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Abstract

Continuum elastic models that account for membrane thickness variations are especially useful in the description of
nanoscale deformations due to the presence of membrane proteins with hydrophobic mismatch. We show that terms
involving the gradient and the Laplacian of the area per lipid are significant and must be retained in the effective
Hamiltonian of the membrane. We reanalyze recent numerical data, as well as experimental data on gramicidin channels, in
light of our model. This analysis yields consistent results for the term stemming from the gradient of the area per molecule.
The order of magnitude we find for the associated amplitude, namely 13–60 mN/m, is in good agreement with the 25 mN/
m contribution of the interfacial tension between water and the hydrophobic part of the membrane. The presence of this
term explains a systematic variation in previously published numerical data.
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Introduction

As basic constituents of cell membranes, lipid bilayers [1] play

an important role in biological processes, not as a passive

background, but rather as a medium that responds to and

influences, albeit in a subtle way, the behavior of other membrane

components, such as membrane proteins [2]. The coupling

between the lipid bilayer and guest molecules does not occur by

the formation of chemical bonds, but rather by a deformation of

the membrane in its entirety. To describe it, one must resort to

concepts developed in soft matter physics for the understanding of

self-assembled systems.

At length scales much larger than their thickness, the elasticity

of lipid bilayers is well described by the Helfrich model [3].

However, nanometer-sized inclusions, such as membrane proteins,

deform the membrane over smaller length scales. In particular,

some transmembrane proteins have a hydrophobic part with a

thickness slightly different from that of the hydrophobic part of the

membrane. Due to this hydrophobic mismatch, the hydrophobic

core of the membrane locally deforms [4–6]. As this deformation

affects the thickness of the membrane, and as its characteristic

amplitude and decay length are both of a few nanometers [7], it

cannot be described using the Helfrich model. In fact, since the

range of such deformations is of the same order as membrane

thickness, one can wonder to what extent continuum elastic

models in general still apply, and what level of complexity is

required for an accurate description. In particular, which terms

must be retained in a deformation expansion of the effective

Hamiltonian?

Experimental data is available for the gramicidin channel [8], a

transmembrane protein formed by two protein monomers. The

channel being large enough for the passage of monovalent cations,

conductivity measurements [9] can detect its formation and

lifetime, which are directly influenced by membrane properties.

The gramicidin channel can therefore act as a local probe for

bilayer elasticity on sub-nanometer scales (see, e.g., Ref. [10]).

Motivated by this opportunity, sustained theoretical investigations

have been conducted in order to construct a model describing

membrane thickness deformations [7,11–13]. Recently, detailed

numerical simulations have been performed, giving access both to

the material constants involved in elastic models and to the

membrane shape close to a mismatched protein [14–16]. This

numerical data provides a good test for theoretical models.

In this article, we put forward a modification to the models

describing membrane thickness deformations. We argue that

contributions involving the gradient (and the Laplacian) of the

area per lipid should be accounted for in the effective Hamiltonian

per lipid from which the effective Hamiltonian of the bilayer is

constructed, following the approach of Refs. [12,13]. We show

that these new terms cannot be neglected, as they contribute to

important terms in the bilayer effective Hamiltonian. We discuss

the differences between our model and the existing ones. We

compare the predictions of our model with numerical data giving

the profile of membrane thickness close to a mismatched protein

[14–16], and with experimental data on gramicidin lifetime [17]

and formation rate [18].

Results: Membrane Model

We consider a bilayer membrane constituted of two identical

monolayers, labeled by z and {, in contact with a reservoir of

lipids with chemical potential m. We write the effective Hamilto-
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nian per molecule in monolayer + as

f +
m ~

1

2
f ’’0(S+{S0)2+f1 H++f ’1(S+{S0)H+zf2 (H+)2

zfK K+za (+S+)2zb+2S+zf (+2S+)2{m ,

ð1Þ

where S+ is the area per lipid, while H+ is the local mean

curvature of the monolayer, and K+ is its local Gaussian

curvature (denoting by c+1 and c+2 the local principal curvatures

[19] of the monolayer, we have H+~(c+1 zc+2 )=2 and

K+~c+1 c+2 ). All these quantities are defined on the hydrophilic-

hydrophobic interface of each monolayer. Eq. 1 corresponds to an

expansion of f +
m for small deformations around the equilibrium

state where the membrane is flat and where each lipid has its

equilibrium area S0. Any constant term in the free energy per lipid

is included in a redefinition of the chemical potential m. From now

on, we will consider small deformations of an infinite flat

membrane and we will work in the Monge gauge, so

H+^+2h+=2 and K+^L2
xh+L2

yh+{(LxLyh+)2~ det (LiLjh
+),

where z~h+(x,y) represents the height of the hydrophilic-

hydrophobic interface of each monolayer with respect to a

reference plane (x,y). The upper monolayer is labeled by z and

the lower one by {. Many constants involved in Eq. 1 can be

related to the constitutive constants of a monolayer: f ’’0 S0~Ka=2
is the compressibility modulus of the monolayer, f2=(2S0)~k0=2
is its bending rigidity, fK=S0~�kk=2 is its Gaussian bending rigidity,

f1=f2~c0 is its spontaneous (total) curvature, and f ’1=f2~c’0 is the

modification of the spontaneous (total) curvature due to area

variations (see Methods, Sec. 1.1).

In the case where a~b~f~0, Eq. 1 is equivalent to the model

of Ref. [19], which is the basis of that developed in Refs. [12–15].

To our knowledge, existing membrane models including the area

per lipid (or, equivalently, the two-dimensional lipid density) do

not explicitly feature terms in the gradient, or Laplacian, of this

variable [20]. The possibility of an independent term proportional

to the squared thickness gradient was however suggested on

symmetry grounds in Ref. [21], while pointing that it could arise

from the specific cost of modulating the area per lipid (see note (18)

in Ref. [21]). In the present work, we show that the terms in a, b

and f cannot be neglected with respect to others. We focus on the

influence of a, for which we provide a physical interpretation, and

we will set b~f~0 in the body of this article in order to simplify

our discussion and to avoid adding unknown parameters.

However, the derivation of the membrane effective Hamiltonian

is presented in Secs. 1.1–1.2 of our Methods part, in the general

case where a, b and f are all included.

The effective Hamiltonian of a bilayer membrane patch with

projected area Ap at chemical potential m can be derived from Eq.

1. For this, the effective Hamiltonians per unit projected area of

the two monolayers are summed, taking into account the

constraint that there is no space between the two monolayers of

the bilayer, and assuming that the hydrophobic chains of the lipids

are incompressible. This derivation is carried out in Sec. 1.1 of our

Methods part. It results in an effective Hamiltonian of the bilayer

membrane that depends on three variables: the average shape

h~(hzzh{)=2 of the bilayer, the sum u of the excess

hydrophobic thicknesses of the two monolayers, each being

measured along the normal to the monolayer hydrophilic-

hydrophobic interface (see Fig. 1 and Eqs. 26–29), and the

difference d between the monolayer excess hydrophobic thick-

nesses. (The excess hydrophobic thickness of a monolayer is

defined as the hydrophobic thicknesses of this monolayer minus its

equilibrium value.)

In the present work, we are not interested in the degree of

freedom d, which is not excited in the equilibrium shape of a

membrane containing up-down symmetric mismatched proteins

(see see Fig. 1B). Hence, in Sec. 1.2 of our Methods part, we

integrate d out, which amounts to minimizing f with respect to d
since our theory is Gaussian. The resulting effective Hamiltonian,

which involves h and u, is given by Eq. 32 in Sec. 1.2 of our

Methods part. In this effective Hamiltonian, the variables h and u

are decoupled, and the part depending on h corresponds to the

Helfrich Hamiltonian [3]. Hence, our model gives back the

Helfrich Hamiltonian if the state of the membrane is described

only by its average shape h (see Methods, Sec. 1.3).

Here, we focus on variations of the membrane thickness, i.e., on

the variable u. We thus restrict ourselves to the case where the

average shape h of the membrane is flat (see Fig. 1B). In this case,

we obtain, from Eq. 32:

Figure 1. Definitions. A) Cut of a bilayer membrane. The solid black lines mark the boundaries of the hydrophobic part of the membrane, and the
exterior, which is shaded in blue, corresponds to the hydrophilic lipid heads and the water surrounding the membrane. The hydrophobic thickness,
defined along the normal to the hydrophobic-hydrophilic interface, of the upper (resp. lower) monolayer, shaded in orange (resp. yellow), is
uzzd0=2 (resp. u{zd0=2). The height of monolayer + along z is denoted by h+. The average membrane shape, h~(hzzh{)=2, is represented as
a red dashed line. B) Cut of a bilayer membrane (with hydrophobic part shaded in yellow) containing a protein with a hydrophobic mismatch (orange
square). The equilibrium hydrophobic thickness of the bilayer is d0, while the hydrophobic thickness of the protein is ‘. The average shape of the
membrane is flat, and the thickness deformations of the two monolayers are identical (uz~u{~u=2). Hence, the average shape h is constant, and
confounded with the midlayer of the membrane. Although u+ is defined along the normal to the monolayer hydrophilic-hydrophobic interface, the
boundary condition at the inclusion edge, i.e., in r~r0 , simply reads u(r0)~u0~‘{d0 to first order (see main text, Section entitled ‘‘Deformation
profiles close to a mismatched protein’’).
doi:10.1371/journal.pone.0048306.g001
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f ~
s

d0
uz

Ka

2d2
0

u2z
K ’a
2

(+u)2z
K ’’a
2

(+2u)2

zA1 +2uzA2 +:(u+u)z
�kk

4
det (LiLju) :

ð2Þ

In the case where b~f~0, on which the body of this article

focuses, the various constants introduced in Eq. 2 read:

s~{
2m

S0

, ð3Þ

K ’a~{
k0

d0
(c0{c’0S0)zk’az

s

4
, ð4Þ

K ’’a~
k0

4
, ð5Þ

A1~
k0 c0

2
, ð6Þ

A2~
k0

2d0
(c0{c’0S0) : ð7Þ

In these equations, d0 denotes the equilibrium hydrophobic

thickness of the bilayer membrane, s plays the part of an

externally applied tension (see Methods, Sec. 2), Ka is the

compressibility modulus of the membrane, �kk is its Gaussian

bending rigidity, k0 is the bending rigidity of a symmetric

membrane such that d~0, c0 is the spontaneous (total) curvature

of a monolayer, and c’0 is the modification of this spontaneous

curvature due to area variations. In addition, we have introduced

k’a~4aS0=d2
0 , which has the dimension of a surface tension, like

Ka. Note that the last three terms in Eq. 2 are boundary terms.

In Sec. 1.2 of our Methods part, the expressions of K ’a, K ’’a, A1

and A2 are provided in the more general case where b and f are

included.

We wish to describe a membrane with an equilibrium state that

corresponds to a homogeneous thickness. A linear stability analysis

(presented in Sec. 1.4 of our Methods part) shows that the flat

shape is stable if Kaw0, K ’’aw0, and

K ’aw{2

ffiffiffiffiffiffiffiffiffiffiffiffi
KaK ’’a
p

d0
: ð8Þ

Discussion

Comparison with existing models
Our model Eq. 2 has a form similar to that of the models

developed in Refs. [12–15]. However, it differs from these

previous models on several points. First, our definition of u is

slightly different. Second, we have included the effect of an applied

tension s. Finally, the various constants in Eq. 2 have different

interpretations, and thus different values, from the ones in the

existing models. Let us discuss these points in more detail.

On the definition of u. In the present work, the variable u,

which is the relevant one to study membrane thickness deforma-

tions, is defined as the sum of the excess hydrophobic thicknesses

of the two monolayers, each being measured along the normal to

the monolayer hydrophilic-hydrophobic interface (see Eqs. 26–29

in the Methods section). This definition of u has the advantage of

being independent of deformations of the average membrane

shape h.

The excess thickness variable used in Refs. [7,12–15,18,22,23]

reads in our notations:

�uu~
hz{h{{d0

2
: ð9Þ

Using Eqs. 9 and 25, and working to second order, we obtain

2�uu~u{
d0

2
(+h)2z

(+u)2

4

" #
, ð10Þ

which shows that there is a second-order difference between 2�uu
and our variable u. Consequently, the difference between the

definition used in the previous works and ours regards only the

term linear in u, i.e., the tension term, which was not included in

these works. At zero applied tension, the two definitions are

equivalent, i.e., it is equivalent to use u or 2�uu. Our definition of u is

the right one for rigorously taking tension into account, because it

is independent of deformations of the average membrane shape h:

the energy stored in the variable u only comes from thickness

variations. (The variable �uu of Refs. [7,12–15,18,22,23] corre-

sponds to the difference between the bilayer hydrophobic thickness

projected along z and the non-projected equilibrium hydrophobic

bilayer thickness (see Eq. 9), so it is not independent of h. The

second-order difference between 2�uu and u, which is shown in Eq.

10, arises from this difference in projection between actual

thicknesses and equilibrium thicknesses within the definition of �uu.)

On tension. First of all, existing models [7,12–15,18,22] were

constructed at zero applied tension, which means s~0 in Eq. 2.

To our knowledge, our work is the first where the coefficient of the

term linear in u is explicitly related to the applied tension (see

Methods, Sec. 2) and to the tension of the Helfrich model (see

Methods, Sec. 1.3).

In Ref. [18], the effect of applied tension is taken into account,

in so far as it changes the equilibrium membrane thickness of a

homogeneous membrane, but without being fully implemented in

the elastic model. Our more complete description gives back this

effect on membrane thickness, when it is applied to the particular

case of a homogeneous membrane (see Methods, Sec. 2).

On the constant K ’a. In our model, the constant K ’a features

three contributions with different origins (see Eq. 4).

The first contribution arises from the spontaneous curvature of

a monolayer and from its variation with the area per lipid. More

precisely, the term

k0

2d0
(c0{c’0S0)u+2u~

k0

2d0
(c0{c’0S0) +:(u+u){(+u)2

� �
ð11Þ

appears when one constructs the membrane model starting from a

monolayer Hamiltonian density such as Eq. 1. This term was first

introduced in Ref. [12], and it was then included in Refs. [13,14].

The second contribution, k’a, arises from a, i.e., from the term in

(+S)2 introduced in Eq. 1. This term was not included in Refs.

[12–14], which started from a second-order expansion of the

effective Hamiltonian per lipid molecule involving only the

curvature and the area per lipid. However, a gradient of area

per lipid (or, equivalently, of the thickness) in a monolayer has an

Bilayer Elasticity at the Nanoscale
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energetic cost of its own. Indeed, a greater part of the hydrophobic

chains is in contact with water when a thickness gradient is present

(see Fig. 2). The associated energetic cost is given by the interfacial

tension c of the hydrocarbon-water interface, which is of order 40–

50 mN/m [24,25]. Such a term is often accounted for in

microscopic membrane models (see, e.g., Ref. [26]). In the case

of a symmetric membrane (uz~u{~u=2) with flat average

shape, the surface of the hydrocarbon-water interface is increased

by a factor ½1z(+u)2=8� for each monolayer (see Fig. 2). Thus, to

second order, the associated energetic cost per unit projected area

is c(+u)2=4. Note that other physical effects, e.g., the elasticity of

the chains, may yield contributions to the term in (+S)2. However,

if we restrict to the simple term arising from interfacial tension, we

obtain

k’a~
c

2
&25mN=m : ð12Þ

Finally, the third contribution, s=4, arises from the (macro-

scopic) externally applied tension. The tension of a vesicle can rise

only up to a few mN/m before it bursts (see, e.g., Ref. [18]).

Hence, according to our estimate of k’a in Eq. 12, we expect

s=4%k’a.

In the seminal article Ref. [7], where the membrane model was

constructed by analogy with liquid crystals, a term in (+u)2,

interpreted as arising from tension, was included in the effective

Hamiltonian. However, its effect was neglected on the grounds

that the value of its prefactor made it negligible with respect to the

other terms. The value of this prefactor was taken to be that of the

tension of a monolayer on the surface of a Plateau border [27].

The model introduced in Ref. [7] was further developed and

analyzed in Refs. [18,22], where the same argument was used to

neglect the term in (+u)2.

However, our construction of the membrane effective Hamil-

tonian shows that the microscopic tension involved through k’a
arises from local variations in the area per lipid. This stands in

contrast with the case of the Plateau border, where whole

molecules can move along the surface and exchange with the bulk,

yielding a smaller value of the tension. Ref. [27] stresses that the

measured tension of a Plateau border is valid for long-wavelength

fluctuations, but that it is largely underestimated for short-

wavelength fluctuations (less than 10 nm) which involve significant

changes in area per molecule.

Including the tension of the hydrocarbon-water interface

instead of that of the Plateau border is a significant change, given

that the former is of order 40–50 mN/m [24,25], while the latter is

of order 1.5–3 mN/m [7,18,22,27]. In Refs. [18,22], it is shown

that the effect of the term in (+u)2 is negligible if

K ’a%
ffiffiffiffiffiffiffiffiffiffiffiffi
KaK ’’a
p

d0
, ð13Þ

where we have used our own notations of the prefactors of the

terms in (+u)2, u2 and (+2u)2. In the case of DOPC, taking

K ’’a~k=4 and using the values of the membrane constants [28],

this condition becomes K ’a%28mN=m. While this is well verified

if K ’a corresponds to the tension of the Plateau border, it is no

longer valid within our model.

Our model is the first that includes all contributions to K ’a, in

particular the one arising from interfacial tension. Besides, in Sec.

1.2 of our Methods part, we show that b is also involved in K ’a,

which emphasizes the complexity of constructing a continuum

model to describe membrane elasticity at the nanoscale: many

terms involved in the expansion of the effective Hamiltonian

cannot be neglected a priori.

In the following, we will analyze numerical and experimental

data, looking for evidence for the presence of k’a, and comparing

the relative weight of the different contributions to K ’a.

On the value of K ’’a. We have obtained K ’’a~k0=4 (see Eq.

5), where k0 is the bending rigidity of a symmetric membrane such

that d~0. The elastic constant k0 is related to the bending rigidity

k of the Helfrich model (see Methods, Sec. 1.3) through

k~k0{
k2

0

Ka

(c0{c’0S0)2 : ð14Þ

The difference between k0 and k arises from integrating out d (see

Methods, Sec. 1.2). In the previous models, this procedure was not

carried out, as one focused directly on the symmetric case d~0.

All previous models thus made the approximation K ’’a~k=4
[7,12–14,18,22].

In addition, in Sec. 1.2 of our Methods part, we show that f is

also involved in K ’’a, which stresses further the possible importance

of such terms in order to describe membrane elasticity at the

nanoscale.

On boundary terms. The boundary terms correspond to the

last three terms in Eq. 2. When one wishes to describe the local

membrane deformation due to a transmembrane protein,

boundary terms play an important part, as their integral on the

contour of the protein contributes to the deformation energy. The

Figure 2. Thickness gradient. Cut of a bilayer membrane with a
symmetric thickness gradient. The dashed blue lines correspond to the
hydrocarbon-water interfaces.
doi:10.1371/journal.pone.0048306.g002
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first two boundary terms are the same as in Refs. [12–14].

However, even at vanishing applied tension, we have K ’a={2A2,

contrary to the previous models [14], due to the presence of k’a.

We have also accounted for the Gaussian bending rigidity �kk, as in

Ref. [15]: it yields the third boundary term.

Again, the situation is more complex when b is included, as the

expressions of A1 and A2 then feature extra terms linear in b (see

Eq. 37 in Sec. 1.2 of our Methods part).

On lipid tilt. Several membrane models including lipid tilt in

addition to average shape deformations and/or thickness defor-

mations have been elaborated [21,23,26,29–31]. These models

provide improvements with respect to the Helfrich model, yielding

better agreement with numerical data on bulk membranes [23,31].

Our model does not include lipid tilt because we focus on local

thickness deformations, and especially on comparison to experi-

mental and numerical data regarding deformations induced by

mismatched proteins. While it would be interesting to include this

extra degree of freedom, it would imply introducing several

membrane parameters, which would make comparison to

mismatch data impractical.

Not taking tilt into account means that we are effectively

integrating out this degree of freedom through coarse-graining.

More precisely, the elastic coefficients of a more detailed

membrane model, which would include tilt as an extra degree of

freedom, would be renormalized by integrating out tilt. This

means that tilt is included within the elastic coefficients of our

membrane model. In addition, the interaction energy between the

membrane and a mismatched inclusion (see, e.g., Eq. 15), and,

consequently, the effective boundary conditions at the inclusion

boundary, may involve tilt (see, e.g., Ref. [21]). In this interaction

energy, tilt can be integrated out in the same way as in the bulk

membrane energy. Hence, we are not losing any part of the elastic

energy by disregarding the tilt degree of freedom. However, it is

not impossible that a model including tilt truncated at second

order could prove more efficient (e.g., have a wider domain of

validity at short wavelengths) than one truncated at the same order

and disregarding tilt.

Comparison with numerical results
As numerical simulations become more and more realistic, they

start providing insight into the behavior of systems on the

microscopic scale where direct experimental observation is

difficult. Lipid membranes (with or without inclusions) are no

exception. Over the last decade, several groups have simulated

bilayer systems over length- and time-scales long enough to give

access to the material constants relevant for nanoscale deforma-

tions. These simulations provide interesting tests for theoretical

models describing membrane elasticity at the nanoscale. We will

compare the predictions of our model to recent numerical results

in this Section. All the numerical results we will discuss have been

obtained at zero applied tension. Hence, throughout this section,

we take s~0. This implies that our definition of the membrane

thickness is equivalent to that considered in the original numerical

works (see the discussion above on the definition of u).

Fluctuation spectra. Using numerical simulations, one can

measure precisely the fluctuation spectra of the average height and

the thickness of a bilayer membrane [14,16,32,33]. Microscopic

protrusion modes, occurring at the scale of a lipid molecule,

contribute to these spectra. While they are not described by

continuum theories, it is possible to consider that they are

decoupled from the larger-scale modes [14,16]. By fitting the

numerical spectra to theoretical formulas, it is possible to extract

the numerical values of the membrane constants involved in the

continuum theory. In our framework, the fluctuation spectra of the

average height of the membrane give access to the Helfrich

bending rigidity k, while those regarding the thickness of the

membrane give access to Ka, K ’a and K ’’a.

We have reanalyzed the height and thickness spectra presented

in Refs. [16,32,33] using the fitting formulas in Refs. [14,16] (see

Eq. 32 of Ref. [14]) and the method described in Ref. [14], except

that we did not assume that K ’’a~k=4, in order to include the

possible effect of the difference between k and k0 (see Eq. 33), and

of f (see Eq. 35). Our results were similar to those obtained in Refs.

[14,16] assuming that K ’’a~k=4, and we obtained no systematic

significant difference between K ’’a and k=4, which means that the

corrections to K ’’a predicted by our model are negligible in these

simulations. This gives a justification for focusing only on the

correction to K ’a, as we do in this article. Besides, we obtained

K ’av0 from all the fits, as reported in Refs. [14,16], and we

checked that all the values obtained for K ’a comply with the

stability condition Eq. 8.

Deformation profiles close to a mismatched protein. In

Refs. [14–16], the thickness profile of a membrane containing one

cylindrical inclusion with a hydrophobic mismatch has been

obtained from coarse-grained numerical simulations. Comparing

the average numerical thickness profiles to the equilibrium profiles

predicted from theory is a good test for our model, in particular to

find clues for the presence of k’a.

Let us denote the radius of the protein by r0, and its

hydrophobic length by ‘: the mismatch originates from the

difference between ‘ and the equilibrium hydrophobic thickness d0

of the membrane. The equilibrium shape of the membrane, which

minimizes its deformation energy, is solution to the Euler-

Lagrange equation associated with the effective Hamiltonian

density in Eq. 2. We write down this equilibrium shape explicitly

in Sec. 3.1 of our Methods part. In order to determine it fully, it is

necessary to impose boundary conditions at the edge of the

inclusion, i.e., in r~r0. There is a consensus on the assumption of

strong hydrophobic coupling u(r0)~u0~‘{d0, as it costs more

energy to expose part of the hydrophobic chains to water than to

deform the membrane, for typical mismatches of a few Å. Note

that, with our definition of u, the condition u(r0)~u0~‘{d0 is

valid to first order, while it is exactly valid with the definition of

Refs. [7,12–15,18,22,23] (see Eqs. 9, 10). This difference arises

from the fact that our u is not projected along z (see Fig. 1), which

makes it fully independent of h. Given that the elastic energy is

known to second order, the equilibrium membrane shape resulting

from its minimization is known to first order, so it is sufficient to

use boundary conditions to first order. Hence, such differences are

not relevant for the present study and will not be mentioned any

longer.

However, there is some debate about the second boundary

condition in r0 (see, e.g., Ref. [14]), which regards the slope of the

membrane thickness profile. Traditionally, one either assumes that

the protein locally imposes a fixed slope to the membrane [18,22],

or minimizes the effective Hamiltonian in the absence of any

additional constraint, which amounts to considering that the

system is free to adjust its slope in r~r0 [12–16]. In Sec. 3.1 of our

Methods part, we present the equilibrium profiles for these two

types of boundary conditions. The actual boundary condition

depends on the interactions between the protein and the

membrane. In a quadratic approximation, these interactions

generically give rise to an effective potential fs favoring a slope s0

in r0:

fs~ks u’(r0){s0ð Þ2 , ð15Þ

where ks is an effective rigidity, while u’ denotes the derivative of
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the membrane thickness profile u with respect to the radial

coordinate r. Two a priori unknown parameters, ks and s0, are

associated with this effective potential. The ‘‘free-slope’’ boundary

condition (also called ‘‘natural’’ boundary condition [12,14]) is

recovered in the limit ks?0, which is appropriate if fs is negligible

with respect to the energetic contributions in f . Conversely, if

ks??, the protein locally imposes the fixed slope s0. If the

interactions between the protein and the membrane lipids are

sufficiently short-ranged, the protein cannot effectively impose or

favor a slope on the coarse-grained membrane thickness profile.

For instance, in the numerical simulations of Refs. [14–16], the

interactions between the protein and the membrane lipids are of

similar nature and of similar range as those between membrane

lipids. Thus, we will choose the free-slope boundary condition in

our analysis of this data. This choice was already made in Refs.

[14–16]. A practical advantage of this boundary condition is that it

does not introduce any unknown parameter in the description.

The membrane model of Refs. [14–16] is very similar to ours,

except that k’a~0. It was shown in Ref. [16] that this model can

reproduce very well the numerical results, provided that the spontaneous

curvature is adjusted for each deformation profile (see Fig. 3). In Ref. [16],

the adjusted ‘‘renormalized spontaneous curvature’’, denoted by

~cc0, was found to depend linearly on the hydrophobic mismatch u0

[16], as shown in Fig. 4. In our model, the equilibrium profile

corresponding to the free-slope boundary conditions (see Eqs. 46

and 53) involves k’a. We show in Sec. 3.1 of our Methods part that

the quantity

~cc0~c0z
k’a
k

u0 , ð16Þ

then plays the part of the renormalized spontaneous curvature of

Ref. [16] in the equilibrium profile. This quantity is linear in u0:

our model, and more precisely the presence of a nonvanishing k’a,

thus provides an appealing explanation for the linear dependence

observed in Ref. [16].

Using a linear fit of the data of Ref. [16] (see Fig. 4), together

with Eq. 16 and the value k~2:3|10{20 J extracted from the

spectra in Ref. [16], we obtain k’a~13mN=m.

It is interesting to compare this value to K ’a, which is obtained

from the fluctuation spectra in Ref. [16]: K ’a~{9:2mN=m. This

shows that the contribution of k’a to K ’a is important. Besides, we

may now estimate the contribution to K ’a that stems from the

monolayer spontaneous curvature (see Eq. 4):

{k0(c0{c’0S0)=d0~K ’a{k’a~{22mN=m. Using values from

the fluctuation spectra in Ref. [16], this yields j&{6A for the

algebraic distance from the neutral surface of a monolayer to the

hydrophilic-hydrophobic interface of this monolayer (see Methods,

Sec. 4 for the relation between j and c’0).

In Ref. [15], a different coarse-grained molecular simulation

model was used to obtain the equilibrium membrane thickness

profiles for cylindrical inclusions with two different hydrophobic

thicknesses, one yielding a positive mismatch and the other a

negative one, and with seven different radii r0. These profiles are

presented in Figs. 6 and 7 of Ref. [15], except those corresponding

to the inclusions with largest radii (5.25 nm), but this data was

communicated to us by one of the authors of Ref. [15]. We fitted

each of these numerical profiles to the analytical equilibrium

profile Eq. 46 with prefactors A+(0,~cc0) (see Eq. 54), using ~cc0 as

our only fitting parameter, in the spirit of Ref. [16]. We found that

~cc0 does not depend on the radius of the inclusion, but that it

depends significantly on the mismatch (see Fig. 4A). This is in good

agreement with the predictions of our model (see Eq. 16). For each

of the two values of u0, we have averaged ~cc0 over the seven results

corresponding to the different inclusion radii. The line joining

these two average values of ~cc0 as a function of u0 is plotted in

Fig. 5B. Using Eq. 16 and the value k~1:4|10{19 J [14,15], the

slope of this line yields k’a~36mN=m: the order of magnitude of

this value is the same as the one obtained from the data of Ref.

[16].

Again, we can compare this value to K ’a, which is obtained from

the fluctuation spectra in Refs. [14,15]: K ’a~{11:9mN=m.

Hence, the contribution of k’a to K ’a is important here too. We

also obtain {k0(c0{c’0S0)=d0~K ’a{k’a~{48mN=m, and

j&{3A.

In Ref. [15], the shortcomings of the model that disregards k’a
are explained by the local variation of the volume per lipid close to

Figure 3. Thickness deformation due to a mismatched
inclusion. Membrane thickness profile from Ref. [16] in the vicinity
of a mismatched inclusion with hydrophobic thickness ‘^2:4nm and
radius r0~9A, with center in r~0, as a function of the radial coordinate
r. The equilibrium membrane hydrophobic thickness is d0^3:6nm. The
unit of length on the graph is 6 Å, as in Ref. [16]. Dots: numerical data
(the error bars on the data, not reproduced here, are about 1 Å wide
[16]). Line: best fit. Exactly as in the original reference, the numerical
data is fitted to Eqs. 46–53 with k’a~0, taking u0 and the (renormalized)
spontaneous curvature ~cc0 as fitting parameters, the other constants
being known from the fluctuation spectra.
doi:10.1371/journal.pone.0048306.g003

Figure 4. Renormalized spontaneous curvature ~cc0 as a function
of the hydrophobic mismatch u0. Data from Ref. [16], which
presents fits of simulation results for inclusions with three different
hydrophobic thicknesses. Line: linear fit, with slope (0:56+0:02)nm{2 .
Note that our ~cc0 corresponds to twice that in Table 2 of Ref. [16], as we
work with total curvatures instead of average curvatures. The error bars
on ~cc0 are those listed in that table, and u0 corresponds to 2tel

R in that
table.
doi:10.1371/journal.pone.0048306.g004
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the protein. It is shown in Ref. [15] that including this effect yields

~cc0~c0{
g

v0
v(r0) , ð17Þ

where v0 is the bulk equilibrium volume per lipid, while v0zv(r0)
denotes the volume per lipid in r~r0. However, the predicted

linear dependence of ~cc0 in v(r0)=v0 is not obvious: in Fig. 6, we

rather see two groups of points (one for each value of u0) than a

linear law. In other words, the data of Ref. [15] is more consistent

with a value of ~cc0 that depends only on u0 and not on v (or r0), in

agreement with the predictions of our model (see Eq. 16). In Ref.

[16], local modifications of the volume per lipid close to the

inclusion were investigated too, as well as local modifications of the

nematic order, of the shielding of the hydrophobic membrane

interior from the solvent, and of the overlap between the two

monolayers. None of these effects was found to explain satisfac-

torily the linear dependence of ~cc0 versus u0 [16].

To sum up, our model can explain the dependence of ~cc0 in u0

observed in the numerical results of Refs. [15,16] as a consequence

of the presence of k’a. Our explanation does not involve any local

modification of the membrane properties, in contrast with those

proposed in Refs. [15,16]. Furthermore, the order of magnitude

we obtain for k’a from the data of Refs. [15,16] is in agreement

with our estimate in Eq. 12.

Comparison with experimental results
The antimicrobial linear pentadecapeptide gramicidin (see [8]

for a review) is a very convenient experimental system to probe

membrane elasticity on the nanoscale. In lipid membranes, two

gramicidin monomers (one in each monolayer) associate via the N-

terminus to form a dimeric channel, stabilized by six intermolec-

ular hydrogen bonds. The channel being large enough for the

passage of monovalent cations, conductivity measurements [9] can

detect its formation and lifetime, which are directly influenced by

the membrane properties. Indeed, while the monomers do not

deform the membrane, the dimeric channel presents a hydropho-

bic mismatch with the membrane, so that dimer formation

involves a local deformation of the bilayer. The gramicidin

channel can therefore act as a local probe for the bilayer elasticity.

Furthermore, the gramicidin channel can be considered as up-

down symmetric and cylinder-shaped, which makes it convenient

for theoretical investigations.

Data on gramicidin channels originally motivated theoretical

investigations on membrane models describing local thickness

deformations [7,11–13]. Such data now provides a great

opportunity to test any refinement of these models. We will

compare our model to the data of Ref. [17] regarding the lifetime

of the gramicidin channel as a function of bilayer thickness, and

then to the data of Ref. [18] regarding the formation rate of the

gramicidin channel as a function of bilayer tension.

In order to compare the predictions of our model to

experimental data regarding the gramicidin channel, it is

necessary to make some assumptions about the boundary

conditions at the edge of the channel, i.e., in r~r0. As discussed

in the previous section, we will assume strong hydrophobic

coupling, i.e., u(r0)~u0~‘{d0, but determining the boundary

condition on the slope of the membrane thickness profile is trickier

as it depends on the interactions between gramicidin and the

membrane lipids. In previous analyses [18,34], the fixed-slope

boundary condition was favored as giving the best agreement with

experimental data. However, different values of the fixed slope

were obtained in these studies. In addition, recent all-atom

simulations of gramicidin channels in lipid bilayers indicate that

the membrane thickness profile is complex in the first lipid shell

around the channel, due to specific interactions, and that beyond

this first shell, no common slope exists for the different membranes

investigated [35]. Given the difficulty to determine the actual

effective boundary condition associated with the slope of the

membrane thickness profile, we will adopt the free-slope boundary

condition, which has the advantage not to introduce any unknown

parameter in the analysis, but we will also compare our results to

those obtained with the more traditional fixed-slope boundary

condition.

Analysis of the experimental data of Elliott et al. [17]. It

was shown in Ref. [22] that the detailed elastic membrane model

introduced in Ref. [7] yields an effective linear spring model as far

as the membrane deformation due to gramicidin is concerned

[22,34]: the energy variation F associated with the deformation

can be expressed as F~Hu2
0, where H is the effective spring

constant, while u0 is the thickness mismatch between the

gramicidin channel and the membrane. This linear spring model

was validated by comparison with experimental data on the

lifetime of the gramicidin channel, measured as a function of

bilayer thickness ([17,36], summarized in [34]) and as a function of

the channel length [37].

Figure 5. Renormalized spontaneous curvature ~cc0 as a function
of the inclusion radius r0 and the hydrophobic mismatch u0. A)
~cc0 versus r0 . The values of ~cc0 were obtained by fitting each thickness
deformation profile of Ref. [15]. Circles (blue): positive mismatch,
u0~0:45nm. Squares (red): negative mismatch, u0~{1:1nm. Solid
lines: average values; dotted lines: standard deviation over the seven
data points (corresponding to the different r0), for each value of u0 . B)
Average value of ~cc0 (see A) as a function of the hydrophobic mismatch
u0 . The equation of the line joining the two data points has a slope
0:26nm{2 .
doi:10.1371/journal.pone.0048306.g005

Figure 6. Renormalized spontaneous curvature ~cc0 versus the
relative volume variation v(r0)=v0 on the inclusion edge. The
values of ~cc0 are extracted from fitting the data of Ref. [15], and the
values of v(r0)=v0 are directly taken from Ref. [15].
doi:10.1371/journal.pone.0048306.g006
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We will here focus on the data concerning virtually solvent-free

bilayers, i.e., membranes formed using squalene. The elasticity of

membranes containing hydrocarbons should be different: for

instance, a local thickness change of the membrane could be

associated with a redistribution of the hydrocarbons. (In this, our

analysis differs from that of Ref. [14], where all the data of Ref.

[17] was considered. Another important difference with the

analysis conducted in that reference is that we use experimental

values of the membrane parameters, which are quite different

from the values coming from numerical simulations.) In Ref. [34],

the effective spring constant H of the membrane was estimated

from data of Ref. [17] on gramicidin channel lifetime for three

bilayers formed in squalene with monoglycerids that differed only

through their chain lengths: the different thicknesses of these

membranes yield different hydrophobic mismatches with a given

type of gramicidin channels. The value Hexp~115+10mN:m{1

was obtained.

In Sec. 3.2 of our Methods part, we use our model to calculate

the deformation energy of the membrane due to the presence of a

mismatched protein. Both in the case of the free-slope boundary

condition, and in the case where the gramicidin channel locally

imposes a vanishing slope, this deformation energy can be

expressed as a quadratic function of the mismatch u0. The

prefactor of u2
0 in the deformation energy F corresponds to the

effective spring constant of the system. Thus, although our model

is different from the one of Refs. [7,18,22], it also yields an

effective linear spring model. This is not surprising since we are

dealing with the small deformations of an elastic system. However,

the detailed expressions of our spring constants as a function of the

membrane parameters (see Eqs. 59 and 65) are different from

those obtained using the model of Refs. [7,18,22], due to the

differences between the underlying membrane models. In partic-

ular, in our model, k’a is involved in H , through K ’a. Our aim will

be to find out which value of k’a gives the best agreement with the

experimental value of H .

Using Eqs. 4, 5 and 7, and neglecting the difference between k
and k0, Eqs. 59 and 65 show that H depends on the elastic

constants k, �kk and c0 involved in the Helfrich model, on Ka, on

c’0S0, which corresponds to the spontaneous curvature variation

with the area per lipid, on d0, on the radius r0 of the gramicidin

channel, and on k’a. There is, to our knowledge, no direct

experimental measurement of c’0S0 available, but, as shown in

Sec. 4 our Methods part, we have c’0S0~Kaj=k, where j denotes

the algebraic distance from the neutral surface of a monolayer to

the hydrophilic-hydrophobic interface of this monolayer (see Eq.

73, neglecting the difference between k and k0). Hence, in order to

calculate the spring constant, we need values for k, �kk, c0, Ka and j,

in the precise case of monoolein membranes.

In Ref. [38], the elastic constants k, �kk and c0 were measured in

a monoolein cubic mesophase, both at 250C and at 350C. The

positions of the neutral surface and of the hydrophilic-hydrophobic

interface were estimated on the same system in Ref. [39], but these

results were flawed by a mathematical issue, which was corrected

in Ref. [40]. This correction yielded other corrections on c0, and

on the ratio �kk=k [41]. These results regard a cubic phase, where

the membrane is highly deformed with respect to a flat bilayer: the

values of the various constants should be affected by the strains

present in this phase. In another work [42], the constants of

monoolein are determined in a highly hydrated doped HII phase,

where the strains are better relaxed. However, these measure-

ments were carried out at 370C, while the experiments of Ref. [17]

that we wish to analyze were performed at 230C. Given that the

data of Refs. [38,39] include the most appropriate temperature,

while the ones of Ref. [42] correspond to the most appropriate

phase, we will present results corresponding to both sets of

parameters. Finally, the experimental value of Ka for monoolein is

provided by Ref. [27].

In Table 1, we present the results obtained for the spring

constant H of monoolein bilayers, using the different experimental

estimates of the membrane constants. The main difference

between parameter sets 1 and 2 is the value and the sign of �kk
[38,41]. However, �kk is involved in H only in the free-slope case

(see Eqs. 59 and 65): the 3% difference between the values of H0

obtained with parameter sets 1 and 2 stems only from the

difference on c0, while the 12% difference between Hf obtained

with data sets 1 and 2 contains an important contribution from �kk.

The constants in parameter set 3, corresponding to Ref. [42], are

significantly different from those of Refs. [38,41], which yields a

30% difference on H0 and a 20% difference on Hf . We also note

that, as the value of the algebraic distance from the neutral surface

to the hydrophilic-hydrophobic interface of a monolayer is very

small compared to the other length scales involved (j~{0:3A
[40]), the contribution of c’0S0 to H is negligible (it is of order 1%).

Let us now discuss the results given by our model, in the case of

the free-slope boundary condition (see Table 1). The spring

constants Hf obtained assuming that k’a~0 are about three times

smaller than the experimental value Hexp~115+10mN:m{1 (see

line 1 of Table 1). (This result is very similar to that in Ref. [34],

which illustrates that accounting for monolayer spontaneous

curvature and for boundary terms does not change much the

value of H .) However, Hf reaches the experimental value for

k’a&25mN=m for all three parameter sets (see line 2 of Table 1).

Hence, for free-slope boundary conditions, the presence of k’a, with

an order of magnitude consistent with Eq. 12, improves the

agreement between theory and experiment.

We may compare these values of k’a to the contribution to K ’a
that originates from the monolayer spontaneous curvature (see Eq.

4): {k0(c0{c’0S0)=d0. We estimate the value of this contribution

to be between 0:26 and 1:2mN=m, depending on which set of

parameters is chosen. This is positive and much smaller in absolute

value than the estimates obtained from the numerical data of Ref.

[16] and of Ref. [15]: here, the neutral surface of a monolayer and

its hydrophilic-hydrophobic interface are very close, while j
seemed to be significant in the numerical simulations. In addition,

the contribution of membrane tension to K ’a, namely, s=4, cannot

Table 1. Spring constant H and constant k’a of monoolein.

Set 1 Set 2 Set 3

Free s Hf if k’a~0 41 46 33

Free s k’a if Hf ~Hexp~115 25 24 26

s~0 H0 if k’a~0 130 133 91

s~0 k’a if H0~Hexp~115 v0 v0 7.5

The results are given both for the free-slope boundary condition (using Eq. 65)
and for the zero-slope boundary condition s~0 (using Eq. 59). All values of H

and k’a are given in mN=m. Negative values of k’a are not detailed since they
would yield an instability for the monolayer Hamiltonian Eq. 22 in the present
framework where k’’a~0. The different columns correspond to three different
data sets for the parameters of the membrane. Set 1 corresponds to the data

from [38] at 250C: k~3:6|10{20 J, c0~{0:135nm{1 , �kk~8:8|10{22 J. Set 2

takes into account the corrections on c0 and �kk in [41]: c0~{0:196nm{1 ,

�kk~{3:6|10{21 J. Set 3 corresponds to the data from [42]: k~1:2|10{20 J,

c0~{0:503nm{1 , and �kk~{1:2|10{21 J deduced from �kk=k~{0:1 [41]. In all
cases, we have taken r0~1nm [34], d0~2:46nm [39], j~{0:3A [40],
Ka~140mN=m [27,34].
doi:10.1371/journal.pone.0048306.t001
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exceed about 1 mN/m. In the case of the free-slope boundary

condition, our results imply that k’a should be the dominant

contribution to K ’a for the membranes studied in Ref. [17].

Let us now discuss the results obtained for the zero-slope

boundary condition, which was investigated in Ref. [34]. For the

zero-slope boundary condition, the values obtained for H0

assuming that k’a~0 are in quite good agreement with the

experimental value Hexp~115+10mN:m{1 obtained in Ref.

[34] from the data of Ref. [17], for all the data sets we used (see

line 3 of Table 1): hence, k’a seems negligible if zero-slope

boundary conditions are assumed. However, there is no justifica-

tion to assume that the gramicidin channel locally imposes a

vanishing slope.

Analysis of the experimental data of Goulian et al.

[18]. While the experiments cited in the previous Section dealt

with discrete changes of the hydrophobic mismatch obtained by

varying membrane composition, Goulian et al. [18] measured the

gramicidin channel formation rate f in lipid vesicles as a function

of the tension s applied through a micropipette. As the tension is

an externally controlled parameter that can be changed contin-

uously for the same gramicidin-containing membrane, this

approach can yield more information, and it has the advantage

of limiting the experimental artifacts associated to new prepara-

tions. To date, the experiment in Ref. [18] remains the most

significant in the field and should serve as a testing ground for any

theoretical model. We will therefore discuss in detail the data and

its interpretation by the original authors [18,22] as well as in terms

of our model (see Eq. 2).

Within experimental precision, the data of Ref. [18] can be

described by a quadratic dependence:

ln f ~g(s)~C0zC1szC2s2: ð18Þ

Given that ln f is a linear function of the energy barrier associated

with the formation of the gramicidin dimer, it is a sum of a

chemical contribution, including, e.g., the energy involved in

hydrogen bond formation, and of a contribution arising from

membrane deformation due to the dimer (monomers do not

deform the membrane) [18]. The latter contribution arises from

the hydrophobic mismatch between the membrane and the dimer,

and it depends on the applied tension s, since the membrane

hydrophobic thickness depends on s (see Eq. 43 in Sec. 2 of our

Methods part). Expressing the deformation energy F of the

membrane due to the presence of the dimer gives a theoretical

expression for the s-dependent part of ln f . In our model, k’a
features a contribution coming from s (see Eq. 4). However, this

term is negligible, given that s=4%
ffiffiffiffiffiffiffiffiffiffiffiffi
KaK ’’a
p

=d0 (see Eq. 13), for

realistic tension values (a few mN/m at most), and for the

experimentally measured values of the membrane constants [28].

This enables us to disregard it. Then, our quadratic elastic

membrane model simply gives a quadratic dependence of F on s,

in agreement with the form of Eq. 18. Comparing the

experimental values of C1 and C2 to those predicted by theory

provides a test for theoretical models [18]. (Note that, if the s-

dependent contribution to K ’a is included, the expression of the s-

dependent part of ln f is no longer simply quadratic in s.

However, we explicitly verified that including this contribution

yields a negligible change to the relation between s and ln f , for

realistic values of the parameters).

Since the coefficients C1 and C2 arise from membrane elasticity,

they are common to all the vesicles studied in Ref. [18], which

have the same lipid composition. Conversely, the baseline C0

depends on parameters such as the concentration of gramicidin

molecules, so it can take a different value for each of the twelve

vesicles studied in Ref. [18]. A global fit to the data of Ref. [18]

using Eq. 18 involves minimizing the goodness-of-fit function

x2~
X

j

( ln fj{g(sj))
2 , ð19Þ

where the index j runs over all the experimental points, with fitting

parameters C1,C2,Ck
0 ,k~1, . . . ,12. The baseline Ck

0 is then

subtracted from each of the twelve curves. All the data is plotted

in the same graph in Fig. 7. The best global fit, corresponding to C1

~0:74+0:07(mN=m){1 and C2~{0:090+0:015(mN=m){2,

is shown on Fig. 7 as the dotted (black) line. (It should be noted that

the values obtained by fitting the individual curves are much more

scattered: C1 ranges from 0:4 to 1:5(mN=m){1 and C2 from {0:3

to 0(mN=m){2.)

In Ref. [18], the authors used published values of the material

constants to calculate C1 and C2 in the framework of their elastic

model [22], based on that of Ref. [7]. Using fixed-slope boundary

conditions, they reported good agreement with the experimental

data for a reasonable value of the unknown slope s (s~0:3).

However, we need to raise the following points:

1. There was a mistake in their implementation of the formula of

Ref. [22] giving C1 and C2 as a function of the material

constants. More precisely, we found that a factor of 2 was

missing in the expression of C1 and a factor of 4 was missing in

that of C2 in the implementation of the formula of Ref. [22].

This was confirmed by Mark Goulian (private communication).

The actual values of C1 and C2 obtained using the same values

of the constants as in Ref. [18] are in fact quite far from those

corresponding to the best fit of the experimental data, as shown

by the dashed green line in Fig. 7 (see also Fig. 8 and Table 2).

2. The estimates for the elastic constants used in Ref. [18] are

somewhat different from more recent and more widely

accepted values. Henceforth, we will use the following

parameters, for a DOPC membrane: d0~2:7nm [18],

Ka~265mN=m, k~8:5|10{20 J [28], c0~{0:132nm{1

[43], and the dimensions of a gramicidin channel: r0~1nm,

‘’~‘zd~2:3nm [18]. Implementing these more recent

values in the model of Ref. [22] does not yield a better

agreement with experiment, as shown by the dashed-dotted

(blue) line in Figure 7 (see also Fig. 8 and Table 2).

A somewhat better agreement with the experimental data is

obtained when taking s~0 instead of s~0:3 for the fixed slope

(see Figs. 7 and 8, and Table 2). However, the downward

inflection of the experimental curves at high s is not adequately

described for any value of s. In fact, C2 is independent of s, and its

absolute value given by the elastic model is 15 times smaller than

the experimental one (see Table 2). We conclude that the elastic

model of Refs. [7,22] does not satisfactorily describe the data of

Ref. [18] regarding the lifetime of the gramicidin channel under

tension.

In Sec. 3.2 of our Methods part, we calculate the deformation

energy F in the framework of our model, both for the fixed-slope

boundary condition and for the free-slope boundary condition.

The resulting expressions of C1 and C2 are given by Eqs. 61, 62,

67 and 68. In order to see which values of k’a and which boundary

conditions give the best agreement with the experiments of Ref.

[18], we present a plot of the goodness-of-fit function x2 (see Eq.

19) in a (C1,C2) graph in Fig. 8. On this graph, we have plotted

the trajectories obtained from our model in the (C1,C2) plane
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when varying k’a, for s~0, for s~0:3 (as in Ref. [18]), and for the

free-slope boundary condition.

In order to obtain numerical values of C1 and C2 from Eqs. 61,

62, 67 and 68, we used the above-mentioned parameter values,

and the estimate �kk~{0:8k [16]. Finally, we estimated c’0S0

through the relation c’0S0~Kaj=k (see Eq. 73 in Sec. 4 of our

Methods part). For this, the algebraic distance j from the neutral

surface of a monolayer to the hydrophilic-hydrophobic interface of

this monolayer was estimated by first determining the position of

the pivot surface from the data of Ref. [43], and by calculating the

distance between it and the neutral surface [44]: we found

j&{0:5A. Here again, the neutral surface is close to the

hydrophilic-hydrophobic interface. For the sake of simplicity, we

took c’0~0, and we checked that the results were not significantly

different when taking j~{0:5A.

The ingredient in our model that can change significantly the

results is k’a (Note that the values of C1 and C2 corresponding to

k’a~0 are very close to those obtained using the model of Ref. [18]

with our values of the parameters, as shown in Table 2. This

illustrates again that the influence of boundary terms is quanti-

tatively small.) Fig. 8 shows that the experimental value of C1 can

be explained by our model. In addition, the values of k’a that

minimize x2, i.e., that give the best agreement with the

experimental data of Ref. [18], are between 0 and 50mN=m,

depending on the boundary condition chosen, as shown in Table 3.

This range of values of k’a is reasonable.

For the free-slope boundary condition, the best agreement with

the experimental results is obtained for k’a&40mN=m (see Table 3

and Fig. 8). The order of magnitude is the one expected from

k’a&c=2.

Let us now discuss the results obtained for the fixed-slope

boundary condition, which is used in Ref. [18]. For a fixed slope

s~0, the best agreement with the results of Ref. [18] analyzed

with the complete quadratic fit is obtained for k’a~0. Conversely,

for s~0:3, the best agreement is obtained for k’a&40mN=m,

which is similar to the result obtained the free-slope case (see

Table 3 and Fig. 8). Hence, in the case of the fixed-slope boundary

condition, the conclusions depend a lot on the value of s that is

chosen.

In all cases, the absolute values of C2 we obtain remain much

smaller than the one that matches best the experimental results,

which is C2~{90:0|10{3 (mN=m){2 (see Fig. 7). This can be

seen in Fig. 8, as well as in Table 3. Hence, with our model, as

with the one of Ref. [18], it seems impossible to explain the

experimental value of C2. Our model predicts that C2 is

proportional to the effective spring constant H of the membrane

discussed in the previous Section (see Eqs. 59 and 65): it is thus

quite unexpected to have a good agreement with the experimental

values of H but not with those of C2. This disagreement on C2

could come either from a shortcoming of the model or from an

undetected systematic error in the experimental data. The

importance of C2 is largest at highest tensions, as it is C2 which

gives the curve its concavity, and it should be noted that the

maximum applied tension s is around 4:5mN=m in Ref. [18],

which is comparable to the rupture threshold of 3{10mN=m
[28]. The membrane properties may be affected at such high

tensions in a way that is no longer well described by standard

Figure 7. Formation rate f of gramicidin channels versus the applied tension s, analyzed with a quadratic model. Diamonds:
experimental data retrieved from Fig. 6b of Ref. [18], after subtraction of the baselines Ck

0 . Dotted black line: best quadratic fit, with

C1~0:74(mN=m){1 and C2~{0:09(mN=m){2 ; x2:x2
min. Dashed green line: results obtained from the elastic model of Ref. [22], with the constants

given in [18]; x2=x2
min~5:72. Dashed-dotted blue line: idem with more recent values of the constants; x2=x2

min~6:68. Solid red line: results obtained

by taking s~0 and the recent values of the constants in the model of Refs. [7,22]; x2=x2
min~1:75. The values of C1 and C2 corresponding to the curves

on this graph are listed in Table 2.
doi:10.1371/journal.pone.0048306.g007
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elastic models. It would be interesting to have more experimental

data on the behavior of gramicidin channels under tension to see if

this unexpected value of C2 persists.

Following the hypothesis that high tensions are problematic, we

performed a linear fit of the data of Ref. [18] (i.e., a fit with

C2~0), keeping only the points corresponding to sv2mN=m:

this yields C1~(0:62+0:05)(mN=m){1 (see Fig. 9). In Table 4,

we list, for different boundary conditions, the value of k’a which

gives C1~0:62(mN=m){1, and the value of C2 obtained from

our model for this k’a. These values correspond to those that give

the best agreement between our model and the linear fit to the

low-tension data of Ref. [18] presented in Fig. 9. Table 4 shows

that the values of k’a that yield the best agreement with the

experimental data have a similar order of magnitude as those

obtained above with the full quadratic fit (see Table 3), remaining

below 100mN=m. Again, these values depend a lot on s for fixed-

slope boundary-conditions. (For instance, the slope s~{0:17 is

consistent with k’a~0 (see Table 4). However, there is no a priori

reason for assuming that k’a~0.)

Again, we may compare our estimates of k’a (see Tables 3 and 4)

to the term {k0(c0{c’0S0)=d0, which also contributes to k’a: here,

{k0(c0{c’0S0)=d0~{0:76mN=m. This is much smaller in

absolute value than the corresponding estimates obtained from the

numerical data of Ref. [16] and of Ref. [15]: here, as in the

membranes studied in Ref. [17], the neutral surface of a

Figure 8. Comparison between the experimental values of C1 and C2 and those obtained from different models. Colorscale: goodness-
of-fit function x2 (see Eq. 19) for the data of Ref. [18], as a function of the fitting parameters C1 and C2 . White diamond: values of C1 and C2 that give
the best fit. Black triangle: results obtained from the elastic model of Ref. [22], with the constants given in [18]. Lines: trajectories obtained from our
model in the (C1,C2) plane when varying k’a . Red: free slope; green: s~0, black: s~0:3. These three curves start by a white dot at k’a~0, and k’a
increases rightwards along these curves. The rightmost white dot (k’a~0, s~0) roughly corresponds to the best agreement we can obtain between
our model and the experiment fitted to the quadratic model (red curve on Fig. 7). The black diamond corresponds to the best agreement we can
obtain between our model and the experiment fitted to the linear model at low tension (see Fig. 9).
doi:10.1371/journal.pone.0048306.g008

Table 2. Values of C1 and C2 obtained from the model of Ref. [22] and from our model with k’a~0.

Model Ref. [22] Ref. [22] Ref. [22] Ours, with k’a~0 Ours, with k’a~0 Ours, with k’a~0

Constants Ref. [18] Recent Recent Recent Recent Recent

Slope s 0.3 0.3 0 0.3 0 Free

C1 ½10{3(mN=m){1� 354 282 480 292 502 339

{C2 ½10{3(mN=m){2� 21.4 6.11 6.11 6.40 6.40 3.34

x2 5.72 7.15 1.75 6.68 1.75 4.31

The results are presented both for the fixed-slope boundary condition (see Eqs. 61 and 62), with slopes 0 and 0:3, and for the free-slope boundary condition (see Eqs. 67

and 68). The corresponding values of x2 are also given. Recall that the best quadratic fit to the data of Ref. [18] yields C1~740|10{3 (mN=m){1 and

C2~{90:0|10{3 (mN=m){2 (see Fig. 7).
doi:10.1371/journal.pone.0048306.t002
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monolayer and its hydrophilic-hydrophobic interface are very

close, while j seemed to be of a few Å in the numerical

simulations. We note in passing that this hints at a relevant

difference between simulated membranes and real membranes.

Besides, in the case of the free-slope boundary condition, our

results imply that k’a should be the dominant contribution to K ’a for

the membranes studied in Ref. [18], as for those of Ref. [17].

Hence, for the free-slope boundary condition, our analyses of

the numerical data of Ref. [16] and of Ref. [15], and our analyses

of the experimental data of Ref. [17] and of Ref. [18] all converge

toward a value of a few tens of mN/m for k’a, which is of the order

of magnitude expected if k’a~c=2. Conversely, for the fixed-slope

boundary condition, the value of k’a is coupled to that of the slope

s.

Conclusion

We have put forward a modification of membrane elastic

models used to describe thickness deformations at the nanoscale.

We have shown that terms involving the gradient (and the

Laplacian) of the area per lipid contribute to important terms of

the effective Hamiltonian of the bilayer membrane. We have

reanalyzed numerical and experimental data to find some

signature of the presence of these terms. Using the free-slope

boundary condition at the boundary of the mismatched protein,

we have obtained consistent results showing that the term

stemming from the gradient of the area per molecule has a

prefactor k’a in the range 13{60mN=m. Such values are

consistent with the idea that this term involves a significant

contribution of the interfacial tension c between water and the

hydrocarbon-like hydrophobic part of the membrane. Indeed, this

contribution should yield k’a~c=2&25mN=m.

Interestingly, our analysis of the experimental data from Ref.

[18] has shown that these nice experimental results were not as

well understood as assumed in the literature. Hence, it would be

interesting to have more data on the behavior of gramicidin

channels in membranes under tension.

Finally, the effective linear spring model [22,34] is a very useful

simplification of membrane elastic models when dealing with local

thickness deformations and hydrophobic mismatch. Its applicabil-

ity has been thoroughly tested on systems where gramicidin is used

to probe the influence of various molecules on membrane

Table 3. Values of k’a, C1 and C2 obtained from our model
that yield the best agreement with the experimental results of
Ref. [18], analyzed with a quadratic fit (see Eq. 18 and Fig. 7).

Slope s 0 0:3 Free

k’a (mN=m) 0 45 30

C1 ½10{3(mN=m){1� 502 490 490

{C2 ½10{3(mN=m){2� 6.40 9.17 5.29

x2 1.75 1.69 1.75

Results are presented for the fixed-slope boundary condition (see Eqs. 61 and
62), with slopes 0 and 0:3, and for the free-slope boundary condition (see Eqs.
67 and 68).
doi:10.1371/journal.pone.0048306.t003

Figure 9. Formation rate f of gramicidin channels as a function of the applied tension s, analyzed with a linear model, for

sv2mN=m. Diamonds: experimental data retrieved from Fig. 6b of Ref. [18], after subtraction of the baselines Ck
0 (which are different from those of

Fig. 7 since the fitting model is here linear instead of quadratic). Line: best linear fit, yielding C1~(0:62+0:05)(mN=m){1 ; correlation coefficient:
r~0:894.
doi:10.1371/journal.pone.0048306.g009
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properties (see, e.g., Ref. [10]). As other quadratic elastic models,

our model yields an effective spring model. However, since the

expression of the spring constant depends on the details of the

model, careful consideration is required when one is interested in

the behavior of a particular material constant.

Methods

1 Derivation of the effective Hamiltonian
1.1 General expression of the bilayer effective

Hamiltonian. Let us consider a patch of bilayer membrane

with a fixed projected area Ap, at fixed chemical potential m. The

rest of the membrane (e.g., of the vesicle) plays the part of the

reservoir that sets the chemical potential m. The effective

Hamiltonian per unit projected area in each monolayer is

f +~f +
m =�SS+, where f +

m is given by Eq. 1, while the projected

area �SS+ per molecule reads �SS+~S+½1{(+h+)2=2� to second

order. Hence, Eq. 1 yields, to second order in the deformation and

in the relative stretching of the monolayers,

f +~{
m

�SS+ z
f ’’0
2

S0
S+{S0

S+

� �2

+
f1

2

+2h+

�SS+ +

f ’1
2

S+{S0

S+

� �
+2h+z

f2

4

+2h+
� �2

S0
z

fK

det (LiLjh
+)

S0
za

(+S+)2

S0
zb

+2S+

�SS+ zf
(+2S+)2

S0
:

ð20Þ

We assume that the hydrophobic chains of the lipids are

incompressible. Let us introduce the excess hydrophobic thickness

uz (resp. u{) of the upper (resp. lower) monolayer, defined as its

hydrophobic thickness along the normal to its hydrophilic-

hydrophobic interface minus the equilibrium monolayer hydro-

phobic thickness d0=2 (see Fig. 1). In the spirit of Refs. [12–14], we

use the incompressibility condition

v~S+ u+z
d0

2

� �
, ð21Þ

where v is the constant hydrophobic volume per lipid. (In this

incompressibility condition, a correction arising from membrane

curvature is neglected. Using the complete incompressibility

condition instead of this one yields the same effective Hamiltonian

Eq. 2, but with different expressions of c0 and k as a function of

the constants involved in Eq. 1. These expressions depend on m,

and consequently on the applied tension, but this dependence is

negligible for realistic tension values. As the rest of our discussion is

not affected by this, we keep the approximate incompressibility

condition for the sake of simplicity. Note that the exact

incompressibility condition was implemented recently in Ref.

[23].)

In all the following, we will work to second order in the small

dimensionless variables u+=d0, D+u+D, d0+2u+, D+h+D and

d0+2h+. In this framework, using the relations

S0{S+
� �

=S+~2u+=d0 and u++2u+~+ u++u+ð Þ{(+u+)2,

Eq. 20 becomes

f +~{
m

S0
1z

2u+

d0
z

(+h+)2

2

 !
z

Ka

d2
0

(u+)2+

k0 c0

2
+2h++

k0

d0
(c0{c’0S0)u++2h+z

k0

4
(+2h+)2z

�kk

2
det (LiLjh

+)zk’a +u+
� �2

z

2b

d0

2

d0
+:(u++u+){+2u+

	 

zk’’a d2

0 (+2u+)2 :

ð22Þ

In this expression, we have introduced the constitutive constants of

a monolayer: f ’’0 S0~Ka=2 is compressibility modulus of the

monolayer, f2=(2S0)~k0=2 is its bending rigidity, fK=S0~�kk=2 is

its Gaussian bending rigidity, f1=f2~c0 is its spontaneous (total)

curvature, and f ’1=f2~c’0 is the modification of the spontaneous

(total) curvature due to area variations. More precisely,

c’0~dcs=dS where cs(S)~c0zc’0(S{S0) is the lipid area-

dependent (total) spontaneous curvature of the monolayer. In

addition, recall that d0 denotes the equilibrium hydrophobic

thickness of the bilayer membrane. Finally, we have introduced

the constants

k’a~4
aS0zb

d2
0

, ð23Þ

K ’’a~4
fS0

d4
0

: ð24Þ

These two constants have the dimension of a surface tension, like

Ka.

In our description, the state of monolayer + is determined by

the two variables h+ and u+. Hence, the state of the bilayer

membrane is a priori determined by four variables. However, given

that there must be no space between the two monolayers, the

distance along z between the hydrophilic-hydrophobic interfaces

of the two monolayers must be equal to the sum of their projected

thicknesses. Hence, to second order, we have the following

geometrical constraint:

hz{h{~ uzz
d0

2

� �
1{

(+hz)2

2

" #
z u{z

d0

2

� �
1{

(+h{)2

2

" #
: ð25Þ

This leaves us with only three independent variables to describe

the state of the membrane. Let us choose the average shape h of

the bilayer, the sum u of the excess hydrophobic thicknesses of the

two monolayers, and the difference d between them:

Table 4. Values of k’a and C2 obtained from our model that
yield the best agreement with the experimental results of Ref.
[18] analyzed with the low-tension linear fit.

Slope s 0 0.3 20.17 Free

k’a (mN=m) 23 78 0 60

{C2 ½10{3(mN=m){2� 7.90 11.0 6.39 7.04

More precisely, these values of k’a and C2 are associated with

C1~0:62(mN=m){1 . Results are presented for the fixed-slope boundary
condition (see Eqs. 61 and 62), with slopes 0, 0:3, {0:17, and for the free-slope
boundary condition (see Eqs. 67 and 68).
doi:10.1371/journal.pone.0048306.t004
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h~
hzzh{

2
, ð26Þ

u~uzzu{ , ð27Þ

d~uz{u{ : ð28Þ

Thus, we can rewrite the effective Hamiltonian f ~f zzf { per

unit projected area of the membrane in terms of the new variables

h, u and d. It reads, to second order in the small dimensionless

variables u=d0, d=d0, D+uD, D+dD, D+hD, d0+2u, d0+2d, and d0+2h,

and discarding derivatives of order higher than two:

f ~s 1z
u

d0
z

(+h)2

2
z

(+u)2

8

" #
z

Ka

2d2
0

u2zd2
� �

z

k0

2
(+2h)2z

1

4
(+2u)2

	 

z

k0 c0

2
+2uz

k0

2d0
(c0{c’0S0) u+2uz2d+2h

� �
z

�kk det (LiLjh)z
1

4
det (LiLju)

	 

z

k’a
2

(+u)2z(+d)2
� �

z

k’’a d2
0

2
(+2u)2z(+2d)2
� �

{
2b

d0

+2uz

2b

d2
0

+:(u+u)z+:(d+d)½ � ,

ð29Þ

where we have introduced s~{2m=S0, which plays the part of

an externally applied tension (see Methods, Sec. 2).

1.2 Eliminating d. In the present study, we are not interested

in the variable d. In a coarse-graining procedure, this degree of

freedom can be eliminated by integrating over it. In our Gaussian

theory, it simply amounts to minimizing f with respect to d. This

variable is coupled to the membrane curvature +2h, but not to u.

In the case of a constant curvature, the constant value

d~{
d0 k0

Ka

(c0{c’0S0) +2h , ð30Þ

is a simple solution to the Euler-Lagrange equations in d, for which

the term involving d in f reads

fd~{
1

2

k2
0

Ka

(c0{c’0S0)2 (+2h)2 : ð31Þ

As the variable d varies spontaneously on length scales much

shorter than the variable h, we can consider in a first

approximation that d will simply follow +2h, in which case this

constant solution is the valid one. Thus, after this partial

minimization, this term provides a correction to k0.

We finally obtain

f ~s 1z
u

d0
z

(+h)2

2

" #
z

Ka

2d2
0

u2z

k’a
2

z
s

8
{

k0

2d0
(c0{c’0S0)

	 

(+u)2z

k

2
(+2h)2z

k0

8
z

k’’a d2
0

2

� �
(+2u)2z�kk det (LiLjh)z

1

4
det (LiLju)

	 

z

k0 c0

2
{

2b

d0

	 

+2uz

k0

2d0
(c0{c’0S0)z

2b

d2
0

	 

+:(u+u) ,

ð32Þ

where the usual Helfrich bending rigidity k, associated with the

average shape, is related to k0 through

k~k0{
k2

0

Ka

(c0{c’0S0)2 : ð33Þ

In the case where the average shape of the membrane is flat, i.e.,

h~0, dropping constant terms, we obtain the expression of f in

Eq. 2 with

K ’a~{
k0

d0

(c0{c’0S0)zk’az
s

4
, ð34Þ

K ’’a~
k0

4
zk’’ad2

0 , ð35Þ

A1~
k0 c0

2
{

2b

d0

, ð36Þ

A2~
k0

2d0
(c0{c’0S0)z

2b

d2
0

: ð37Þ

Thus, in general, in Eq. 2, the constants K ’a, K ’’a include

contributions in k’a and k’’a, which arise from a, b and f (see Eqs.

23, 24). Therefore, the terms in gradient and Laplacian of S
introduced in Eq. 1 cannot be neglected a priori, as they

contribute to the terms in (+u)2 and (+2u)2 that are traditionally

accounted for in models describing membrane thickness defor-

mations [7,12–14,18,22]. Due to these contributions, the values

of the constants K ’a and K ’’a are not fully predicted by the

constants involved in the Helfrich model. This stands in contrast

with the models developed previously [7,12–14,18,22]. In

addition, the terms arising from a, b and f modify the relations

between the various coefficients: in the previous models that

accounted for boundary terms, assuming a~b~f~0, and

disregarding tension, one had K ’a~{2A2 [14], which is no

longer true here. This will affect the equilibrium thickness profile

of a membrane containing a mismatched protein.

1.3 Link with the Helfrich Hamiltonian. Since the

variables h and u are decoupled in the Hamiltonian density f

given by Eq. 32, the terms depending on h can be isolated, yielding
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fh~s 1z
(+h)2

2

" #
z

k

2
(+2h)2z�kk det (LiLjh) , ð38Þ

which corresponds to the Helfrich Hamiltonian [3] for a

membrane composed of two identical monolayers. In particular,

the term in s has the standard form of a Helfrich tension term,

conjugate to the actual area A of the membrane, since the element

of area is dA~dxdy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z(+h)2

q
~dxdy 1z(+h)2=2

� �
to second

order. Hence, s can be viewed as an effective applied tension. This

interpretation of s is explained in more detail in Sec. 2 of our

Methods part.

Hence, our model gives back the Helfrich Hamiltonian if the

state of the membrane is described only by its average shape h, i.e.,

if the variable u is integrated out.

1.4 Stability criterion. Let us focus on a membrane with flat

average shape h, described by Eq. 2. Depending on the values of

the constants Ka, K ’a and K ’’a, a homogeneous thickness u~0 can

be less or more energetically favorable than an undulated shape.

The physical situation we wish to describe is the one where the

equilibrium state has a homogeneous thickness. To determine

which sets of constants comply with this, let us calculate the

effective Hamiltonian per unit projected area fdef of a membrane

with harmonic undulations characterized by the wave vector q.

Neglecting boundary terms (by taking appropriate boundary

conditions or by assuming that the undulations decay on some

large length scale), we obtain fdef!Ka=d2
0 zK ’aq2zK ’’aq4, where

the omitted prefactor is positive. The flat shape is favored if fdefw0
for all q, and otherwise there exist some values of q for which it is

unstable. Thus, the conditions for the stability of the flat shape are

Kaw0, K ’’aw0 and K ’aw{2
ffiffiffiffiffiffiffiffiffiffiffiffi
KaK ’’a
p

=d0.

2 Membrane submitted to an external tension
In Sec. 1 of our Methods part, we have derived the effective

Hamiltonian of a bilayer membrane in the (m,Ap) ensemble. This

is the most convenient thermodynamic ensemble to work in.

However, in order to describe experiments where a vesicle is

submitted to an external tension, one should work in the (N,t)
ensemble, where N is the number of lipids in the vesicle and t is

the externally applied tension. This is especially interesting in

order to analyze the results of Ref. [18]. The ensemble change can

be performed using a Legendre transformation: in the (N,t)
ensemble, the adapted effective Hamiltonian is

G(N,t)~F(m,Ap)zmN{tAp, where F (m,Ap)~
Ð

Ap
dxdyf , with

f expressed in Eq. 32, and

N~{
LF

Lm
DAp

, t~
LF

LAp

Dm : ð39Þ

Let us restrict ourselves to the case of a homogeneous and flat

membrane, i.e., to a membrane with constant h and u. Then,

using Eq. 39 to eliminate the variables m and Ap from the

expression of G, we obtain, to second order:

G(N,t)~N
v

d0

{tzt
u

d0

z Ka{2tð Þ u2

2d2
0

	 

: ð40Þ

Minimizing G with respect to u yields the equilibrium excess

thickness ueq of the membrane at a given imposed tension t. To

first order, it reads

ueq~{
t

Ka

d0 , ð41Þ

Note that, since u=d0 is assumed to be a first-order quantity, t=Ka

must be first-order too for our description to be valid for u~ueq.

This property has been used to simplify the result in Eq. 41. In

practice, t%Ka is well verified, given that t cannot exceed a few

mN/m without the vesicle bursting, while Ka is of order

100mN=m. Since d0 is the equilibrium hydrophobic thickness of

this piece of homogeneous and flat membrane submitted to a

vanishing external tension, it is consistent that ueq vanishes when t
does, as u is the excess thickness with respect to d0. Eq. 41 shows

that the thickness of a membrane with fixed number of lipids

decreases when the external tension increases, and is in agreement

with Ref. [18].

We are now going to show that the constant s in the (m,Ap)
ensemble (see, e.g., Eq. 32) plays the part of an externally applied

tension. For this, let us calculate the equilibrium thickness of a

membrane patch with projected area Ap at a chemical potential m,

when it is homogeneous and flat. This amounts to minimizing f
with respect to u. For a homogeneous and flat membrane, Eq. 32

becomes

f ~s 1z
u

d0

� �
z

Ka

2

u2

d2
0

, ð42Þ

Minimizing f with respect to u then gives

ueq~{
s

Ka

d0 : ð43Þ

Comparing Eq. 43 to Eq. 41 shows that s plays the part of the

externally applied tension t. Hence, s can be considered as an

effective applied tension.

3 Membrane containing a cylindrical mismatched protein
In this Section, we write down explicitly the equilibrium shape

and the deformation energy of a membrane which contains a

single cylindrical transmembrane protein with a hydrophobic

mismatch (see Fig. 1B). This protein can correspond to a

gramicidin channel in the dimer state. We focus on a membrane

with a flat average shape, described by the effective Hamiltonian

per unit projected area in Eq. 2. We denote the radius of the

protein by r0, and its hydrophobic thickness by ‘. We take the

center of the cylindrical protein as the origin of the frame, which

yields cylindrical symmetry.

In order to treat the case where the membrane is submitted to a

tension s, we rewrite Eq. 2 in terms of the variable

~uu~u{ueq~uzsd0=Ka, which represents the excess hydrophobic

thickness of the bilayer relative to its equilibrium value at an

applied tension s (see Eq. 43). Discarding constant terms and using

the relation s%Ka, which yields sd0A2=Ka%A1, it yields

f ~
Ka

2d2
0

~uu2z
K ’a
2

(+~uu)2z
K ’’a
2

(+2~uu)2

zA1 +2~uuzA2 +:(~uu+~uu)z
�kk

4
det (LiLj~uu) :

ð44Þ

3.1 Equilibrium thickness profile. Let us first review (see,

e.g., Ref. [22]) the equilibrium thickness profile ~uu of the membrane
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containing the mismatched protein. This equilibrium shape is

solution to the Euler-Lagrange equation associated with the

effective Hamiltonian in Eq. 44,

+4~uu{
K ’a
K ’’a

+2~uuz
Ka

K ’’ad2
0

~uu~0 : ð45Þ

Using the cylindrical symmetry of the problem and choosing

solutions that vanish at infinity, we obtain, if the stability condition

Eq. 8 is verified, the following solution to the Euler-Lagrange

equation Eq. 45:

~uu(r)~AzK0(kzr)zA{K0(k{r) , ð46Þ

where Kn is the nth-order modified Bessel function of the second

kind, and

k+~
1ffiffiffi
2
p K ’a

K ’’a
+

K ’a
K ’’a

� �2

{4
Ka

K ’’ad2
0

" #1=2
8<
:

9=
;

1=2

, ð47Þ

which are either both real or complex conjugate.

The integration constants A+ are determined by the boundary

conditions at r~r0. The first boundary condition corresponds to

strong hydrophobic coupling: on the inclusion boundary, the

hydrophobic thickness of the membrane is equal to that of the

inclusion, which is denoted by ‘ (see Fig. 1B). It yields

u(r0)~u0~‘{d0 (to first order, as explained in our Section

entitled ‘‘Deformation profiles close to a mismatched protein’’), or

equivalently ~uu(r0)~~uu0~‘{d0 1{s=Kað Þ. As far as the second

boundary condition at r~r0 is concerned, we will treat explicitly

two different cases, which correspond respectively to a fixed slope

and to a free slope in r0, as explained in the main text of the

article.

Fixed slope. In the case where the boundary conditions in

r~r0 are

~uu(r0)~~uu0~‘{d0 1{
s

Ka

� �
~uu’(r0)~s

8<
: , ð48Þ

which corresponds to a strong hydrophobic coupling and a fixed

slope s at r~r0, we obtain:

A+~
K+

0 szk+K+
1 ~uu0

k+K+
0 K+

1 {k+K+
0 K+

1

, ð49Þ

where

K+
n ~Kn k+r0ð Þ : ð50Þ

Note that Az and A{ are either both real or complex conjugate

(like k+), which ensures that the solution Eq. 46 is real.

Free slope. An alternative choice of boundary conditions in

r~r0 is

~uu(r0)~~uu0~‘{d0 1{
s

Ka

� �

K ’’a+2~uuz
�kk

4

~uu’
r

zA2~uuzA1

� �
D
r~r0

~0

8>>><
>>>:

, ð51Þ

to first order again. The first of these conditions corresponds to a

strong hydrophobic coupling, as before. The second one arises

from minimizing the total free energy of the system without further

constraints. It corresponds to the case where the slope at r~r0 is

free to adjust itself to yield the smallest deformation energy. With

these ‘‘free-slope’’ boundary conditions, we obtain:

A+~+
�kkk+K+

1 ~uu0{4r0K+
0 A1z A2zK ’’ak2

+

� �
~uu0

� �
4r0K ’’a k2

z{k2
{

� �
Kz

0 K{
0 {�kk kzK{

0 Kz
1 {k{Kz

0 K{
1

� � ,ð52Þ

which are, again, either both real or complex conjugate.

Let us now assume that b~f~0, as in the main text of this

article. In order to understand the impact of k’a (i.e., of a) on A+ in

the free-slope case, let us express A+ as a function of k’a, r0, d0 and

of the bulk constants Ka, k’a and K ’’a, whose values can be

extracted from the fluctuation spectra in simulations. Using Eq.

47, the relation A1~2K ’’ac0, which can be derived from Eqs. 7

and 5, and the relation A2~(k’a{K ’a)=2, which stems from Eqs. 4

and 7, we obtain:

A+~+
�kkk+K+

1 ~uu0{2r0K+
0 4K ’’ac0z k’a+K ’’a k2

{{k2
z

� �� �
~uu0

� �
4r0K ’’a k2

z{k2
{

� �
Kz

0 K{
0 {�kk kzK{

0 Kz
1 {k{Kz

0 K{
1

� � :ð53Þ

For fixed values of r0, d0, Ka, K ’a and K ’’a, the constants A+ can be

viewed simply as functions of k’a and c0: let us denote them by

A+(k’a,c0). The following relation holds for all k’a and c0:

A+ k’a,c0ð Þ~A+ 0,~cc0ð Þ , ð54Þ

with

~cc0~c0z
k’a

4K ’’a
~uu0 : ð55Þ

Hence, in the framework of a model that assumes k’a~0, the effect

of a nonvanishing k’a on the equilibrium membrane thickness

profile would be that c0 is replaced by a renormalized spontaneous

curvature ~cc0, which depends linearly on ~uu0. At vanishing applied

tension (in which case, ~uu0~u0), and neglecting the difference

between k0~K ’’a=4 and k, we obtain Eq. 16.

3.2 Deformation energy. Let us now calculate the defor-

mation energy F of the membrane due to the presence of the

mismatched protein. For the equilibrium shape of the membrane,

which is solution to the Euler-Lagrange equation Eq. 45, we are

left only with boundary terms at the inclusion edge in r~r0 (no

other boundary terms contribute, since the deformation ~uu caused

by the presence of the mismatched channel vanishes sufficiently far

away from it). We can write
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F~

ð
Ap

dxdyf ~2p

ð?
r0

rdrf

~pfK ’’a r ~uu
d

dr
+2~uu
� �

{~uu’+2~uu{
K ’a
K ’’a

~uu~uu’
	 


{2 A1 r~uu’zA2 r~uu~uu’z
�kk

8
~uu’2

	 

gDr~r0

,

ð56Þ

where ~uu’~d~uu=dr. We have used the expression of the Gaussian

curvature for small deformations in a system with cylindrical

symmetry: det (LiLj~uu)~~uu’~uu’’=r~(2r){1 d(~uu’2)=dr. To express the

deformation energy F explicitly, one has to use the boundary

conditions in r~r0.

Fixed slope. For the boundary conditions in Eq. 48,

corresponding to a fixed slope in r0, using Eqs. 46, 47 and 49,

we can rewrite the deformation energy of the membrane in Eq. 56

as

F~{2p A1 r0 szA2 r0 ~uu0 sz
�kk

8
s2

	 


z
pr0 K ’’a

kzK{
0 Kz

1 {k{Kz
0 K{

1

½kzk{ k2
z{k2

{

� �
Kz

1 K{
1 ~uu2

0

z2kzk{ kzKz
0 K{

1 {k{K{
0 Kz

1

� �
~uu0 szKz

0 K{
0 k2

z{k2
{

� �
s2� :

ð57Þ

This expression shows that F is a second-order polynomial in ~uu0

and s.

Spring constant for s~0. In the particular case where the

fixed slope s vanishes, Eq. 57 becomes

F~H0~uu2
0 , ð58Þ

where the effective spring constant reads

H0~
pr0 K ’’a kzk{ k2

z{k2
{

� �
Kz

1 K{
1

kzK{
0 Kz

1 {k{Kz
0 K{

1

: ð59Þ

Dependence on applied tension. Since

~uu0~‘{d0(1{s=Ka), Eq. 57 shows that F is a second-order

polynomial in the applied tension s. (In our model, K ’a features a

contribution coming from s, see Eq. 4. However, as mentioned in

the main text, the dependence of K ’a on s is negligible in practice,

and we thus disregard it: in this framework, C1 and C2 do not

depend on s.) We can write

{
F

kBT
~C0zC1szC2s2 , ð60Þ

with

C1~
2pd0r0 K 00a kzk{

kBT Ka k{Kz
0 K{

1 {kzK{
0 Kz

1

� �
½ kzKz

0 K{
1 {k{K{

0 Kz
1

� �
s

z k2
z{k2

{

� �
K{

1 Kz
1 d0{‘ð Þ�z 2pd0r0

kBT Ka

sA2 ,

ð61Þ

C2~{
d2

0

K2
a

H0

kBT
, ð62Þ

where H0 is the effective spring constant expressed in Eq. 59. Note

that �kk and A1 do not appear in the coefficients C1 and C2, and

that A2 and s are only present in C1.

Free slope. For the boundary conditions in Eq. 51, corre-

sponding to a free slope in r0, using Eqs. 46, 47 and 52, we can

rewrite the deformation energy of the membrane (see Eq. 56) as

F~
pr0

�kk kzK{
0 Kz

1 {k{Kz
0 K{

1

� �
{4r0K ’’a k2

z{k2
{

� �
Kz

0 K{
0

|

f½4r0(kzK{
0 Kz

1 A2zK ’’ak2
{

� �2
{k{Kz

0 K{
1 A2zK ’’ak2

z

� �2
)

zK ’’a�kk k2
z{k2

{

� �
kzk{Kz

1 K{
1 �~uu2

0

z8A1r0½K ’’ak{kz k{K{
0 Kz

1 {kzKz
0 K{

1

� �
zA2 kzK{

0 Kz
1 {k{Kz

0 K{
1

� �
�~uu0z4A2

1r0 kzK{
0 Kz

1 {k{Kz
0 K{

1

� �
g

ð63Þ

This expression shows that F is a second-order polynomial in ~uu0.

Spring constant. Eq. 63 can be expressed as

F~Hf ~uu0{~uumin
0

� �2
zFmin , ð64Þ

where the effective spring constant reads

Hf ~
pr0

�kk kzK{
0 Kz

1 {k{Kz
0 K{

1

� �
{4r0K ’’a k2

z{k2
{

� �
Kz

0 K{
0

|

½4r0(kzK{
0 Kz

1 A2zK ’’ak2
{

� �2
{k{Kz

0 K{
1 A2zK ’’ak2

z

� �2
)

zK ’’a�kk k2
z{k2

{

� �
kzk{Kz

1 K{
1 � ,

ð65Þ

while ~uumin
0 denotes the value of ~uu0 that minimizes F , and Fmin is

the minimum of F , obtained for ~uu0~~uumin
0 . Note that both umin

0 and

Fmin are nonzero if A1=0 (see Eq. 63), due to the spontaneous

curvature of each monolayer. The effect of monolayer spontane-

ous curvature was disregarded in Ref. [18,22], which explains why

Eq. 64 differs from the standard expression F~Hf u2
0 [22].

Dependence on applied tension. Since

~uu0~‘{d0(1{s=Ka), Eq. 63 shows that F is a second-order

polynomial in the applied tension s (neglecting the s-dependence

of k’a as explained in the main text). Thus, we can write

{
F

kBT
~C0zC1szC2s2 , ð66Þ

with

C1~
{2pr0d0

kBT Ka �kk kzK{
0 Kz

1 {k{Kz
0 K{

1

� �
{4r0K ’’a k2

z{k2
{

� �
Kz

0 K{
0

� �|
f4A1r0½K ’’ak{kz k{K{

0 Kz
1 {kzKz

0 K{
1

� �
zA2 kzK{

0 Kz
1 {k{Kz

0 K{
1

� �
�z½4r0(kzK{

0 Kz
1 A2zK ’’ak2

{

� �2

{k{Kz
0 K{

1 A2zK ’’ak2
z

� �2
)zK ’’a�kk k2

z{k2
{

� �
kzk{Kz

1 K{
1 �(‘{d0)g

ð67Þ

C2~{
d2

0

K2
a

Hf

kBT
, ð68Þ

where Hf is the effective spring constant expressed in Eq. 65.
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4 Estimating c’0
Let us start from the free energy per molecule in mono-

layerzexpressed in Eq. 1. All the quantities involved in this

expression are defined on the hydrophilic-hydrophobic interface S
of the monolayer.

Let us consider a surface S0 parallel to S, and let us call d the

algebraic distance from S0 to S. To second order in the small

dimensionless variables c1d and c2d, where c1 and c2 denote the

local principal curvatures of the monolayer (recall that

H~(c1zc2)=2 and K~c1c2), geometry gives [19]:

S’~S 1z2HdzKd2
� �

, ð69Þ

H ’~Hz K{2H2
� �

d , ð70Þ

K ’~K : ð71Þ

Hence, we can rewrite f z using variables defined on S0, to second

order:

f z~
1

2
f ’’0(S’{S0)2zf1 H ’z f ’1{2 f ’’0S0 dð Þ S’{S0ð ÞH ’

z f2z2f ’’0S
2
0 d2{2 f ’1S0 dz2 f1 d

� �
H ’2z(fK{f1 d)K ’

za (+S’)2zb+2S’zf (+2S’)2{m ,

ð72Þ

where we have neglected terms containing derivatives of order

higher than two.

If S0 is the neutral surface of the monolayer [19], by definition,

the curvature and the area variations are decoupled, which entails

f ’1~2f ’’0S0 j, where j denotes the algebraic distance from the

neutral surface to the hydrophilic-hydrophobic interface of the

monolayer. Thus, given that f ’’0~Ka=(2S0), f2~k0S0, and

f ’1=f2~c’0 (see Methods, Sec. 1.1), we obtain

c’0S0~
Ka j

k0

: ð73Þ
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