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In 1977 Korchinski presented a new type of shock discontinuity in conservation laws. These singular solutions 
were coined 𝛿-shocks since there is a time dependent Dirac delta involved. A naive description is that such 𝛿-

shock is of the overcompressive type: a single shock wave belonging to both families, the four characteristic lines 
of which impinge into the shock itself. In this work, we open the fan of solutions by studying two-family waves 
without intermediate constant states but possessing central rarefactions or comprising 𝛿-shocks.
1. Introduction

The introduction of 𝛿-shocks occurred forty years ago with the un-

published thesis [1], where such discontinuities appear in a theoretical 
context. Around that time, there was a simplified model for multiphase 
flow in porous media due to D.W. Peaceman that also presented such 
a mass accumulation within one of these singularities, [2]. Along these 
four decades, the applicability of 𝛿-shocks have emerged in many ar-

eas such as chromatography [3, 4], magnetohydrodynamics [5, 6, 7], 
traffic flow [8], fluid dynamics [9], and perhaps also in flow in porous 
media [10], and other areas.

It is natural to consider a 𝛿-shock with speed 𝜎 as an overcompressive 
shock wave, which means a discontinuity satisfying that left and right 
characteristic lines impinge into the shock itself, i.e.,

𝜆1,2(𝑈𝐿) > 𝜎 > 𝜆1,2(𝑈𝑅), (1)

for 𝑈𝐿 = (𝑢𝐿, 𝑣𝐿)⊤ and 𝑈𝑅 = (𝑢𝑅, 𝑣𝑅)⊤ the left and right Riemann data 
and 𝜆1,2(𝑈 ) the characteristic speeds for a point 𝑈 = (𝑢, 𝑣)⊤ in state 
space; cf. [1, 5, 6, 8, 11, 12, 13]. Overcompressibility in Eq. (1) is a 
natural extension of Lax classification, [14], which considers also the 
discontinuities satisfying the following speed inequalities

𝜆1,2(𝑈𝐿) > 𝜎 > 𝜆1(𝑈𝑅), 𝜆2(𝑈𝑅) ≥ 𝜎, (2)
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𝜆2(𝑈𝐿) > 𝜎 > 𝜆1,2(𝑈𝑅), 𝜎 ≥ 𝜆1(𝑈𝐿), (3)

𝜆2(𝑈𝐿) > 𝜎 > 𝜆1(𝑈𝑅), 𝜆2(𝑈𝑅) ≥ 𝜎 ≥ 𝜆1(𝑈𝐿), (4)

giving rise to 1-Lax shock waves in Eq. (2), 2-Lax shock waves in Eq. (3), 
and undercompressive or transitional shock waves in Eq. (4). Left- and 
right-characteristic shocks are included in this shock type definition. 
They occur when a shock speed coincides with the characteristic speed. 
Whereas by definition overcompressive shocks cannot be characteristic, 
see Eq. (1), the limit of the inequalities above are included in (2)-(4); 
for further details see [15, 16, 17] and references therein.

The types of shocks given by (2)-(4) are not found explicitly in the 
literature in conjunction to 𝛿-shocks. From the extensively large bib-

liographic review in [4] for models with 𝛿-shocks, we notice that the 
conservation laws models that were identified and analyzed are weakly 
coupled and of the form

𝑢𝑡 +
(
𝐹 (𝑢, 𝑣)

)
𝑥
= 0, (𝑥, 𝑡) ∈ℝ ×ℝ+, (5a)

(𝑢𝛼𝑣)𝑡 +
(
𝐺(𝑢, 𝑣)

)
𝑥
= 0, (𝑥, 𝑡) ∈ℝ ×ℝ+, (5b)

where 𝛼 is zero or one, and 𝐹 and 𝐺 are linear in 𝑣, see also [3]. We 
identify the Riemann solution by 𝑈 = (𝑢, 𝑣)⊤.

Consider the case 𝛼 = 0 and notice that for a Riemann problem in-

cluding a 𝛿-shock, the shock speed is extracted from (5a), and from 
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(5b), which determines left and right transport speeds 𝑐𝐿 = 𝐺(𝑢𝐿, 𝑣)∕𝑣
and 𝑐𝑅 =𝐺(𝑢𝑅, 𝑣)∕𝑣. Now, an equation of the transport type 𝑣𝑡 + 𝑐𝑣𝑥 = 0
should be solved at left and right of 𝑥 = 𝜎𝑡, with 𝑐 = 𝑐𝐿 and 𝑐𝑅, re-

spectively. The characteristic lines from (5a) impinge into the shock 
wave, however, there is no prescribed relationship between the com-

parisons between 𝜎 against 𝑐𝐿 and 𝑐𝑅, so any of the inequalities (1)-(4)

may hold; necessarily the compressibility is preserved with the forma-

tion of a shock wave. For 𝑣 we have two transport equations, which 
can only carry information from the Riemann data; the 𝛿-shock is con-

sequence solely of the imbalance of mass at 𝑥 = 𝜎𝑡. Still, this 𝛿-shock is 
surrounded by constant states rather than rarefaction waves.

An overcompressive shock is a restrictive wave in the sense that it 
is an isolated discontinuity for a Riemann problem connecting left and 
right states 𝑈𝐿, 𝑈𝑅 via this shock; Eq. (1) holds, and there can be nei-

ther preceding nor succeeding waves, only constant states on both sides 
of the discontinuity. Our main result is the construction of the other 
types of shock waves related to (2)-(4) with a 𝛿-shock involved. The 
new 𝛿-shocks may precede or succeed rarefaction waves. Hence, clas-

sical Riemann solutions with two wave groups. Typically, there exists 
an intermediate constant state separating wave groups. The authors in 
[18] endeavored to produce a set of conservation law models possessing 
Riemann solutions without such intermediate constant states. Remark-

ably, the solutions we present here possess a 𝛿-shock rather than these 
intermediate constant states. Other directions are given in [19], where 
Riemann solutions are reported that possess no intermediate constant 
states but 𝛿-contact discontinuities and, in [5], where interaction of 
classical waves and 𝛿-shocks is given at a positive time.

The rest of this work is organized as follows. In Sec. 1.1, we recon-

struct the overcompressive shock wave found by Korchinski. In Sec. 2, 
we present the new 𝛿-shocks of type (2)-(4) with preceding or succeed-

ing central rarefaction fans. Finally, in Sec. 3, we present a Riemann 
solution possessing two 𝛿-shocks. Some concluding remarks are pre-

sented in Sec. 4.

1.1. The first analysis, back to 1977

Take Korchinski’s system [1], and rescale it as in [11]:

𝑢𝑡 + (𝑢2)𝑥 = 0, (𝑥, 𝑡) ∈ℝ ×ℝ+, (6a)

𝑣𝑡 + (𝑢𝑣)𝑥 = 0, (𝑥, 𝑡) ∈ℝ ×ℝ+. (6b)

We denote Riemann problems as RP(𝑈𝐿, 𝑈𝑅), comprising a system of 
conservation laws (as (6), (10) or (13)), and a discontinuous initial con-

dition

𝑈 (𝑥, 0) =

{
𝑈𝐿, 𝑥 < 0,
𝑈𝑅, 𝑥 > 0.

(7)

From the well-known Rankine-Hugoniot condition, a shock front for 𝑢
with propagation speed 𝜎 = 𝑢𝐿 + 𝑢𝑅 exists when 𝑢𝑅 < 𝑢𝐿 holds. In the 
presence of this shock wave, 𝑣 changes across the front line 𝑥 − 𝜎𝑡 = 0. 
The solution profile for 𝑣(𝑥, 𝑡) can be written as

𝑣(𝑥, 𝑡) = 𝑣𝐿 + (𝑣𝑅 − 𝑣𝐿)(𝑥− 𝜎𝑡) + 𝑘(𝑡)𝛿(𝑥− 𝜎𝑡), (8)

where  is the Heaviside step function and 𝛿 is the Dirac delta, see 
for example [5] or for other notations [1, 4, 11]. Here we have taken 
advantage of the self-similarity property that we are seeking for in a 
Riemann solution; we know the solution for (6a) and (7) as 𝑢(𝑥, 𝑡) =
𝑢𝐿 + (𝑢𝑅 − 𝑢𝐿)(𝑥 − 𝜎𝑡), [20]. The characteristic speeds satisfy (1) but 
a simple calculation shows that 𝑣(𝑥, 𝑡) = 𝑣𝐿 + (𝑣𝑅 − 𝑣𝐿)(𝑥 − 𝜎𝑡) does 
not preserve mass, suggesting the need to add a Dirac delta that com-

pensates for conservation at a “single point”, the front line 𝑥 − 𝜎𝑡 = 0. 
However, since the solution is self-similar, it is natural to think that the 
amplitude of such term will change over time, therefore the 𝑘(𝑡) depen-

dency to be determined soon.
2

In a conservation law, the change of mass in an interval is equal to 
the net flow of mass at the boundary. For an interval 𝑥 ∈ [𝑎, 𝑏] with 
𝑎 ≪ 0 ≪𝑏, the mass balance of 𝑣(𝑥, 𝑡) in (8) is given by

𝑢𝐿𝑣𝐿 − 𝑢𝑅𝑣𝑅 = 𝑑

𝑑𝑡

𝑏

∫
𝑎

𝑣(𝑥, 𝑡)𝑑𝑥

= 𝑑

𝑑𝑡

⎡⎢⎢⎣
𝜎𝑡

∫
𝑎

𝑣𝐿 𝑑𝑥 +

𝑏

∫
𝜎𝑡

𝑣𝑅 𝑑𝑥 +

𝑏

∫
𝑎

𝑘(𝑡)𝛿(𝑥− 𝜎𝑡)𝑑𝑥
⎤⎥⎥⎦

= 𝜎(𝑣𝐿 − 𝑣𝑅) + 𝑘′(𝑡). (9)

Equating these equalities and integrating over 𝑡 leads to 𝑘(𝑡) = (𝑢𝑅𝑣𝐿 −
𝑢𝐿𝑣𝑅)𝑡, since the initial condition (7) implies 𝑘(0) = 0. Thus, this Rie-

mann problem has solution

𝑈 (𝑥, 𝑡) =
(

𝑢𝐿 + (𝑢𝑅 − 𝑢𝐿)(𝑥− 𝜎𝑡)
𝑣𝐿 + (𝑣𝑅 − 𝑣𝐿)(𝑥− 𝜎𝑡) + (𝑢𝑅𝑣𝐿 − 𝑢𝐿𝑣𝑅)𝑡 𝛿(𝑥− 𝜎𝑡)

)
,

which is plotted in Fig. 1. The second coordinate state possesses a 𝛿-

shock with growing amplitude 𝑘(𝑡).
Of course, these computations hold in the sense of distributions, see 

[19, 21, 22]. However, the Riemann solutions in the sections that follow 
comprise rarefactions that are difficult to handle in these distributions. 
Even if it is possible to compute the generalized Rankine-Hugoniot 
conditions given in [6], see also [19], for simplicity we prefer direct 
computations as in (9).

2. A 𝜹-shock near a rarefaction wave

In this section we modify system (6) in order to produce a richer set 
of discontinuities around a 𝛿-shock. We consider

𝑢𝑡 + (𝑢2)𝑥 = 0, (𝑥, 𝑡) ∈ℝ ×ℝ+, (10a)

𝑣𝑡 + (𝑢𝑣2)𝑥 = 0, (𝑥, 𝑡) ∈ℝ ×ℝ+. (10b)

As before, from (10a), a solution for the RP(𝑈𝐿, 𝑈𝑅) has a shock wave 
with speed 𝜎 = 𝑢𝐿 + 𝑢𝑅 when 𝑢𝑅 < 𝑢𝐿; this fact will be assumed from 
now on.

Now, the nonlinear flux for 𝑣 is 𝑢𝑣2, so at constant 𝑈𝐿,𝑅 we have 
characteristic speeds, 𝜆𝐿 = 2𝑢𝐿𝑣𝐿 at the left of the shock front and 
𝜆𝑅 = 2𝑢𝑅𝑣𝑅 at the right. (The other two characteristic speeds satisfy 
�̃�𝐿 ∶= 2𝑢𝐿 > 𝜎 > 2𝑢𝑅 =∶ �̃�𝑅.) In the original model, the flux for 𝑣 is lin-

ear around the shock and the 𝛿-shock is a consequence of this imposed 
transport.

New scenarios arise when 𝜆𝐿, 𝜆𝑅 > 𝜎 as in Eq. (2), 𝜎 > 𝜆𝐿, 𝜆𝑅 as 
in Eq. (3), or 𝜆𝐿 < 𝜎 < 𝜆𝑅 as in Eq. (4). We study the first and third 
cases; the second case is similar to the first one. Notice that in the first 
case, as 𝜎 < 𝜆𝑅, the gap in characteristic lines in 𝑥𝑡 plane can be filled 
with a centered rarefaction fan via the nonlinear flux in (10b). In the 
third case 𝜆𝐿 < 𝜎 < 𝜆𝑅 hold, thus preceding and subsequent rarefactions 
appear around the 𝛿-shock, see bottom panels in Fig. 1.

2.1. The case of 𝛿-shock – rarefaction

When the speed inequalities 𝜎 < 𝜆𝐿, 𝜆𝑅 hold, at the left of the shock 
discontinuity, the result must be as in the Korchinski case: 𝜆𝐿, �̃�𝐿 > 𝜎. 
However, at the right of this shock a rarefaction must appear to fill the 
gap between 𝜎𝑡 and 𝜆𝑅𝑡 in 𝑥𝑡 plane. For this reason, we take the solution 
ansatz

𝑣(𝑥, 𝑡) = 𝑣𝐿 +
(

𝑥∕𝑡
2𝑢𝑅

− 𝑣𝐿

)
(𝑥− 𝜎𝑡) +

(
𝑣𝑅 −

𝑥∕𝑡
2𝑢𝑅

)
(𝑥− 𝜆𝑅𝑡)

+ 𝑘(𝑡)𝛿(𝑥− 𝜎𝑡), (11)

comprising a “fast” rarefaction that also satisfies (10b). As in (9), the 
mass balance is computed from (11) as
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Fig. 1. Profiles with 𝛿-shocks. We use blue, red and black for curves related to 𝑢, 𝑣, and both 𝑢 and 𝑣. On top, solid lines represent constant states and rarefactions, 
dotted lines are shock waves at 𝑥 = 𝜎𝑡 (arrows with 𝛿 are schematic “amplitude” directions of 𝛿-shocks); at bottom, we have characteristic speeds on 𝑥𝑡 plane, the 
horizontal thin line is time 𝑡 = 1 taken as reference for the advance of waves on top panel profiles; 𝑥 = 𝜎𝑡 is in thick dark line, 𝑥 = 𝜆{𝐿,𝑅}𝑡 are in thick red lines. All 
Riemann problems have 𝑢𝐿 > 𝑢𝑅. On left panels is represented the RP for (6), shaded regions represent the fact that this configuration exists for any choice of 𝑣𝐿 , 
𝑣𝑅. Central and right panels are RP for (10), thin horizontal red lines represent the thresholds 𝜆𝐿 = 𝜎 and 𝜆𝑅 = 𝜎; 𝜆𝐿 < 𝜎 implies a rarefaction before the 𝛿-shock as 
in right panels, similarly 𝜆𝑅 > 𝜎 implies rarefaction after the 𝛿-shock as in central and right panels.
𝑢𝐿𝑣
2
𝐿
− 𝑢𝑅𝑣

2
𝑅
= 𝑑

𝑑𝑡

⎡⎢⎢⎢⎣
𝜎𝑡

∫
𝑎

𝑣𝐿 𝑑𝑥 +

𝜆𝑅𝑡

∫
𝜎𝑡

𝑥∕𝑡
2𝑢𝑅

𝑑𝑥 +

𝑏

∫
𝜆𝑅𝑡

𝑣𝑅 𝑑𝑥

+

𝑏

∫
𝑎

𝑘(𝑡)𝛿(𝑥− 𝜎𝑡)𝑑𝑥
⎤⎥⎥⎥⎦

= 𝜎𝑣𝐿 +
𝜆2
𝑅
− 𝜎2

4𝑢𝑅
− 𝜆𝑅𝑣𝑅 + 𝑘′(𝑡),

which leads to 𝑘(𝑡) =
[
𝑢𝐿𝑣

2
𝐿
− 𝜎𝑣𝐿 + 𝜎2∕(4𝑢𝑅)

]
𝑡. An example with 𝑈𝐿 =

(2, 1)⊤, 𝑈𝑅 = (−1, −3∕4)⊤ is given in the central panel of Fig. 1.

Borrowing terminology used for Riemann problems for conservation 
laws (see [14, 23]), we say that this solution is given by a 𝛿-shock of 
type 1-Lax for the first wave group (i.e., the characteristic speeds satisfy 
(2)), the second wave group is a second family (or fast) rarefaction. This 
1-Lax 𝛿-shock in the extended sense possesses a Dirac delta with linearly 
increasing amplitude, as the one in the Korchinski model, see Eq. (9). 
Moreover, notice the lack of intermediate constant state between wave 
groups.

2.2. The case of rarefaction – 𝛿-shock – rarefaction

We consider now the case 𝜆𝐿 < 𝜎 < 𝜆𝑅. The ansatz satisfying (10b) is

𝑣(𝑥, 𝑡) = 𝑣𝐿 +
(
𝑥∕𝑡
2𝑢𝐿

− 𝑣𝐿

)
(𝑥− 𝜆𝐿𝑡) +

(
𝑥∕𝑡
2𝑢𝑅

−
𝑥∕𝑡
2𝑢𝐿

)
(𝑥− 𝜎𝑡)

+
(
𝑣𝑅 −

𝑥∕𝑡
2𝑢𝑅

)
(𝑥− 𝜆𝑅𝑡) + 𝑘(𝑡)𝛿(𝑥− 𝜎𝑡), (12)

which comprises “slow” and “fast” rarefactions. The mass balance is 
computed from (12) as

𝑢𝐿𝑣
2
𝐿
− 𝑢𝑅𝑣

2
𝑅
= 𝑑

𝑑𝑡

⎡⎢⎢⎢⎣
𝜆𝐿𝑡

∫
𝑎

𝑣𝐿 𝑑𝑥 +

𝜎𝑡

∫
𝜆𝐿𝑡

𝑥∕𝑡
2𝑢𝐿

𝑑𝑥 +

𝜆𝑅𝑡

∫
𝜎𝑡

𝑥∕𝑡
2𝑢𝑅

𝑑𝑥 +

𝑏

∫
𝜆𝑅𝑡

𝑣𝑅 𝑑𝑥

+

𝑏

∫
𝑎

𝑘(𝑡)𝛿(𝑥− 𝜎𝑡)𝑑𝑥
⎤⎥⎥⎥⎦

= 𝜆𝐿𝑣𝐿 +
𝜎2 − 𝜆2

𝐿 +
𝜆2
𝑅
− 𝜎2

− 𝜆𝑅𝑣𝑅 + 𝑘′(𝑡),

4𝑢𝐿 4𝑢𝑅

3

which leads to 𝑘(𝑡) = 𝜎2(𝑢𝐿−𝑢𝑅)∕(4𝑢𝐿𝑢𝑅)𝑡. Notice that stationary shocks, 
i.e. shocks with speed 𝜎 = 𝑢𝐿 + 𝑢𝑅 = 0, do not produce deltas, since such 
a delta would have zero amplitude 𝑘(𝑡) for all times. An example with 
𝜎 = 1: 𝑈𝐿 = (2, 1∕8)⊤, 𝑈𝑅 = (−1, −3∕4)⊤ is given on the right panel of 
Fig. 1.

This solution is given by a first family (or slow) rarefaction as first 
wave group, a 𝛿-shock of transitional type, see (4), and a second family 
(or fast) rarefaction as the second wave group. Notice the linear behav-

ior of 𝑘(𝑡) and the lack of intermediate constant states between wave 
groups.

3. Example of a wave with two 𝜹-shocks

In the previous sections, we have studied wave groups possessing 
a single 𝛿-shock. Our aim now is to construct a new model supporting 
two of such singular discontinuities. This model possesses the features 
of models in [4].

Let us take a modification of (6) with a distinguished conservation 
for 𝑢 and repeat the conservation law for 𝑣, see (6b). We write the 
system

𝑢𝑡 + 𝑓 (𝑢)𝑥 = 0, (𝑥, 𝑡) ∈ℝ ×ℝ+, (13a)

𝑣𝑡 + (𝑢𝑣)𝑥 = 0, (𝑥, 𝑡) ∈ℝ ×ℝ+, (13b)

where the flux 𝑓 (𝑢) is a double-well function. For the sake of simplicity, 
from here and on, we consider

𝑓 (𝑢) =
⎧⎪⎨⎪⎩
(𝑢+ 2)2 − 1, for 𝑢 < −1,
1 − 𝑢2, for 𝑢 ∈ [−1, 1],
(𝑢− 2)2 − 1, for 𝑢 > 1,

(14)

and for the Riemann problem, we consider 𝑢𝐿 = −𝑢𝑅 = (3 +
√
2)∕2. Then, 

the solution for 𝑢 is

𝑢(𝑥, 𝑡) = 𝑢𝐿 +
(
𝑥∕𝑡
𝑎𝐿

− 𝑢𝐿

)
(𝑥− 𝜎−𝑡) +

(
𝑢𝑅 −

𝑥∕𝑡
𝑎𝐿

)
(𝑥− 𝜎+𝑡), (15)

where from Oleı̆nik construction (cf. [20] and Fig. 2), we have 𝜎+ =
−𝜎− = 1 and 𝑎𝑅 = −𝑎𝐿 = 1∕2.

The characteristic speed for 𝑣 is given directly as 𝑢, thus from (15)

we notice that its flux is zero at 𝑥 = 0. The ansatz for this system is
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Fig. 2. Left: Flux function (14) in black, Oleı̆nik convex hull for 𝑢𝐿 = 1 = −𝑢𝑅 in red; the envelope is tangent at 𝑎𝐿 and 𝑎𝑅 . Center: Characteristic speeds for the 
associated RP, solid lines represent shock waves, dotted lines represent centered rarefaction fan. Right: Profile solution for system (13); blue is 𝑢(𝑥, 𝑡) profile, red is 
𝑣(𝑥, 𝑡) profile. Two 𝛿-shocks at 𝜎±𝑡, the “amplitudes” are specified; 𝛿± denote the pulses 𝑘±(𝑡)𝛿(𝑥 − 𝜎±𝑡).
𝑣(𝑥, 𝑡) = 𝑣𝐿 + (0 − 𝑣𝐿)(𝑥− 𝜎−𝑡) + (𝑣𝑅 − 0)(𝑥− 𝜎+𝑡)

+ 𝑘−(𝑡)𝛿(𝑥− 𝜎−𝑡) + 𝑘+(𝑡)𝛿(𝑥− 𝜎+𝑡), (16)

the solution of which fulfills (13b) and (15). Indeed, the constant re-

gions for 𝑥 ∉ [𝜎−𝑡, 𝜎+𝑡] satisfy directly 𝑣𝑡 = (𝑢𝑣)𝑥 = 0. For 𝑥 ∈ (𝜎−𝑡, 𝜎+𝑡), 
we have from (15) and assuming there must be a rarefaction, that it has 
the form 𝑣(𝑥, 𝑡) = 𝑚𝑥∕𝑡 for a slope 𝑚 to be specified. Then, by substitut-

ing this form into (13b) we obtain

𝑣𝑡 + (𝑢(𝑥, 𝑡)𝑣)𝑥 = −𝑚𝑥

𝑡2
+ 1

𝑎𝐿𝑡

𝑚𝑥

𝑡
+ 𝑥

𝑎𝐿𝑡

𝑚

𝑡
= 𝑚𝑥

𝑡2

(
−1 + 2

𝑎𝐿

)
= 0,

where the last equality holds only for 𝑚 = 0.

Considering the positive axis, the change of mass of 𝑣 for 𝑥 ≥ 0 is 
given from (16) as

0 − 𝑢𝐿𝑣𝐿 = 𝑑

𝑑𝑡

⎡⎢⎢⎢⎣
𝜎+𝑡

∫
0

0𝑑𝑥 +

𝑏

∫
𝜎+𝑡

𝑣𝑅 𝑑𝑥 +

𝑏

∫
0

𝑘+(𝑡)𝛿(𝑥− 𝜎+𝑡)𝑑𝑥
⎤⎥⎥⎥⎦

= −𝜎+𝑣𝑅 + 𝑘′+(𝑡).

Thus, 𝑘+(𝑡) = (𝜎+𝑣𝑅 − 𝑢𝑅)𝑡, and 𝑘−(𝑡) = −(𝜎−𝑣𝐿 − 𝑢𝐿)𝑡, from an analo-

gous treatment for the change of mass of 𝑣 for 𝑥 ≤ 0.

In Fig. 2 we plot the solution profile for RP(𝑈𝐿, 𝑈𝑅), where 𝑈𝐿 =
(−(3 +

√
2)∕2, 𝑣𝐿)⊤ and 𝑈𝑅 = ((3 +

√
2)∕2, 𝑣𝑅)⊤, for 𝑣𝐿 < 𝑢𝑅 and 𝑣𝑅 < 𝑢𝐿; 

for these settings 𝑘+(𝑡), 𝑘−(𝑡) > 0 for all times, the amplitude of both 
𝛿-shocks is positive.

4. Concluding remarks

A crucial feature in constructing the solutions in Sec. 2 is the nonlin-

ear behavior of 𝐺(𝑢, 𝑣) in 𝑣, see (5). From Eq. (10a), or similar, we can 
extract the speed 𝜎, which determines the existence and localization 
of 𝛿-shocks. The second flux, i.e. 𝐺(𝑢, 𝑣), establishes thresholds by com-

paring 𝜆𝐿 =𝐺𝑣(𝑢𝐿, 𝑣𝐿) and 𝜆𝑅 =𝐺𝑣(𝑢𝑅, 𝑣𝑅) to 𝜎. Notice that 𝑣(𝑥, 𝑡) → 𝜆𝐿
(𝜆𝑅, respectively) as 𝑥 → 𝜎𝑡− (𝜎𝑡+, resp.), so a “transitional 𝛿-shock” has 
zero amplitude when 𝜆𝐿 = 𝜆𝑅 = 𝜎 hold, but there is a bump at 𝑥 = 0 (typ-

ically 𝑣(0, 𝑡) = 0 is larger than 𝑣𝐿, 𝑣𝑅). In such a situation a 𝛿-shock is 
masked within a bump; small perturbations of the Riemann data will re-

produce the linear growing of the delta. In other words, 𝛿-shocks can be 
masked with specific mathematical settings, which stands in contradis-

tinction to their nature from the physical point of view, this reinforces 
the idea of 𝛿-shocks that have not been reported in the literature.

In [24], LeFloch established the existence of solutions for Cauchy 
problems in a model similar to (13) for convex flux 𝑓 (𝑢). For such 
fluxes, the Riemann problem may possess a single 𝛿-shock. Here we 
have constructed an elegant solution comprising two 𝛿-shocks. In [19], 
a solution with three 𝛿-shocks appears for a 3 × 3 system of conserva-

tion laws. Actually, following the ideas in Sec. 3, we can present a flux 
𝑓 (𝑢) that allows the generation of any number of 𝛿-shocks; each contact 
discontinuity from the Oleı̆nik convex hull construction may become a 
𝛿-shock.

On the other hand, solutions comprising rarefactions and 𝛿-shocks 
were presented in Sec. 2, and we noticed the absence of intermedi-

ate constant states in all of them. In the Riemann solutions foreseen in 
classical theory by Lax and Liu (cf. [14, 23]), the existence of interme-

diate constant states is necessary for the structural stability. Rather, the 
4

lack of these states is compensated by 𝛿-shocks. In [18], an “organizing 
center” controls the appearance of transitional waves by eliminating 
several intermediate constant states, however 𝛿-shocks appear in dif-

ferent models, suggesting 𝛿-shocks to be a more general phenomenon. 
In summary, we can build 2 × 2 Riemann solutions with any number 
of 𝛿-shocks that compose with different elementary waves, such as the 
transitional shocks used in [25], for long distinguished wave chains. 
Therefore, we have an eye-catching phenomenon that emerges with 
potential giving rise to new solutions. These solutions arise in stark 
contrast of what is known for strictly hyperbolic systems of conserva-

tion laws.
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