their application in different fields separately, each review has only explored
one type of application. Therefore, in this review, we decided to combine the AIE-active
luminogens in biological oriented application such as such as sensing of different essential
and non-/toxic ions, biological cell imaging, fluorescent biomarker markers and have
further extended this to drug delivery systems for controlled release of a drug, which may
attract more researchers in the field.
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Figure 1. (a) Fluorescence photograph of the (N,N-dicyclohexyl-1,7-dibromo-3,4,9,10-perylenetetra-
carboxylic diimide) molecule with increasing water content and (b) showing the aggregation-caused 
quenching (ACQ) phenomenon. Reprinted from reference [13] with the permission of the Royal 
Chemical Society. 

 
Figure 2. Photograph of hexaphenylsilole (HPS) representing aggregation induced emission (AIE) 
phenomenon. Reprinted from reference [12] with the permission of the Royal Society of Chemistry. 

Figure 1. (a) Fluorescence photograph of the (N,N-dicyclohexyl-1,7-dibromo-3,4,9,10-
perylenetetracarboxylic diimide) molecule with increasing water content and (b) showing the
aggregation-caused quenching (ACQ) phenomenon. Reprinted from reference [13] with the permission of
the Royal Chemical Society.
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Figure 3. Representation of proposed mechanism for AIE effect. Reprinted from reference [29] with 
the permission of Wiley-VCH. 
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in individual systems including tissues, cells, as well as organisms. Several methods have 
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with high fluorescence properties found to be more advantageous over other reported 
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very important for both the essential and non-essential metal ions due to their presence-
from a biological and environmental point of view. Among the wide range of applications 
of fluorescence techniques using fluorescent molecules of various cations and anions, is 
the most important and found to be a promising active platform in various areas. 

Among cations, potassium ion is an essential component of the human body that 
plays a very important role in monitoring and regulating the various physiological func-
tions, such as heart beat, muscle strength, regulates nervous and renal functions [30,32]. 
The normal concentration of K+ in plasma ranges from 3.5 to 5.5 mM; moreover, if the 
concentration increases to 7.0 mM then it may result in a complication [33]. To quantify 
the amount of K+ ion, Liu et al. synthesized molecular rotors for detection of K+ ion [34] 
bearing G-quadruplex derived from guanine (G)-rich DNA sequences is used as a struc-
tural motif. Initially, the crown ethers and cryptands were frequently used as host moie-
ties for sensing K+ ions. There are very few AIE active fluorescent probes that have been 
reported until now. In this regard, Wang and co-workers utilized an AIE strategy and 
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2. Aggregation Induced Emission (AIE) Active Molecules for Sensing Application

Metal ions play a very important role in various biological and physiological processes
occurring in the body and are required by all life forms. Most of the metal ions partici-
pate in many biochemical processes, such as material transportation, energy conversion,
information transmission, and metabolic regulation [30]. The presence of excess metal
ions may lead to serious health issues and may hamper the various metabolic processes.
Therefore, there is a need for monitoring, detection, and study of their distribution in
individual systems including tissues, cells, as well as organisms. Several methods have
been reported for metal ion detection, but few of these methods suffer from drawbacks
such as tedious synthesis, cost and non-selectivity. Nevertheless, small organic molecules
with high fluorescence properties found to be more advantageous over other reported
chromophores due to high sensitivity, selectivity, high quantum yield, simple synthetic
routes, easy operation, and real-time detection [31]. There are several essential (Na+, K+,
Ca2+, Zn2+ and Mg2+, Fe2+) and non-essential/toxic metals (Hg2+, Pd2+, Pb2+, Cu2+, As3+

Cr3+) and anions (F−, Cl−, CN−, Br−). Detection with a lower detection limit with quan-
tification is very important for both the essential and non-essential metal ions due to their
presencefrom a biological and environmental point of view. Among the wide range of
applications of fluorescence techniques using fluorescent molecules of various cations and
anions, is the most important and found to be a promising active platform in various areas.

Among cations, potassium ion is an essential component of the human body that plays
a very important role in monitoring and regulating the various physiological functions, such
as heart beat, muscle strength, regulates nervous and renal functions [30,32]. The normal
concentration of K+ in plasma ranges from 3.5 to 5.5 mM; moreover, if the concentration
increases to 7.0 mM then it may result in a complication [33]. To quantify the amount
of K+ ion, Liu et al. synthesized molecular rotors for detection of K+ ion [34] bearing
G-quadruplex derived from guanine (G)-rich DNA sequences is used as a structural motif.
Initially, the crown ethers and cryptands were frequently used as host moieties for sensing
K+ ions. There are very few AIE active fluorescent probes that have been reported until
now. In this regard, Wang and co-workers utilized an AIE strategy and constructed a highly
sensitive and selective fluorescent OFF-ON probe via host-guest molecular recognition
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by functionalizing a novel crown ether on TPE derivative by the thiol via click reaction,
yielding TPE-(SH)4 and maleimide-functionalized benzo-15-crown-5(B15C5). The probe
TPE-(B15C5)4, consisted of TPE as the core moiety with four substituted B15C5 units. Its
optical properties were studied via the AIE mechanism and found to be highly selective and
sensitive towards K+ ions [35]. In addition, Lu and coworkers designed TPE modified with
a DNA oligonucleotide-based fluorescent probe exhibiting excellent AIE active behavior
and a probe showing excellent sensing behavior towards the K+ ion. Furthermore, the
probe was used for biological cell imaging [36]. Moreover, another novel potassium sensing
oligonucleotide derivative via fluorescence resonance electron transfer (FRET) was studied
and used for detecting K+ in water [37]. The structure of the most commonly synthesized
AIE active fluorescent probe is illustrated in Figure 4.
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Calcium is another essential metal ion for various physiological functions such as
muscle contraction, blood pressure, heart beats, vascular and nerve functioning at the same
time calcium major component of the bone structure in the body [38]. The intracellular
calcium is stored in mitochondria and the endoplasmic reticulum while most of the calcium
is found in bones and teeth. The change in concentration in Ca2+ may result in various
diseases resulting in obesity and Alzheimer’s disease [39]. The increase in level of Ca2+

in the body may lead to several diseases’ cardiac arrhythmias, sarcoidosis, and tubercu-
losis. Therefore, sensing and monitoring extracellular and intracellular Ca2+ is important
for diagnosis. In this regard, Gao and co-workers designed an AIE active probe for in
situ detection of calcium. The probe SA-4CO2Na can distinguish efficiently between the
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normal and hypercalcemic calcium in the cell. The probe was synthesized by reacting
5-(chloromethyl)-2-hydroxybenzaldehyde with diethyl imino diacetate in the presence
of hydrazine monohydrate to give SA-4CO2Et which was further reacted in presence of
sodium methoxide affords to form SA-4CO2Na. The exact mechanism involved in the
detection of Ca2+ is by the formation of highly emissive fibrillar aggregate via electrostatic
and chelating interaction between the iminodiacetate groups and Ca2+ ion. Initially in the
absence of calcium the probe shows very weak emission in aqueous solution while in the
presence of calcium the formation of fibrillar takes place resulting in the enhancement in
fluorescence, as shown in Figure 5 [40].
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In another report, Wang and coworkers designed AIE active polyarylene ether ni-
trile fluorescent nanoparticles acting as an excellent probe for intracellular imaging. The
synthesized nanosphere showed excellent biocompatibility in presence of calcium with a
21% quantum yield [41]. Moreover, another TPE-based AIE active fluorescent probe was
synthesized by Zhang’s group for sensing Ca2+ using the criteria of AIE behavior. The
probe consisted of a TPE moiety with a bidentate pyridine carboxylate unit. The probe
showed a “turn-on” fluorescence response to Ca2+ with a lower detection limit of 51.2 nM.
Importantly, the probe can also be recycled by addition of ethylenediamine tetra-acetic
acid (EDTA) [42] and further reused. Ishiwari’s group demonstrated use of AIE-active
TPE-based solid state gel sensor fluorescent molecule for extracellular Ca2+ imaging. This
gel consisted of polyacrylic acid (PAA) functionalized with TPE produces PAA-TPE, in
which TPE acted as a pendant with an AIE-active property. Interestingly, crosslinking with
gel (g-PAA-TPE) showed good selectivity towards Ca2+ [43]. Figure 6 shows various AIE
active fluorophores based on TPE for detection of Ca2+.
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In the human body it is well known that after iron, zinc is the second most com-
mon transition metal ion. Along with Na+, K+ and Ca2+, Zn2+, plays a very important
role in various biological and physiological functions such as the nervous system, gene
transcription, immune functions, and mammalian reproduction. In fact, one of the most
important applications is that the Zn2+ acts as an excellent catalytic cofactor and structural
center in various enzymes, DNA, and proteins. Therefore, the need for studying and
monitoring the Zn2+ is a major aspect in sensing applications. By taking advantage of
AIE-activity of molecules, Sun and coworkers designed a TPE-based “turn-on” fluorescent
probe for detection of Zn2+ ion in an aqueous medium. In this, co-ordination of Zn2+ to
-N(CH2COO−)2 and intermolecular coordination of Zn2+ lead to aggregation resulting in
an enhancement in fluorescence [44]. In another report, Wei and group synthesized AIE
active multifunctional metal-organic vesicles with triarylamine carboxylate (TPA-1) for
specific detection of Zn2+ ions. This fluorescent probe can be employed for biological cell
imaging and drug delivery systems [45]. Another multifunctional TPE-based AIE active
fluorescent probe was designed by Tang and coworkers for selective and sensitive detection
of Zn2+ and Hg2+ ion with 1.24 × 10−6 molL−1 and 2.55 × 10−9 mol L−1, respectively.
The AIE activity of the fluorescent probe was analyzed using the THF-water fraction [46].
More recently, Maity et al. developed an antipyrine fluorescent probe 4-[(2-hydroxy-3-
methoxy-benzylidene)-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazole-3-one (OVAP)
for selective detection of Al3+ and Zn2+ detection [47]. Diana and Panunzi in their review
described several AIE active fluorescent probes for sensing of Zn2+ ions [48]. Moreover,
Sun et al. developed a multifunctional AIE active Schiff base fluorescent probe (TPESB)
combined with AIE and ESIPT. TPESB was employed for dual-channel sensing of Zn2+

with high selectivity and sensitivity exhibiting a low limit of detection of 38.9 nM. Thus
due to its low cytotoxicity, the probe is applied for sensing of Zn2+ in live cells [49]. In this
work, He et al. designed a “turn-on” fluorescent probe with TPE as AIE active fluorophore
combined with the peptide chain. The self-assembled complex was formed between the
Zn2+ and three histidine residues. The probe showed strong fluorescence emission in
presence of Zn2+. The observed limit of detection was 18.56 nM and it can be employed
for biological cell imaging and intracellular detection of Zn2+ having low cytotoxicity and
good stability [50]. Figure 7 shows the various fluorophores used for detection of Zn2+ ion.
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There are several non-essential metal ions or heavy metal ions including anions that
are very well known for their toxicity to human health causing severe diseases. The major
factor responsible for the entry of these toxic metal ions into the environment is due to
industrialization, modern agricultural practices, and the release of untreated waste directly
into water bodies resulting in contamination and destruction of natural resources indirectly
affecting human health [51–54]. Different toxic ions that have toxic effect are Al3+, Cr3+,
Cd2+, Co2+, Mg2+, Hg2+, Sb3+, CN−, F−, Br−, Cl−, As3+, As5+, Cu2+. Therefore, there are
several analytical tools have been employed for the detection of this metal ion and anion
in the system such as atomic absorption spectroscopy, inductively coupled plasma mass
spectrometry, and colorimetric methods. However, fluorescent chemosensors have gained
a lot of advantages over all these methods for several reasons such as fast, cost-effective,
simple and easy to handle, naked-eye detection, and low cost of instrumentation. However,
few organic fluorescents suffer from aggregation-caused quenching thanks to the AIE
phenomenon developed to overcome the difficulties faced due to ACQ. Therefore, here
different AIE active fluorescent probes (Figure 8) for detection of toxic metal ions and
anions are described [55,56].
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Beglan et al. synthesized a derivative of TPE functionalized with cysteine as the
fluorescent AIE active dye for the detection of Arsenic (As3+) in aqueous media [57].
Further investigation of the probe revealed that the thiol group of cysteine acts as a binding
site for arsenic via the As–S bond. The three binding units of cysteine combines to sense
As3+ to give a symmetrical As–(Cys-TPE)3 complex. Wen and group synthesized a novel
AIE triphenylamine fluorophore used for sensing of Hg2+ and CN−. The probe showed
excellent AIE active behavior and has potential application in biological cell imaging.
However, the probe can be recycled and reused without any loss [58]. In another report, a
highly selective and sensitive pyrene-based AIE active ratiometrics “turn-on” fluorescent
probe (pyrene-DT) was designed by Ma co-workers for detection of Hg2+ in aqueous media.
The probe has good practical applicability in the preparation of test strips and detection of
Hg2+ in a water sample [59]. Our group recently described different AIE active luminogens
that are designed for selective and sensitive detection of various toxic metal ions [60].
Elemental copper plays a very important role in various physiological processes in the
environment. However, excess and deficiency of copper may lead to various neurological
disorders, mostly kidney and liver damage. More recently, our group synthesized TPE-
based AIE active comprising a thiophenylbipyridine receptor for selective and sensitive
detection of Cu2+. The probe showed a very low limit of detection up to 7.93 nM and the
probe was further used for test strip preparation, which is one of the best advantages for
practical applicability [61]. In a similar direction, Jiang and coworkers designed double
detecting hydrazono-bis-tetraphenylethylene (Bis-TPE) based AIE active fluorescent probe
for Cu2+ and Al3+. Here, the probe showed quenching of fluorescence to Cu2+ and red-
orange fluorescence for Zn2+ with 1:1 stoichiometry. However, the strong fluorescence of
Bis-TPE+Cu2+ can be recovered by adding adenosine triphosphate (ATP) giving “turn-on”
fluorescence similar to Bis-TPE+Zn2+ that can be quenched by adding Cu2+ which is then
further recovered by adding ATP. The probe Bis-TPE can be employed for test strips sensing
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and biological cell imaging [62]. Zhang and colleagues synthesized click triazole bridged
cyclodextrin (CD) based AIE active molecules for sensing Cd2+. The probe possesses a
good AIE active property and shows a “turn-on” fluorescence response towards Cd2+ ions.
The limit of detection for the probe was found to be 0.01 µM. Interference studies in the
presence of only Cd2+ showed a good response [63].

Similar to cations, anions sensing has been in more demand due to its wide applica-
tion in a biological and chemical processes, even though the anions are also considered
detrimental and toxic to the environment and human health. The fluorescence method has
proved to be the best approach for detection, monitoring, and remediation of anions such as
SO4

2−, CN−, F−, NO3
−, Cl−, Br−. Most recently, our group has designed and synthesized

a TPE-based AIE active fluorescent probe which is highly selective and sensitive towards
cyanide. It can be seen clearly that the probe can be efficiently utilized for naked-eye
detection Figure 9 test strips, and importantly the fluorescent probe, were used for the
detection of CN− ion in biological food samples. Moreover, the probe was utilized for a
biological cell imaging application [64].
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Figure 9. A photograph representing the sensing performance of the probe towards CN− ion in an
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Reprinted from reference [60] with the permission of the American Chemical Society.

Nhein and coworkers designed a novel amphiphilic AIE active polymeric fluores-
cent material, poly(NIPAM-co-TPE-SP) prepared by NIPAM as a hydrophilic unit and
tetraphenylethylene-spiropyran monomer (TPE-SP) employed for detection of cyanide
in aqueous media. The unique property of this fluorescent probe is that in the presence
of UV light the closed spiropyran (non-emissive) poly(NIPAM-co-TPE-SP) opens to give
merocyanine (MC) (poly(NIPAM-co-TPE-MC) in an aqueous solution [65]. In addition,
our group has synthesized another AIE-active TPE-based cyclic urea-based receptor for
selective detection of F− ions. The probe showed good selectivity in the presence of other
anions such as Cl−, Br−, I−, HCO3− CO3-, NO2

−, NO3
−, SO3

2−, SO4
2−, AcO−, S2−, ClO4

−,
HPO4

−, CN−. Absorption and fluorescence studies revealed that only F− ion showed
excellent selectivity towards the cyclic urea probe [66]. Similarly, using tetraphenylethylene
as a moiety to monitor optical as well as calorimetric changes, Anuradha et al. synthesized
an amino-functionalized fluorescent probe i.e., tetraamino-TPE (TA-TPE) for the selective
detection of nitrite ion in aqueous media. The probe showed a “turn-on” fluorescence
response which was considered an advantage over other receptors [67]. In another exam-
ple, TPE containing AIE active metal-organic supramolecular nanobelt was developed by
Li et al., and in their work the TPE was functionalized with terpyridine moiety to give
tetrapodal TPE-terpyridine ligand which self assembles to give a metal-organic nanobelt
which shows high selectivity towards S2− [68]. AIE active luminogens did not only limit
its application to sensing of cations and anions but also showed wide application in de-
tection of pesticides [69], explosives [70–72], biomolecules [73,74], pathogens [75], food
additives [76] and so on.
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3. AIE Active Molecules for Biological Cell Imaging

The various fundamental processes taking place in life can be very well studied and
understood which can be achieved effortlessly using fluorescence technique. Fluorescence
microscopy is an important tool that has now become most advantageous and launched
in biological research for advance and a better understanding of various intracellular
processes and dynamics at a cellular level. The field of fluorescence imaging is actively
developing as this fluorescent tool plays a major role in monitoring the different analytes
and helps in studying the biological events occurring in the intracellular environment.
Fluorescence microscopy is one of the best techniques to have been used in the last few
decades. Nowadays, there is great progress in instrumentation techniques which makes
fluorescence imaging simple and also overcomes the drawbacks and challenges suffered in
the past. Doing so, various advantages may be tackled such as minimal photodamage, high
resolution, and penetration deep into tissues. Nevertheless, in fluorescence microscopy,
two-photon fluorescence imaging has a greater advantage over one-photon fluorescence
imaging [77].

In this regard, Li and co-workers designed organic far-red/near-infrared AIE active
TPE substituted dots such as TPE-TPAFN and TPA-FN with excellent utility in long-term
cellular tracing. Due to its excellent characteristics of high emission efficiency, large ab-
sorptivity, excellent biocompatibility, and also its photobleaching resistance, the fluorescent
probe is a good candidate for in vitro as well as in vivo cellular tracing. The matrix used
for fabrication is the mixture of polyethylene glycol (PEG) and lipid-PEG-NH2. Interest-
ingly, the Tat (transactivator of transpiration)-AIE dots demonstrated excellent imaging
properties [78,79].

Wang et al. used “turn-on” fluorescence based on AIE active TPE in conjugation with
chitosan to produce chitosan-TPE bioconjugate which can be used as “turn-on” fluorescence
for long-term cellular tracing, which is very important for monitoring biological and
therapeutic processes. This bioconjugate exhibits excellent AIE active property followed by
internalization of aggregate take place in HeLa cells for further biological cell imaging. The
HeLa culture was used and incubated for 24 h and the fluorescence images were recorded,
and the cell imaging process was carried out until the 15th passage, Figure 10 [80].
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Figure 10. Structural illustration and utilization of TPE-CS as an excellent fluorescent marker in
biological cell imaging in HeLa cells. Reprinted from reference [76] with the permission of the Journal
of the American Chemical Society.

In the fluorescent materials, far-red/near-infrared (FR/NIR) emissions higher than
640 nm are regarded as an excellent and promising candidate for fluorescence imaging.
Using similar criteria, the Qin group synthesized selenium containing FR/NIR AIE active
luminogen (TTSe dots) which is very rare; however, there are very few reports available
on selenium-containing fluorescent probes for bioimaging application. The synthesized
probe has excellent applications in imaging of the sentinel lymph node (SLN) mapping and



Molecules 2022, 27, 150 12 of 40

finally in tumor imaging. In addition, this fluorescent luminogen is utilized for imaging
the brain blood vessels of mice using a high-resolution two-photon imaging technique as
shown in Figure 11. Hence this highly emissive selenium-containing TPE-based fluorescent
luminogen is used for in vivo biological applications [81].
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reference [81] with the permission of The Royal Society of Chemistry.

Similarly, Gao and coworkers developed AIE functionalized with Tat-peptide (AIE-Tat
NPs) PITBT-TPE for tracing bone marrow mesenchymal stem cells (BMSCs). The fluorogens
consisted of a mixture of DSPE-PEG2000 and DSPE-PEG2000 maleimide matrix. Furthermore,
the obtained nanoparticle was modified with cysteine Tat-peptide (RKKRRQRRRC). The
fluorescence quantum yield of the compound was found to be 23.5% with a lifetime
of 5.37 ns. Thus, the red emission made the AIE-Tat NPs a promising candidate for
bioimaging of BMSCs cells; however, intense red emissions were observed in a confocal
microscope. The results indicated 100% labeling efficiency and the concentration of AIE
Tat does not affect the cell viability of BMCs cells [82]. Huang et al. reported AIE-active
fluorescent luminogen for detecting and intracellular imaging of ClO− in cells. The TPE unit
being hydrophobic forms aggregate nanoparticles into micelle that emits red fluorescence.
Therefore, the probe can be utilized for endogenous ClO− detection in live cells. To study
the endogenous imaging of ClO−, the zebrafish was used as a sample because of their
excellent transparency at the embryonic and larval stages. Zebrafishes were incubated with
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the fluorescent compound for 60 min, and green fluorescence was observed however the
green fluorescence enhanced with increasing incubation time. This result reveals that the
probe can be employed well for in vivo ClO− detection and imaging applications [83]. The
Ma group synthesised AIE-active TPE polymer cross liked using N-isopropylacrylamide
fluorescent material for long-term cellular tracing. This fluorescent polymer was designed
with hydrophilic N-isoprpylacrylamide polymer and hydrophobic TPE subunits with
cross-linkers 4,4′-(2,2-dibromoethene-1,1-diyl)bis(vinylbenzene)DDBV. The synthesized
TPE-PNIPAM (P6) had good compatibility and long-term imaging properties. In addition,
the probe showed temperature-responsive behavior with fluorescence change. Its excellent
biocompatibility makes the fluorescent probe a highly promising material for a biological
imaging application. Thus, it was observed that the probe was utilized for examination of
living A549 human lung adenocarcinoma cells as shown in Figure 12, in which the deep
blue color of the cytoplasmic cells suggests the P6 molecule aggregates and internalizes
deep into the cells. The P6 molecule shows good AIE activity, low toxicity, and leakage-free
staining. Hence it can be concluded that the P6 molecule acts as an excellent fluorescent
marker for a biological long-term cell imaging application [84].
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Moreover, the Wan group prepared AIE-active fluorescent polymeric nanoparticle
using the polysaccharides, as many of the fluorescent polymeric nanoparticles (FPNs)
have increasing demand in theranostic application especially in drug delivery systems
in ttreatment and diagnosis. In Wan group work, they utilized cost-effective naturally
occurring polymer oxidized sodium alginate (OSA) obtained from marine seaweeds. The
designed fluorescent AIE active OSA-Phe-OSA FPNs show red fluorescence with excellent
photostability and biocompatibility. The biological cell imaging studies were conducted on
L929 cells using OSA-Phe-OSA FPNs. They showed the cellular uptake of the fluorescent
probe was effective with excellent biocompatibility. The strong fluorescence was observed
after 3 h of incubation which suggests that the OSA-Phe-OSA has excellent staining perfor-
mance. They concluded that these OSA-Phe-OSA AIE-active nanoparticles can be used in
future for controlled drug delivery of cisplatin [85].

Lipid droplets are the powerhouse of proteins and lipids responsible for various
biological processes and diseases, for example virus infection, cancer, obesity and so on.
Several approaches are being used earlier for visualization such as color staining, Raman mi-
croscopy, transmission electron microscopy. Amongst all these techniques near-infrared and
two-photon excited fluorescence (TPEF) are more advantageous over other techniques due
to their high-resolution imaging and low photodamage. Therefore, Gao et al. introduced
AIE active triphenylamine (TPA) and indane-1,3-dione optical material. The compound
showed good AIE activity and TICT effect hence can be used for lipid droplet specific
imaging and thus making it easily available for biological applications. The biological cell
imaging on HCC827 and A549 cells were carried out which suggested that upon incubation



Molecules 2022, 27, 150 14 of 40

for 15 min the fluorescent probe IND-TPA shows excellent cellular uptake property [86].
Another AIE active TPA-based dihydro-2-azafluorenones was used for lipid droplet-specific
live-cell imaging [87].

Fluorescence microscopy is considered an important tool in the imaging of tissue.
Due to optical diffraction limits, the spatial resolution is restricted up to nearly 200 nm
which keeps the imaging unclear. After several decades numerous high-resolution methods
were discovered. In this direction, Li and co-workers synthesized AIE active nanoparti-
cle (NPs) of 2,3-Bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl)fumaronitrile
(TTF), which was fabricated with colloidal mesoporous silica to form AIE-active NPs which
are used for cell imaging by utilizing the stimulated emission depletion nanoscopy (similar
to confocal microscopy) which is a super-resolution imaging technique as it gives a resolu-
tion of <50 nm that is more advantageous over other fluorescence imaging tool. Moreover,
utilizing the long-term stimulated emission depletion (STED) nanoscopy TTF@SiO2 NP
was investigated for imaging cancerous HeLa cells. Figure 13 illustrated that the images
obtained under a confocal microscope and STED showed two different results; it clearly
shows that the images obtained by STED are very high-resolution images compared to the
confocal microscope. Therefore, fluorescent TTF@SiO2 NPs are beneficial for long-term
super-resolution bioimaging applications in future technology developments [88].

Supramolecular interactions play a very important role and have been widely used for
the fabrication of various fluorescent assembled nano- and micro-superstructures. In this
regard, the Xu group fabricated AIE active fluorescent organic nanoparticles (FONs). The
FONs were synthesized having an AIE active property exhibiting red emission, however
they were fabricated through the supramolecular interaction between β-cyclodextrin (β-
CD) and adamantine AIE active dye. Due to its AIE activity of Ph-Ad/β-CD and strong red
emission, the FONs can be used for an imaging application. To check its biocompatibility
cell viability studies were carried out using a CCK-8 assay. The 100 % cell viability was
observed for A549 upon incubation with FON of cells for 24 h. Cell uptake studies for the
FONs were evaluated and confirmed that due to low cytotoxicity the Ph-Ad/β-CD, FONs
acts as an outstanding platform and thus can be utilized for further biological and biomedi-
cal application [89]. Another cyclodextrin-TPE substituted AIE active pseudorotaxAne was
synthesized by Liow and group. The prepared luminogen consists of tetraphenylethylene
conjugated with poly(ethylene glycol) (TPE-PEG2) as a guest species and α-cyclodextrin(α-
CD) as a host species. The molecule was investigated for cellular uptake and examined
for cytocompatibility by internalization of TPE-PEG2 for A549 cells. The confocal images
showed that the treated cell exhibited blue fluorescence to the cytoplasm upon incubation
with TPE-PEG2, however, upon addition of α-CD to TPE-PEG2 the blue fluorescence was
enhanced significantly. They concluded that the blue fluorescence was only observed in
the cytoplasm rather than the nucleus Figure 14 [90].
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Figure 13. Fluorescence images of HeLa cells stained with TTF@SiO2 NPs observed under confocal
microscopy and STED nanoscopy imaging. (a,b) Confocal and STED nanoscopy images of cells
incubated with TTF@SiO2 NPs while (c,d) represents the magnified fluorescent image of (a,b). (e)
The fluorescence intensity recorded by confocal (black) and STED (red). (f). The image demonstrates
the confocal microscopy image for TTF@SiO2 NPs for HeLa cells and from (g–j) STED nanoscopy
images captured at different time points for HeLa cells. (k) The normalized fluorescence intensity for
HeLa cells incubated with TTF@Si2 NPs at different time points. Reprinted from reference [88] with
permission from Wiley-VCH.
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Figure 14. (a) Confocal images illustrating the cellular internalization of the TPE-PEG2 and combining
TPE-PEG2 and α-CD using A549 cells and investigated for 4 h at 37 ◦C. (b) Molecular structure of the
TPE-PEG2 and (c) bar graph image representing relative fluorescence intensity TPE-PEG2 in respective
cells, in which “*” represents three independent experiments from five random field per experiments
i.e. * p < 0.05. Reprinted from reference [90] with the permission American Chemical Society.

Guan and coworkers synthesized AIE active non-conjugated polymer dots (Pdots) by
fabricating amphiphilic PNIPAM with Eu (III) complex which self assembles in aqueous
media as a four-arm star polymer TPE-tetraPNIPAM-Eu (III). The developed fluorescent
material is employed for cancer cell imaging. The Pdots show dual fluorescence emission
properties from TPE hydrophobic moiety and hydrophilic PNIPAM-Eu (III). Due to its
dual emission property, blue light at 630 nm and red light at 395nm make it a promising
candidate for cell imaging of HeLa cells, A549, and HepG2 cells upon incubation with AIE
Pdots. The cytotoxicity studies revealed 90% cell viability Figure 15 [91].
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Figure 15. The molecular structure of AIE active Pdots TPE-tetraPNIPAM-Eu (III) used for imaging
of cancer cells.

Zhuang et al. synthesized AIE-active redox and pH-responsive polymeric micelles
mPEG-P(TPE-co-AEMA). This synthesized polymeric micelle has excellent biocompatibility,
it acts as a prominent nanocarrier for drug delivery system. The cellular imaging was
carried out using a mPEG-P(TPE-co-AEMA) micelle for 4T1 cells and HeLa cells. Both the
cells showed 100% cell viability indicating that the micelle has excellent biocompatibility.
The confocal laser scanning microscopy (CLSM) images of 4T1 cells as represented in
Figure 16 [92].
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Figure 16. Photograph demonstrating the confocal fluorescence images captured after incubation of
4T1 cells with m-PEG-P(TPE-co-AEMA) probe for 2 to 4 h. Reprinted from reference [92] with the
permission of the American Chemical Society.

Zhang and coworkers designed amphiphilic TPE-based pyridinium salt with yellow
emissive (TPE-MEM) with a unique AIE active phenomenon. The probe has good water
solubility, biocompatibility, and cell membrane specificity. The cytotoxicity study revealed
that the cells were viable to 20 µM with low toxicity. The cell imaging studies were
undertaken by using cervical cancer HeLa cells which were incubated with TPE-MEM at
room temperature with 5 µM. The excess of PBS buffer was removed by washing and the
images were recorded as shown in Figure 17 [93].

Feng et al. demonstrated a position-dependent substituent effect on another TPE-
based AIE active fluorescent probe functionalized with pyridine moiety (TPE-o-Py) which
displays high selectivity and sensitivity towards the Fe(III) ion. In addition, in vitro cellular
imaging and selectivity of Fe(III) was carried and this fluorescent probe shows pronounced
red-shift and is applicable in biological cell imaging. The HeLa and MCF7 cells were incu-
bated with the fluorescent probe, and images were captured under confocal fluorescence
microscopy. The HeLa cells exhibited blue emission upon incubation with TPE-o-Py, but as
the Fe3+ was added the blue, as well as red, emission was illustrated. Upon incremental
addition of Fe(III) red fluorescence intensity increases rapidly. Its excellent biocompatibil-
ity reveals that TPE-o-Py acts as an excellent boilable for Fe(III) in both Hela and MCF7
cells [94]. In another report, Li and coworkers synthesized the alkylated functionalized
pyridinium TPE system (TPEPy-1 to TPEPy-4). The effect of substitutes chain length, opti-
cal properties, and its further application in the various biological field was investigated.
Moreover, the alkylated chain influences the optical properties of TPEPy-1 that found to be
a promising “turn on” fluorescence candidate for detection of NO3

− and ClO4
−. The fluo-

rophores were used for mitochondrial targeting. To study the effect of alkyl substituent the
HeLa cells and HEK-293T were selected for cytotoxicity, eventually investigated by CLSM
and subsequently showing that TPEPy-1 and TPEPy-2 get accumulated and represent the
yellow fluorescence; however, weak fluorescence was observed for TPEPy-3 and negligible
fluorescence for TPEPy-4 fluorogens. Thus, they have concluded that the TPEPy-1 and
TPEPy-2 due to suitable hydrophobicity accumulate well in the cell membrane while a
very strong hydrophobic nature makes it impossible for fluorogens to penetrate deep in the
tumor as well as the normal cells Figure 18 [95].
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However, it is critically important for a cell viability study of therapeutic efficacy
in biomedical applications. Therefore, Hu and co-workers designed and synthesized
AIE active polymeric material with TPE and a negatively charged side chain of OEGs
P(TPE-OEG) to study the viability of cells. AIE-active polymer demonstrates good tracking
ability and excellent biocompatibility [96]. The Lin group developed AIE-active “turn-on”
probe for alkaline phosphate detection by introducing an electron-withdrawing group
and recognizing phosphate species. The probe is highly sensitive to alkaline phosphate
(ALP) and has been successfully employed for imaging ALP in live cells [97]. In 2019,
Chen and coworkers demonstrated several fluorophores with tetraphenylethylene dye
and dansyl, naphthalimide, 4-nitro-1,2,3-benzoxadiazole (NBD), borondipyrromethane
(BODIPY), hemicyanine fluorophore in visible to near-infrared regions exhibiting AIE active
effect. These fluorophores TPE-NIR, TPE-Blue, TPE-Crimson, TPE-Orange, and TPE-Red
have been further explored in biological cell imaging, Figure 19 [98]. The AIE active TPE-
containing fluorescent dyes have been then applied for the bioimaging in living cells, which
covered the broad emission region. The dyes solution was prepared in phosphate buffer of
pH=7.4 with 0.1% of DMSO. After incubation of HeLa cells the fluorescence images were
taken in confocal microscope as shown in Figure 19, bright emission was detected in living
cells using dyes TPE-Blue, TPE-Orange, TPE-Red, TPE-Crimson, and TPE-NIR, represented
in different colours.
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Figure 17. The structure of the fluorescent marker probe (TPE-MEM) imaged under confocal mi-
croscopy was captured for TPE-MEM upon incubation of HeLa cells. (a) Images under laser scanning
confocal microscopy, (b) images under bright field, and (c) merged images for HeLa cells stained
with the TPE-MEM. Image of HeLa cells co-stained with (d) TPE-MEM and (e) the CellMask Deep
Red plasma membrane and followed by image. Further, (f) shows merged fluorescence images of ‘a
& b’. Reprinted from reference [93] with the permission of American Chemical Society.
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293T cells upon incubation with (TPEPy-1, TPEPy-2, TPEPy-3, TPEPy-4) fluorogens. Reprinted from
reference [95] with the permission of the American Chemical Society.

By using the specific sugar–protein interaction strategy, Wang and coworkers devel-
oped a diketopyrrolopyrrole (DPPM) AIE-active probe with two mannose groups and
diketopyrrolopyrole (DPP) core. They further studied the effect of an increasing number of
sugar groups on the DPPM two DPPF-M (with four mannose units) and DPPS-M (with six
mannose units). All three DPPM, DPPF-M, and DPPS-M fluorophores showed AIE activity
which was further employed for the detection of lectin. The fluorescence of the DPP unit
increased upon the addition of lectin. Interestingly, the probe showed low cytotoxicity to-
wards MCF-7 and MDA-MB cells and had greater capacity for recognition of sugar ligands
and glycoproteins cellular imaging of cancer cells which overexpressed mannose receptors
through a specific sugar–protein interaction. In which, DPPS-G was used as a reference
without any mannose unit for comparative cell imaging study with DPPF-M and DPPS-M
probe. The laser scanning confocal microscopy (LSCM) results show that upon incubation
of cells with DPPS-M and DPPF-M, units showed red fluorescence to cancer cells while
no fluorescence to normal cells. In addition, they noticed that cells upon incubation with
DPPM had very weak red fluorescence, and with DPPS-G showed no red fluorescence.
This indicated that only the mannose functionalized DPP-based AIE-active compounds
with a greater number of mannose groups comprising a greater number of binding sites
are responsible for cellular uptake resulting in its utilization in a biological cell imaging
application [99].
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Figure 19. Structures of the fluorescent molecules TPE-NIR, TPE-Blue, TPE-Crimson, TPE-Orange,
and TPE-Red are used for biological cell imaging. Confocal images of Hela cells in different emission
channels with TPE-Blue (a), TPE-Orange (b), TPE-Red (c), TPE-Crimson (d), and TPE-NIR (e) (the
near-infrared fluorescence was modified graphically to purple for visual clarity). Reprinted from
reference [98] with the permission.

Yan et al. synthesized di(2-picolyl)amine(DPA) which was highly selective towards the
Zn(II) metal ion. The modified DPA to form 3-amino-9-ethyl carbazole with salicylaldehyde
was prominently utilized for detecting the Zn (II) ion in aqueous media. The probe
applied for biological cell imaging. Initially, cytotoxicity studies were undertaken to study
the viability which revealed low toxicity with 97.7% viability. Thus the probe was used
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for recognizing Zn(II) ion in HeLa cells [100]. Wang’s group synthesized an AIE-active
fluorescent chemosensor based on triphenylamine-based Schiffs bases C1 and C3 with
reference to C2 and C4 (Figure 20). The synthesized C1 and C3 showed good AIE activity.
The synthesized AIE probe was utilized for the detection of hydrazine N2H4·H2O in living
cells. The HeLa cells were incubated with probes C1 and C2. The results indicated that
upon incubation with hydrazine there was the disappearance of fluorescence under a
fluorescence microscope, suggesting that the presence of hydrazine makes the probe C1
and C2 applicable for the detection of hydrazine in live cells [101].
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Figure 20. Structural representation of the molecules for detection of hydrazine in live cells.

Tarai and co-workers synthesized two cyano functionalized ICT and AIE active probes
for cytotoxicity and cell imaging applications. The molecules with substitution effect on
AIE-1 and AIE-2 were investigated. The AIE-1 without substitution showed yellow color
with weak charge transfer whereas AIE-2 showed strong charge-transfer absorption with
yellowish-orange color. In both AIE-1 and AIE -2, indole moiety acts as an electron donor
and the cyan-functionalized group acts as an electron acceptor unit. Furthermore, both the
probes were investigated for cell imaging by using the HeLa cells as the model system for
cellular uptake. The toxicity studies revealed good cell viability to 90% even after increasing
cell incubation period. Furthermore, the HeLa cells were incubated with AIE-1 and AIE-2
for 24 h and at 37 ◦C. The images were captured by a confocal microscope under bright
and greenfield as illustrated in Figure 21 [102].
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fluorescence upon incubation and blue fluorescence was observed in the cytoplasm rather 
than the nucleus. Thus, it was considered a promising candidate for cellular imaging [103].  
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stable AIE active probe for a plasma membrane imaging study comprising of tetra-
phenylethylene naphthalimide (TPE-NIM+). The TPE-NIM+ was used for staining of dif-
ferent cell lines acting as an excellent fluorescent marker [104]. In another example, the 
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Kumar and co-workers. The polymeric material was synthesized by using AIE-active TPE 
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vinyl) styryl) aniline) (PTPA) comprising the D-п-A system which is further incorporated 
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ymeric nanoparticles were further investigated for cell imaging application by fluorescent 
microscopy via internalization of the probe into the Huh-7 cells, Figure 22 [105]. 

Figure 21. (A) Represents the structure of the AIE-1 and AIE-2 probes. (B) The plot demonstrates the
cytotoxicity assay for HeLa cells incubated with AIE-1 and AIE-2 for 24 h. (C) Confocal fluorescence
images were captured for HeLa cells incubated with AIE-1 and AIE-2 fluorescent probes. Reprinted
from reference [100] with the permission of MDPI.
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Thermoresponsive polymeric AIE active (1-ethenyl-4-(1,2,2-triphenylmethanol)-benzene-b-
N-isopropyl acrylamide micelles were developed very recently by Ma and co-worker by reversible
addition-fragmentation chain transfer polymerization of 1-ethenyl-4-(1,2,2-triphenylethenyl)-
benzene (TPEE) and N-isopropylacrylamide (NIPAM). The polymer PTPEE-Pns possesses a
good AIE-active property. As the polymeric micelle showed excellent stability and bright fluores-
cent emission, the micelle was further explored for cell imaging. Before cell imaging, the micelle
was subjected to a cytotoxicity study which revealed low cytotoxicity with 95% cell viability. The
micelle exhibited blue fluorescence upon incubation and blue fluorescence was observed in the
cytoplasm rather than the nucleus. Thus, it was considered a promising candidate for cellular
imaging [103].

Various biological and cell functions are accompanied via the plasma membrane which
is the important building block of a cell. In this regard, Sayed et al. reported photostable
AIE active probe for a plasma membrane imaging study comprising of tetraphenylethylene
naphthalimide (TPE-NIM+). The TPE-NIM+ was used for staining of different cell lines act-
ing as an excellent fluorescent marker [104]. In another example, the polymeric micelle was
fabricated into mesoporous silica hollow nanosphere (MSHN) by Kumar and co-workers.
The polymeric material was synthesized by using AIE-active TPE and triphenylamine by re-
acting with polymer poly (N, N-diphenyl-4-(4-(1,2,2-triphenylvinyl) styryl) aniline) (PTPA)
comprising the D-п-A system which is further incorporated into a mesoporous silica hollow
sphere. With these PTPA-loaded MSHNs, conjugated polymeric nanoparticles were further
investigated for cell imaging application by fluorescent microscopy via internalization of
the probe into the Huh-7 cells, Figure 22 [105].
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Figure 22. Demonstrates the structure of the fluorescent PTPA luminogenic probe. (a) Fluorescent
microscopic images of cells when treated with PTPA-MSHNs (100 µg/mL) for 24 h. In cells marked
as “control”, shows no addition of PTPA-MSHN; BF stands for bright field; to stain the nucleus
DAPI counter stain were used. Scale bar represents 20 µm. (b) Quantification of fluorescence
emitted by Huh-7 cells after treatment with PTPA-MSHNs (100 µg/mL) for 24 h. “Ctrl” represents
cells without treatment of PTPA-MSHN. The symbol (***) represents a significant difference as
compared to untreated control. Reprinted from reference [105] with the permission of the American
Chemical Society.

4. AIE Molecules for Drug Delivery Systems

Nowadays diseases and disorders are increasing at an alarming rate and therefore
proper treatment and dosage of medicine/drugs have become one of the major aspects for
treating disease and improving human health. Drug delivery is defined as the process of
delivering or releasing a drug/bioactive agent to a targeted site at a specific rate. Drug
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delivery is an interdisciplinary field and has gained a lot of attention from many researchers
in pharmaceuticals, medical, doctors, and industries as it plays a major role in delivering
medicine or a drug to its therapeutic site. Cancer is the major cause of death and at
present chemotherapy is frequently used for treatment, but currently there are several
limitations faced such as lack of tumor specificity, few drugs due to poor solubility, higher
toxicity, aggregation due to lack of solubility; nevertheless, few drugs degrade in vivo
before reaching the target site, and sometimes drugs deliver to non-specific sites which
make biotechnology very challenging. Thus, biotechnology has growing demand for
engineering physics, chemistry, biology, and medicine [106]. At present, developments
in biotechnology and various fields are designing and developing a new class of drugs
that play a crucial role in delivering to the targeted site, which is turning out to be a new
advance in clinical diagnosis. Moreover, the field of drug delivery is now developing
rapidly as many researchers from different research fields have combined to overcome the
challenges faced during drug transport.

In the last few decades, several nanocarrier molecules were used as drug delivery
vehicles and considered as an excellent platform to carry different nucleic acids, antibod-
ies, photosensitizers, imaging agents, and anticancer drugs that help in diagnosis and
therapeutics [107]. There are several functionalized nanomaterials, including nanoparti-
cles [108–110], yoctowells models [111–114], Cathepsin [115], polymeric nanoparticle [116]
porphyrin-based nanomaterials [117], quantum dot clusters [118], mesoporous silica parti-
cle (mSiO2) [119–121] magnetic nanoparticles [122], functionalized miscelles [123], cyclodex-
trins [124,125] and so on. Besides all these nanocarriers, there are functionalized AIEgens
which nowadays are extensively used in drug delivery systems [126]. However, many tradi-
tional nanocarriers are invisible making it impossible to undertake intracellular trafficking
which is the limitation on the drug delivery system. Therefore, a nano-drug delivery system
with fluorescence imaging was developed and needed to be promoted [126,127]. Many
fluorophores suffer from ACQ which hampers fluorescence; therefore, the novel AIE active
fluorophore made it possible to overcome the ACQ and was found to be a very promising
application in biomedical application. The AIEgens are not only used for sensing, bioimag-
ing, and diagnosis purposes but the development of AIEgen-based systems has shown
its tremendous application in diseases theranostics, such as image-guided chemotherapy,
photodynamic therapy (PDT), gene delivery, photothermal therapy (PTT), or a combination
of two or more methods [128,129]. The development in drug release mechanism with the
AIEgens is visualized in Figure 23 [130].
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In this regards, Li et al. prepared TPE functionalized organophosphonic acid, (4,4′-
(1,2-diphenylethene-1,2-diyl)bis(4,1phenylene))-bis(methylene diphosphonic acid (PATPE)
with excellent AIE activity [131]. The molecule was further incorporated into HAp, which
is a three-dimensional structure via P–O–Ca covalent bonds forming an ellipsoidal hollow
nano capsule. The following luminescent molecule was fabricated with hydroxyapatite
to give a hollow mesoporous nano capsule emitting strong blue light. The molecule was
used for drug delivery using ibuprofen (IBU) as the drug moiety. The drug release is well
studied by its change in fluorescence intensity. The fluorescence intensity change observed
during loading and release of IBU was monitored by a fluorescence study [131]. Similar
study Soon after that, Xue et al. developed another TPE-based TPE/DOX nanoparticles
(TD NPs) for cancer therapy [132]. Doxorubicin was added to TPE-based NPs in different
proportions (5%, 10%, and 15%) The TD with doxorubicin was successfully fabricated and it
was confirmed by fluorescence studies that the TD NPs exhibited fluorescence of both TPE
as well as of DOX indicating the formation of TD NPs which show weak fluorescence. Thus,
it was further concluded that DOX can be recovered once it has been released from TD NPs.
However, the TD NPs are pH-responsive so that the DOX is released in the lysosomes at
low pH 5.0. Initially, TPE-COOH is negatively charged while DOX is positively charged
which shows the interaction at neutral pH 7.4 to form a nanoparticle. It was observed
that the FL of both TPE and DOX reduces, but a significant change was observed at pH
5.0 as the DOX is released in lysosomes thus making it reversible. Furthermore, TD NPs
were dispersed in acetate buffer at pH 5.0. The fluorescence of DOX slowly returns, which
confirms the detaching nature of DOX from the parent TD NPs. This confirms that TD
NPs and DOX are pH-responsive; as the pH of solution changes from 7.4 to 5.0 FL its
intensity increases which signify that the DOX is released from TPE NPs. Thus, it can
be concluded that DOX can be released to the lysosomal cell at low internal pH [132]. In
addition, Zhang and co-workers developed a new drug delivery system comprising TPE
fabricated with micelle exhibiting excellent AIE activity. This nanocarrier with switching
‘ON’- and ‘OFF’-active mode is controlled by assembly and disassembly of the micelles
with AIE making it more permissible for high-quality imaging. This DDS nanocarrier was
further analyzed for doxorubicin (DOX) release and cellular imaging. It was observed that
DOX-loaded micelles (TPED) had good efficiency compared to free DOX. Upon further
investigation for drug delivery capacity of the DOX-loaded TPE, it was observed that at
low pH 5.0 in lysosomes DOX can be released at low internal pH [133]. Polymeric material
coordinated to TPE also play a significant role in drug delivery. Wang et al. synthesized
TPE zirconium-based nanoscale coordination polymer (TPE-NCPs) exhibiting AIE behavior.
Herein, tetrakis(4-carboxyphenyl) ethylene acid was incorporated into zirconium-based
NCPs. Furthermore, the TPE-NCPs were utilized for drug delivery by taking curcumin
(Cur) as an anticancer drug to study its drug loading and drug release mechanism. How-
ever, for cellular uptake, it is essential to have NCPs with an approximate size of less than
200 nm. Therefore, the NCP with the appropriate size was synthesized at 90 ◦C by using
acetic acid (HAc) as a modulator. As the amount of modulator (HAc) increases gradually
the size of the NCPs also increases (20 µL, 50 µL, 100 µL, 150 µL and 300 µL of HAc). It
was noted that NCP-1-20, NCP-1-50, and NCP-100 of less than 50 nm size and NCP-1-150
form larger sized nanoparticles of 70 nm upon addition of 150 µL of the modulator. There-
fore, NCP-1-150 was used for a drug release and drug-loading mechanism. Initially, the
NCP-1-150 was mixed with Cur in methanol with constant stirring to room temperature
for 12 h. The successful load of the Cur drug was confirmed by the UV absorption study.
The efficiency of the loaded drug in NCP-1-150 was found to be 65%. The drug release
was monitored at 37 ◦C in saline phosphate buffer at pH 7.4 and 5.0. Thus, that a stable
and continuous release of Cur drug from Cur@NCP-1-150 was observed. Around 53.7%
of Cur is released in an acidic buffer system while 40.4% at a neutral PBS system within
96 h. Drug release was further confirmed by the PXRD pattern of the used nano-drug
system. After the release of the drug the structure of the nanocarrier remains stable and
can be applied as an excellent platform for the drug loading and release mechanism [134].
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Chen and co-workers [135] developed pH-responsive polymeric micelles with zwitterionic
copolymer poly(2-methacryloyloxyethylphosphorylcholine-co-2-(4-formyl-phenoxy)ethyl
methacrylate)(poly(MPC-co-FPEMA)) through the AIE active molecule by RAFT polymer-
ization method which converts it to PMPC-hyd-TPE via conjugation with TPE consisting
of acid cleavable hydrazone bonds. Further micelle was loaded with DOX forming the
hydrophobic interaction, as shown in Figure 24. At low pH of 5.0, the TPE moiety linked to
DOX becomes cleaved leaving behind free micelle. The release of drug DOX from TPE-DOX
was studied in the pH range of 7.4 t 5.0. It was observed that at physiological pH, about
20% of DOX was released compared to pH 5.0 where about 70% DOX was free from the
parent PC-hyd-TPE-DOX micelle in 24 h. The self-assembled TPE micelle disassembled
itself under acid conditions through bond cleavage as the DOX release increased. Thus,
this suggests that the micelle acts as an excellent candidature for drug release under an
acidic condition in tumor cells. In addition, the micelle was utilized for cell imaging.
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In vivo drug release monitoring by using AIE-active thermogelling polymer was
carried out by Liow et al. [136] The self-indicating drug delivery system was developed for
long-term monitoring with the following characteristics having an injectable non-invasive
system that can monitor the bulk state of materials without any leaching of fluorescent dye
and further encapsulation of the drug and protein. This thermogelling polymer (EPT) was
synthesized by functionalizing TPE moiety with poly (PEG/PPG/TPE urethane) as shown
in Figure 25. At CMC, the universe self-assembles itself in micelles containing PPG and
TPE as a hydrophobic moiety and PEG as a hydrophilic chain, all forming together the
micelle cluster. The developed PEG, PPG, and TPE is dependent on DOX concentration
and temperature. This AIE-active thermogel is more advantageous than other DDS as the
thermogel matrix can reveal the drug release status. The EPT was found to be non-toxic
and showed high efficacy in reducing the tumor size. Thus, the synthesized gel is a self-
indicator with excellent biocompatibility, thus being a good candidate for in vivo detection
of drug concentration and a drug delivery mechanism.
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Hyaluronic acid (HA) is a naturally occurring polysaccharide found mostly in the
extracellular matrix, epithelial connective tissue widely used in biomedical applications
especially in drug delivery, tissue engineering, and molecular imaging. HA is considered
as a prodrug nanocarrier in combination with DOX, paclitaxel, and mitomycin Cor siRNA
for cancer therapy. In this regard, Wang’s group modified HA with phosphorylcholine in
conjugation with AIE active moiety and DOX system. Usually, the HA forms micelles which
are internalized into cancer cells and the fluorescent ability of AIE active makes it more
possible for the drug delivery process and helps to locate the micelles. However, the hy-
drazone bond cleavage takes place in an acidic environment releasing DOX at the targeted
site [137]. They have developed a self-assembled pH-responsive nanoparticle combined
with the AIE-active phenomenon. The drugs can be delivered and released to a targeted
site at physiological pH which makes DDS be more modified for cytotoxicity with excellent
biocompatibility and cell imaging application. A smart pH-responsive with tadpole-shaped
PEG POSS-(TPE)7 polymer was fabricated by further self-assembling into vesicles and
micelles which consists of hydrophobic TPE fluorophore connected by Schiff base bonds.
The molecule maintains structural integrity at normal physiological pH but under the acidic
condition the aggregated molecules lose their identity. It is noteworthy that caged-shaped
POSS improves the AIE effect by restricting the intramolecular rotation of TPE. The poly-
meric micelle is further encapsulated with antitumor DOX which maintains stability and
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protects leakage in blood circulation, however, at the same time the rapid release of DOX
takes place due to protonation of Schiff base as it gets internalized at the tumor site on the
process of drug release mechanism [138]. Hao and co-workers synthesized an amphiphilic
conjugated polymeric micelle with 1H-pyrrole-1-propionic acid (MAL)-poly(ethylene gly-
col) (PEG)-Tripp-bearing comprising of AIE imaging and Forster resonance energy transfer
(FRET) which self assembles itself to micelle further loaded with DOX drug. The synthe-
sized polymeric micelle has a 106 nm mean size with excellent stability and high drug
loading capacity (10.4%) and 86% encapsulation efficiency. The polymeric micelle consists
of Tripp-COOH hydrophobic and MAL-PEG-Tripp amphiphile becomes trapped in micelle
core during micellar formation. Initially, MAL-PEG-Tripp showed weak fluorescence but
as the fraction of water increases to 99% volume, fluorescent intensity increases 52-fold
which confirms further use in a cell imaging application. However, the DOX-loaded MAL-
PEG-Tripp micelle showed the FRET phenomenon which was used for tracking the drug
release process of DOX-loaded micelle at different pH. It was observed that about 28% of
DOX-loaded MAL-PEG-Tripp micelle releases the drug at pH 7.4 and around 64% at pH 5.5
in 24 h of time. The rate of release of the drug was higher at pH 5.5 (90%) compared to that
of pH 7.4 (35%) which signifies that the drug release of the DOX-loaded MAL-PEG-Tripp
micelle releases the drug at a faster rate at a low pH microenvironment. To study the drug
release change, a fluorescence study was carried out which further confirmed the rapid
decline in emission wavelength of 500–700 nm for acceptor DOX with a gradual increase
in emission wavelength at 470 nm of donor system MAL-PEG-Tripp. This indicated that
the FRET process between the DOX and micelle is weakened with the release of the drug
from the drug-loaded micelle thus making the FRET process possible to use for monitor-
ing the drug release along with the AIE-active phenomenon [139]. Nanodiamond is an
ideal platform for drug delivery because of its unique high surface areas, chemical inert,
biocompatibility, and non-toxicity which is functionalized with therapeutics, proteins, anti-
bodies, DNA, and polymers. Herein, Liu et al. developed a fluorescent nanodiamond for
bioimaging and drug delivery. The synthesized nano-diamond was non-fluorescent which
was further converted to fluorescent nanodiamond by surface medication with AIE active
fluorophore with fluorescent polymer via the Diels-Alder reaction (D-A). The fluorescent
nanodiamond (ND-poly(Phe-PEGMA-IA)) shows good water fluorescence properties with
high water diversity and biocompatibility. However, the nanodiamond can be used as an
excellent fluorescent marker. Thereafter the molecule was loaded with an anticancer drug
(cisplatin, DDP) wherein the controlled release of the drug mechanism can be well studied
under acidic conditions [140]. As discussed earlier, polymeric micelles are in great demand
due to their multifunctional property especially for biomedical applications. Su and co-
workers developed dual responsive prodrug micelle doxorubicin conjugated amphiphilic
PMPC-PAEMA-P (TPE-co-HD)-ss-P(TPE-co-HD)-PAEMA-PMPC copolymer exhibiting an
AIE-active imaging property and charge conversion for chemotherapy and bioimaging
application. The imine conjugated with DOX becomes cleaved under an acidic condition
which is combined with a hydrophobic core along with the glutathione (GSH) disulfide
bond as shown in Figure 26. PAEMA acts as a “gate” that opens in acidic conditions
and helps in the drug release mechanism. The behavior of the drug release mechanism
was investigated for the DOX conjugated prodrug micelle at varying pH with different
concentrations of GSH. It was noted that the micelle showed good stability and at pH 7.4
about 35% of the drug was released from the micelle after 48 h. the conjugated DOX cleaves
the imine linkage at pH 6.0 as the PMAE transforms to hydrophilic status, thus at this pH
after 48 h it releases 80% of the drug. Thereafter due to pH sensitivity and intracellular
redox environment leads to the destruction of the disulfide bond further accelerating drug
release by converting the micellar structure; however, 90% of the drug is released at pH 6.0
and in the presence of 10 mM GSH for 12 h. Thus, this makes it a good candidate for dual
responsive pH and drug release [141].
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Wang et al. reported two color-tunable AIE active conjugated polymers which were
synthesized by Pd-catalysis by the Suzuki coupling polymerization reactions P-1 and P-2,
with P-1 exhibiting intramolecular FRET pair with clear green colored AIE fluorescence and
P-2 with TPE and DTBT moiety turning from green to red fluorescence. This AIE-active
polymer can form stable conjugated polymer nanoparticle which acts as drug carrier of
paclitaxel (PTX) and showed good cytotoxicity on HeLa and A549 cells which internalize
in the cells located with green or red AIE fluorescence. Therefore, this type of AIE-active
CPN acts as a drug carrier of PTX which has a self-indicating property with intramolecular
FRET pairs [142]. Herein, Gao and co-workers constructed the new system with AIE active
carboxylate TPE, benzyl boronic ester (BBE), and prodrug DOX (ABD-system). The ABD
system was slightly emissive in solution state as the FRET mechanism from TPE to DOX
was more prominent. Upon internalization of the ABD system in the cells the cleavage
of the BBE linker takes place along with dissociation of DOX and the TPE unit which
further disrupts the FRET mechanism, thus, making it possible for the nucleus to take up
the released drug with red fluorescence. Thereafter, the TPE aggregate in cellular plasma
exhibited blue fluorescence. The fluorescence changes occurring in blue and red channels
have been well investigated, indicating the release of DOX, Figure 27 [143].

Besides the pH-responsive systems, Shamsipur and coworkers designed dual emissive
fluorescent silver nanoclusters (AgNCs) capped with hemoglobin exhibiting features such
as NC oxidation and AIE enhancement used for drug delivery and cell imaging. The
oxidation and AIE-active nature resulted in ligand to metal charge transfer of the NC in
presence of oxygen, sulfur, and nitrogen that converts Ag(I) ions to Ag(0)@Ag(I)-Hb core-
shell NCs. However, the hyaluronic acid (HA) on the surface of the Hb forms an excellent
platform for doxorubicin drugs such as DOX/HA/AgNCs. This system can be used in
imaging, gene delivery, biosensing, photocatalysis, and electrochemical applications [144].
Metal-organic AIE active vesicles were developed by using triphenylamine carboxylate
as TPA-1@Zn2+ which is considered a multifunctional candidate for cell imaging, drug
loading, and delivery as well as acting as a “turn-on” sensor for detection of Zn2+ ion [46].
Nanomaterial including nanomicelle has potential application in the field of drug delivery.
Qian et.al reported a smart nano delivery system (STD) nanomicelle functionalized with
peptide and AIE active moiety. The synthesized nanocarrier was modified by using ST
which was pH triggered targeting peptide using SKDEEWHKNNFPLSPG sequence and
capase-3 modified with DEVD peptide linker comprising AIE-active TPE moiety. However,
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the TD is the peptide which is a tumor-activated cell-penetrating peptide consisting of
TAT (YGRKKRRDRRC sequence) and 2,3-dimethyl maleic anhydride (DA) which further
keeps the nanocarrier “Stealth and Stable”. The following STD-NM was further utilized
for monitoring drug release at the tumor-targeted site [116]. In addition, DOX-loaded AIE-
active nanoparticles were synthesized by Wang and group in 2019 consisting of AIE-active
polymeric (FTP) nano material via FRET process that has self-indicating capacity for cancer
therapy and utilized for a drug delivery system. In particular, the FTP acts as donor and
DOX acts as acceptor which helps in the investigation of a drug release mechanism in acidic
conditions during the drug delivery process. In the following work, fluorene (FLU) and
TPE were polymerized to give (FLU-TPE). Furthermore, the polyethylene glycol (PEG)
was introduced into FLU-TPE to form FLU-TPE-PEG (FTP). The structure of the polymeric
material is shown in Figure 28 [145].
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Another light activable and AIE-active polymeric nanoparticle for investigation of
drug release mechanism. Wu and coworkers employed Pt (IV) prodrug with AIE ac-
tive fluorophore which was embedded in PtAIECP and DOX further encapsulated with
nanoparticle to give PtAIECP@DOX NP. This nanocarrier activated the prodrug Pt (IV) to
Pt(II) thus releasing the DOX into the cell via the fluorescence “turn-on” approach resulting
in the cleavage of the polymeric linkage. Thus, considered a good platform for Pt (II) as an
anticancer and DOX for intracellular drug release at a particular site. This polyprodrug
acts as a dual drug release mechanism in combination with AIE active phenomenon. In the
reported work, initially upon irradiation a reduction activation process takes place in which
Pt(IV) is converted to Pt(II) which further promotes the Pt(II) and DOX to be dissociated.
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In 1 hour of pre-irradiation, 30% of the Pt and DOX were released making it impossible for
the nanocarrier to release the drug in dark conditions. Accordingly, it represents the switch
ON/OFF effect in the presence of light and dark conditions. Therefore, the drug release
can be investigated by using fluorescent nanoparticles [146].

Dong et al. constructed AIE active self-assembled nanostructure pH/redox with
FRET effect that can be utilized for monitoring the drug delivery and release at a specific
site. The molecule was synthesized by polyamide amine (H-PAMAM) and polyethylene
glycol (PEG) bridged at the periphery by dipropionic acid. Furthermore, this AIE active
molecule was loaded with the anticancer drug DOX. It was observed that H-PAMAM
shows strong fluorescence, while the AIE effect and FRET between H-PAMAM and DOX
help in monitoring the drug release mechanism. As the release of the drug takes place, the
FRET process between the carrier and loaded drug completely disappears. Thereafter, the
host–guest interaction between the PEG and cyclodextrin (α-CD) forms the nanocarrier as
H-PAMAM-ss-mPEG/α-CD abbreviated as (HG/CD) effectively shows both AIE as well
as the FRET process. The rapid and selective release of the drug was well monitored by
using the pH/redox dual-responsive material carrying excellent biocompatibility enabled
the drug carrier tracing, drug release, and chemotherapy [147].

The design and synthesis of multicolored drug carriers have shown significant im-
portance which helps in a self-illuminating drug delivery system. Recently in 2019 Wang
and coworkers developed donor-acceptor conjugated polymer exhibiting AIE activity. In
this work, the conjugated polymers P1, P2, and P3 were synthesized by using AIE active
tetraphenylethylene moiety and donor–acceptor moiety (D-A). The fluorescence character-
istics of all three P1, P2, and P3 can be changed from ACQ to AIE by varying the donor
moiety Figure 29. The Pdots were loaded with PTX drug prepared by precipitation method.
The synthesized Pdots show good stability in the physiological environment. Pdots have
high efficacy, biocompatibility and tumor-targeting capacity [148].
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Li and group designed multifunctional AIE active 4-N,N-dimethylaminoaniline sali-
cylaldehyde Schiff-base with different substituents for an intracellular fluorescence assay,
imaging, and drug delivery system. The functionalized DSS-4-DEA exhibits high cell-
penetrating capacity, which was found to be a more promising fluorescent material. In
addition, the DSS-4-DEA fluorescent probe acts as a transmembrane carrier for enhancing
the internalization of DSS-5-Cl. Furthermore, the DSS-4-DEA is considered an excellent
platform for drug delivery. Here, the fluorescent material is loaded with the anticancer
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drug curcumin (Cur). The Cur has excellent medical effects including anti-inflammatory
and antiproliferative. Since DSS-4-DEA forms the aggregate it can thus be loaded with Cur.
Therefore, the DSS-4-DEA displayed multiple bio applications [149]. Ma and group in the
year 2019 designed a two-photon fluorescent molecule using DOX and conjugated polymer
P(TPMA-co-AEMA)-PEI(DA)-Blink-PEG(PAEEBlink-DA) with an AIE-active property was
synthesized. This fluorescent molecule has potential application in bioimaging and can
be used for theranostic applications. The PEI contains the polyethyleneimine linkage,
dimethyl maleic anhydride (DA), and polyethylene glycol (PEG) which is a bridge to the
PEI chain via benzoyl imine linkage. This polymeric micelle was further loaded with DOX
exhibiting a prolonged-release drug mechanism with bioimaging, and hence considered as
an excellent candidate for enhanced chemotherapeutics delivery [150].

There are several traditional multifunctional drug delivery systems (DDS) with a
fluorescent dye and targeted unit that were synthesized but due to instability and manu-
facturing problems as well as low drug is entrapped. Therefore, in 2020 Ma and cowork-
ers constructed multifunctional DDSs via amphiphilic conjugated β-D-galactose with
tetraphenylethylene (TPE-Gal) micromolecules. Here, TPE acts as a hydrophobic chro-
mophore while the Gal species acts as a targeting ligand which self assembles and helps in
loading water-insoluble paclitaxel (PTX) as well water-soluble DOX anticancer drugs. Thus
pH/b-D-galactosidase DOX loaded TPE-Gal@DOX has good antitumor efficacy compared
to free DOX [151]. Additionally, another multifunctional AIE active 10-phenyphenothizine
(Ph-PTZ) organic fluorescent dye was constructed by using the mesoporous silica nanopar-
ticle with polymeric composite by Huang and co-workers and utilized for the drug delivery
system [152]. Gao et al., constructed donor-acceptor-donor (D-A-D) multicationic AIEgens
methylpyridium unit’s tetra-pyridium-anchored TPCI, bis-pyridium anchored BPCI, and
tetra-ammonium anchored TPCB for unimolecular theranostics application [153]. Zhao
and coworkers synthesized AIE active functionalized polymeric gel with a diselenide
crosslinker. This diselenide crosslinker becomes fragmented due to H2O2 or dithiothreitol
(DTT). However, the following polymeric gel was encapsulated with DOX and can be
used as a good drug carrier with controlled drug delivery and sensing application. Since
the redox process is faster in tumor cells, the drug release is explained well under redox
conditions as the polymeric gel is well utilized as diselenide bond cleavage takes place
for redox stimulus in the tumor environment. Hence, the SeSey-PAA-TPEx can be used
for loading and release [154]. Recently, Li and group constructed and fabricated nanopar-
ticles using a self-assembled strategy. The nanoparticles show excellent dual bioimaging
function by fluorescence imaging and magnetic resonance imaging (MRI) which further
extended their application in targeted cancer therapy. Here, initially the fluorescent vesicle
was coated with MRI active Gd3+ agent which was considered to be highly active as an
anticancer agent. Thereafter, the transferrin (Tf) was coated outside the Gd3+ which made
the nanoparticle nontoxic for cells. However, charge reversion in lysosomes Tf protein
being released makes the nanoparticle toxic and helps in killing the cancerous cells. Thus,
this is considered an excellent candidature for theranostic application, Figure 30 [155].

There are several AIE/AIEE possessing luminophore which has extended its appli-
cation in biomedical applications. So herein Kumar and co-workers have demonstrated
different TPE derivative which has wide application in bioimaging and utilized further for
drug delivery process [156]. Recently Yan et.al designed a drug carrier based on hyaluronic
acid-tetraphenyl ethylene conjugate (HA-SS-TPE) comprising of glutathione (GSH) for drug
delivery. The polymeric micelle was further loaded with DOX, however, the glutathione
helps to release this DOX at the targeted site. The DOX-loaded DOX@HA-SS-TPE com-
pletely suppressed tumor-related growth. The cellular uptake and drug delivery was very
well investigated for the DOX@HA-SS-TPE micelle. Red fluorescence was observed as the
DOX is released at the nucleus. Hence the results demonstrate that the polymeric micelle is
highly effective and helps in the drug release mechanism [157]. Sun and group designed
polymeric multifunctional AIE active redox-sensitive nanocarrier for bioimaging which can
be used for a drug delivery system. The polymeric micelle was synthesized by using AIE
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fluorophore Tripp to methoxy-PEG with a redox-sensitive disulfide bond. Thereafter, the
polymer self assembles to a micelle wherein mPEG proves to be a biocompatible shell for
long-term circulation of blood, and AIE-active fluorophore acts as a fluorescent marker for
cellular imaging and finally loading of hydrophobic DOX. Thus, making the disulfide bond
play a major role in the release of the drug at the targeted tumor site. The drug-loaded
micelle was investigated on 4T1 cells by CCK-8 [158]. Here, another TPE functionalized
polymeric micelle modified chitosan (TPE-bi(SS-CS-Bio) which has good potential for cel-
lular imaging, targeted drug delivery, and controlled release of paclitaxel. The polymeric
micelle has a high drug loading capacity and self assembles into a micelle. The polymeric
micelle is loaded with paclitaxel drug in vitro and a study revealed that the glutathione
micelle disassembles itself. Moreover, the polymeric drug-loaded micelle exhibited excel-
lent cytotoxicity towards the MCF-7 cells. The following polymeric PTX loaded micelle
was investigated for antitumor activity on mice to inhibit tumor growth [159]. Gu and
co-workers designed TPE bases AIE-active soft dots through the self-assembly approach.
The dots TPA-TPE-OEG-N3 were synthesized by using fluorescent core and oligo ethylene
glycol (OEG) chain with azide group which self-assemble into a nanoparticle. Moreover,
these soft AIE active dots were loaded with unmethylated cytosine-phosphate-guanine
(CpG) that induces the immunostimulatory effect of RAW264.7 cells. Here, TPA-TPE acts
as a hydrophobic core, wherein the OEG azide acts as a hydrophilic substitute, and -N3 via
a click reaction reacts to the drug. Therefore, the synthesized probe is an excellent platform
for the drug delivery system [160]. Interestingly, Liu et al. constructed an AIE-active pil-
lar[5]arene [H] based host-guest nanoparticle having an excellent advantage in bioimaging
and drug delivery process [161].
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5. Conclusions and Perspectives

The recent developments in the fluorescent materials in solid and aggregated forms
have shown importance in the different scientific and technological fields, especially
in biomolecular and environmental applications. There are several organic fluorescent
molecules but they suffer from the detrimental phenomenon known as aggregation-caused
quenching. To overcome the ACQ process, the Tang group developed another phenomenon
known as AIE which is now commonly and widely used in many fields. The AIE phe-
nomenon has become an excellent platform for sensing, biological cell imaging, and drug
delivery systems. TPE is the most frequently used luminogen upon functionalization for
various purposes to its AIE phenomenon and mechanochromic properties. Nevertheless,
AIEgens have been widely used in green energy devices and environmental monitoring.
Furthermore, the application can be explored in food safety and quality control which is a
major focus in terms of public health.

Despite remarkable advancement and development in the AIEgens in sensing, cell
imaging, and drug delivery, some challenges should be addressed to find solutions to
remaining hurdles. There are a few disadvantages attributed to them such as multiple-step
synthesis, non-specific features due to binding sites, and non-targeted drug delivery.

To overcome these small issues, the rational design of AIEgens should comprise
specific binding sites, which can be used as receptor/binding sites for high selectivity,
sensitivity towards the particular analyte, along with easy and simple synthetic routes
for design the AIEgens. One more aspect to keep in mind is that the photostability and
solubility for a specific application, thus, there is a need for simple and cost-effective
strategies to be employed. Therefore, given these facts fluorescent materials need more
attention in terms of good stability with varying functionalities.

In conclusion, we have focused on the most recent AIEgens and their potential ap-
plication in the field of sensing, cell imaging, and biomedical application, especially in
drug delivery systems. Although several luminogens have been successfully employed
limits to their application remain and they are yet to be exploited. In this review, we have
described briefly the different AIE-active molecules especially TPE, pyrene, salicylalde-
hyde organic dye, metal-organic framework, polymeric micelles for sensing of essential,
non-/toxic metal ions, and anions. This review also describes AIE luminogens for cell
imaging and drug delivery systems. Selectivity and specificity are most important factors
considered in biomedical application which can be achieved by combining the target-
specific moiety to AIE active chromophore. Thus, distinct properties of AIEgens make them
available for sensing, cell imaging and theranostic application. However, more insightful
research in the field of AIE-active materials is required for further application in the field of
supramolecular chemistry.

Even though AIEgens has extended its application in cell imaging and drug delivery
systems, there are many problems still to overcome, for example, short wavelengths absorption,
non-optimized emission, and broad emission spectrum which restricts its usage in biomedical
applications. To overcome the aforementioned problems, the multiphoton absorption, harmonic
generation, and up-conversion methods should be constantly employed.
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