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Objective: Convolutional neural network (CNN) is designed for image classification and
recognition with a multi-layer neural network. This study aimed to accurately assess
sellar floor invasion (SFI) of pituitary adenoma (PA) using CNN.

Methods: A total of 1413 coronal and sagittal magnetic resonance images were
collected from 695 patients with PAs. The enrolled images were divided into the
invasive group (n = 530) and the non-invasive group (n = 883) according to the surgical
observation of SFI. Before model training, 100 images were randomly selected for the
external testing set. The remaining 1313 cases were randomly divided into the training
and validation sets at a ratio of 80:20 for model training. Finally, the testing set was
imported to evaluate the model performance.

Results: A CNN model with a 10-layer structure (6-layer convolution and 4-layer
fully connected neural network) was constructed. After 1000 epoch of training, the
model achieved high accuracy in identifying SFI (97.0 and 94.6% in the training and
testing sets, respectively). The testing set presented excellent performance, with a
model prediction accuracy of 96%, a sensitivity of 0.964, a specificity of 0.958, and
an area under the receptor operator curve (AUC-ROC) value of 0.98. Four images
in the testing set were misdiagnosed. Three images were misread with SFI (one with
conchal type sphenoid sinus), and one image with a relatively intact sellar floor was not
identified with SFI.

Conclusion: This study highlights the potential of the CNN model for the efficient
assessment of PA invasion.

Keywords: pituitary adenoma, deep learning, magnetic resonance imaging, invasion, sellar floor

INTRODUCTION

Pituitary adenoma (PA) is a common intracranial neoplasm, with a frequency of invasiveness
of 35–54% (Lee et al., 2015; Yang and Li, 2019; Principe et al., 2020). PAs with sellar invasion
have a high rate of residual tumor and recurrence after surgery and pharmacologic tolerance
(Dekkers et al., 2020; Trouillas et al., 2020). According to recent guidelines from the European
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Society of Endocrinology, temozolomide was considered the first-
line chemotherapy for aggressive PAs, radiologically invasive PAs
with resistance to conventional treatment (Raverot et al., 2018).
Therefore, the accurate radiological diagnosis of PA invasiveness
is required to assist the clinician in making therapy strategies and
prognosis assessment.

The current preoperative evaluation of sellar invasion is
based on radiological characteristics (Bonneville et al., 2020). In
previous studies, imaging grading systems of PA invasiveness,
such as the Knosp and Hardy grading system, have been
widely used to improve the rater reliability and evaluation
efficiency (Yip and Aerts, 2016; Mooney et al., 2017b; Bonneville
et al., 2020). However, the inter-observer agreement is weak
for the Knosp and Hardy grading system (Mooney et al.,
2017a). Dichotomizing the full scale was able to address the
poor percent agreement of imaging grades. In a recent meta-
analysis, PAs with Knosp grade 2, 3A, and 3B presented
invasion rates of 30, 61.7, and 81.1%, respectively (Fang
et al., 2021). Hence, the invasiveness and non-invasiveness
cannot be completely dichotomized according to existing
radiographic grades. Although magnetic resonance imaging
(MRI) can reveal the sellar structures and tumor characteristics,
distinguishing tumor invasion accurately using the naked
eye is challenging.

As a branch of machine learning, deep learning has
achieved significant improvement in multiple fields of image
classification and computer vision, which has also prompted
computer reading to become feasible in neuroscience. Machine
identification and classification can facilitate faster, accurate,
and stable preoperative assessment. Recent advancements in
computational power have allowed artificial neural networks
to achieve deep architectures due to the graphic processing
units and the invention of gradient backward propagation
(Wong et al., 2021). These deep neural networks present
superior performance than other machine learning techniques
and have been progressively applied in clinical practice
for intracranial tumors (Akkus et al., 2017; Deepak and
Ameer, 2019; Wong et al., 2021). As a deep neural network,
convolutional neural networks (CNNs) utilize many learnable
convolutional filters to facilitate imaging processing and
recognition (Hosny et al., 2018).

This study aimed to construct a CNN model in combination
with intraoperative evidence and to assist clinicians in identifying
the sellar floor invasion (SFI) of PAs using a contrast-
enhanced MRI.

MATERIALS AND METHODS

Patient Cohort
In this study, the keywords including “pituitary adenoma,”
“acromegaly,” “Cushing’s disease,” and “hyperprolactinemia”
were used to search for electronic medical records from
2015 to 2020. After screening, the clinical data of 695
PAs from 2 medical centers (Fuzhou 900th Hospital and
Peking Union Medical College Hospital) were enrolled. Basic
clinical data, imaging data, and surgical records were reviewed.

This study was approved by the review boards of Fuzhou
900th Hospital and Peking Union Medical College Hospital,
and the requirement for informed consent was waived.
The inclusion criteria were as follows: (1) patients with
clear preoperative imaging data suitable for analysis, (2)
transsphenoidal surgery patients with a detailed record of
intraoperative invasion, and (3) patients with pathological
diagnosis of PAs. Cases with other intracranial tumors, a previous
history of surgery or trauma in the sellar region, and artifacts in
the imaging were excluded.

Image Acquisition
All imaging data were collected from contrast-enhanced MRI
sequences, including coronal and sagittal scans (Figure 1). In
this study, cases were divided into two groups according to
surgical evidence. Images of PAs without SFI were collected in
the slices with the largest tumor area in both coronal and sagittal
scans. The SFI was located by experienced neurosurgeons on
the basis of surgical evidence and CT scans, and the images
were collected. In the sagittal and coronal MRI images of
patients with SFI, except for patients with focal sellar floor
destruction, other patients with multiple or diffuse sellar floor
destruction were sampled from multilayer sections according to
the location of the invasion. These images were then screened
by neurosurgeons with more than 20 years of experience in the
treatment PAs to remove some MRI images that were blurred
or difficult to identify the SFI. After the acquisition, patient
information was filtered and eliminated, and only the acquired
image was retained.

Magnetic Resonance Imaging Protocol
All patients in the study were treated with 3.0T MRI machines
(Siemens Medical Solutions, Erlangen, Germany, Fuzhou 900th
Hospital; Discovery MR 750, GE Healthcare, Peking Union
Medical College Hospital). Patients in the two centers for
a contrast-enhanced MRI, using the same contrast agent of
gadolinium-DTPA (Gd-DTPA) in a small dose. The contrast-
enhanced MRI from Peking Union Medical College Hospital
acquisition parameters included slice thickness of 3 mm, slice
spacing of 0.39 mm, echo time of 9.2 ms, repetition time of
400 ms, and an image size of 512 × 512 × 8 pixels. And, the
parameters of contrast-enhanced MRI included scan field of view
was 180 × 180 mm with matrix of 320–384 × 240–252, axial slice
of 1.0 mm, gap of 1.0 mm, coronal and sagittal section of 1.0 mm
with gap of 1.0 mm in Fuzhou 900th Hospital.

Image Preprocessing
One hundred images were randomly selected from the acquired
images, which were not involved in model construction. The
remaining 1314 image datasets were randomly grouped at a 80:20
ratio into the training and validation sets to develop a CNN
model. The image preprocessing procedure is summarized as
follows: (1) All images were converted to 256 × 256 square
images using zero padding and image resizing as appropriate
(Kim et al., 2019). (2) Images were converted into grayscale with
a single channel. (3) Augmentation procedure using horizontal
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FIGURE 1 | Image data collection process.

flip and vertical flip and batch normalization were performed for
data enhancement.

Classification With Deep Neural Network
The input images to the CNN model were 256 × 256 with
single channel. Feature capture was performed using six-layer
convolution layers, with 3 × 3 kernel size and zero padding
without stride. Each layer included a convolution layer, an
activation layer, a BatchNorm2d layer, and a maxpool layer. The
maxpool layer used a 2 × 2 matrix. Batch normalization is a
standard normal distribution with mean 1 and variance 1. It
is used to solve the gradient hour problem and accelerate the
convergence rate (parameter: eps = 1e−05, momentum = 0.1,
affine = True, track_running_stats = True). Then, 4 × 4 × 256
feature maps were output through six-layer convolution layers,
flattening, and connecting to a fully connected neural network
of 256 neuronal nodes. The neural network consists of four
layers. Finally, the binary classification results were output.
In addition to the connecting and output layers, 2 layers of
the hidden layer were also included, with 128 and 64 neural
nodes, respectively. There were also two dropout layers with a

probability of 0.7 and 0.5, respectively. The dropout layer reduces
overfitting by randomly omitting partial feature detectors on each
training case (Geoffrey et al., 2012). The full connection layer
was activated using the ReLU function. A binary cross-entropy
function was employed as the loss function, and Adam was used
as the optimization function (learning rate = 0.0001). Adam,
an algorithm for first-order gradient-based optimization of
stochastic objective functions, can adjust different learning rates,
is computationally efficient, and has little memory requirements
(Kingma and Ba, 2014). The model structure is detailed in
Figure 2. The trained model fixes and closes the dropout and
batch normalization layers to fit validation set data through
the eval function.

Evaluation
The external testing set was used to assess model generalization
capabilities. The 100 testing images that did not participate
in model development underwent simple transformation
(converting to 256 × 256 square images, single-channel grayscale
map, and normalization) into a model with adjusted weights
for result testing and evaluation. The eval function that can fix
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FIGURE 2 | The CNN structure.

model batch normalization and dropout layer was also used in
the testing set. The prediction results were combined with actual
labels to establish a confusion matrix. The records included
true positive, false positive, true negative, and false negative.
The sensitivity, specificity, positive predictive value, negative
predictive value, and area under the receptor operator curve

TABLE 1 | Summary of patient characteristics.

Characteristics N = 695 Value

Age

Mean, years 48.6 ± 14.0

Range, years 12.0–83.0

Sex (%)

Female 322 (46.33)

Male 373 (53.67)

Diameter

Mean, mm 28.38 ± 11.00

With SFI, mm 38.91 ± 10.75

Without SFI, mm 27.20 ± 10.60

Sellar invasion (%)

Yes 234 (33.7)

No 461 (66.3)

Model group (%)

Training 1054 (80)

Validation 259 (20)

Testing 100

Accuracy (%)

Training 97.0

Validation 94.6

Testing 96.0

(AUC-ROC) were also calculated to assess the model’s predictive
and generalization ability.

In addition, the evaluation results of 100 images of all testing
set were directly exported to reveal individual cases. The red mark
represents the image with evaluation difference. The detailed
code is shown in Supplementary Material.

Statistical Analysis and Software
Availability
All imaging data processing and model methods were
implemented using PyTorch (version 1.8.1)1 and operated
in Jupyter Notebook (version 6.4.0).2 Several open modules,
including Torch.nn, Torch.optim, and DataLoader, can be
used to develop a CNN model. Open-source libraries such as
Sklearn (version 2.1.0), NumPy (version 1.19.5), and Matplotlib
(version 3.4.2) were also used for model performance evaluation
and visualization.

The preprocessing of the image datasets depended on the
Transforms module in Torchvision library (version 0.9.1). The
interface for imaging data loading is the DataLoader module
in Torch library (parameters of the training set and validation
set: batch size = 4, shuffle = True). The model was developed
using Torch.nn module. Optimization was performed using
Torch.Adam. CrossEntropyLoss function was used as the loss
function. Hiddenlayer library (version 0.3) was used to display
the model training results dynamically. The confusion matrix was
formed by Confusion_matrix function. AUC-ROC analysis was
applied to assess the diagnostic value in identifying invasiveness,
which was calculated using the Roc_curve function.

1https://pytorch.org
2https://jupyter.org
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FIGURE 3 | The 1000 epochs of the training process.

SPSS (version 25) was used for statistical analysis. Categorical
variables were summarized as number (percentages) and
analyzed by Pearson’s Chi-squared test. Continuous variables
were presented as mean ± continuous variables and analyzed by
T-tests. The significance of differences was accepted at p < 0.05.

RESULTS

In the cohort, 234 (33.7%) cases were intraoperatively confirmed
with SFI, and 461 (66.3%) cases had no invasion (Table 1). There
were 373 males (53.67%) and 322 females (46.33%), and the
incidence of SFI was significantly higher in males than in females
(p = 0.028). The mean age was 48.6 ± 14.0 years (12–83 years). SFI
was not significantly correlated with age (p = 0.224). The mean
tumor diameter was 28.38 ± 11.00 mm. The tumor diameter in
the group with SFI was significantly larger than that in the group
without SFI (38.91 ± 10.75 versus 27.20 ± 10.60 mm, p < 0.001).

Finally, after sifting through all the images, a total of 1413
images were collected from 695 patients with a PA. Among
them, 530 images were collected in cases with SFI, and 883
were collected in the group without SFI. Except for 100 images
randomly selected for the external test set (28 in the invasion
group and 72 in the non-invasive group; 32 coronal images and
68 sagittal images), the remaining 1313 images were randomly
grouped at a ratio of 80:20. Consequently, 1054 images data were
enrolled in the training set (400 in the invasion group and 654

in the non-invasive group; 518 coronal images and 536 sagittal
images). A total of 259 images were enrolled in the validation set
(102 in the invasion group and 157 in the non-invasive group; 135
coronal images and 124 sagittal images). No significant difference
in the distribution of coronal and sagittal images has been found
between the training set and the validation set (p = 0.391).
Similarly, we also ascertained no significant difference in the
number of invasive images between the training set and the
validation set (p = 0.671).

With 1000 training epochs, the model presented convergence
and achieved an accuracy over 90% (Figure 3). The diagnosis
accuracy of SFI was 97.0% in the training set and 94.6% in the
validation set. The confusion matrix is shown in Figure 4. The
diagnostic accuracy of the testing set was 96%. The sensitivity was
0.964, the specificity was 0.958, the positive predictive value was
0.900, and the negative predictive value was 0.986, the positive
likelihood ratio is 22.952. The model had an AUC-ROC value
of 0.98. These results showed that the CNN model has excellent
diagnostic efficacy to distinguish SFI.

In the four misdiagnosed images of the testing set, three were
misread as having SFI and one as having no SFI. The diagnosis
results of the testing-set images can be available are shown in
Supplementary Material. In the images misread as SFI, one case
was diagnosed with conchal type sphenoid sinus, and the other
two cases with large PAs presented severe dilatation of the sellar
floor. The frequency of conchal type sphenoid sinus was limited
in this study, and the model might misunderstand the type of
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FIGURE 4 | ROC curve of the training set, validation set, and testing set.

sellar floor. One misread image with SFI had a relatively intact
sellar floor, which was not correctly identified by the model.

DISCUSSION

Imaging is essential for preoperative diagnosis of invasive and
aggressive PA. Advanced imaging techniques can clearly reveal
the sellar structure to assist clinicians in assessing the invasiveness
of PAs (Cao et al., 2013; Bonneville et al., 2020). Furthermore,
various imaging grades for PA invasiveness have been reported
(Micko et al., 2019; Fang et al., 2021). In the sellar invasion
scale of Hardy classification, the percent agreement among all
raters improved from 16% (8/50 cases) for the full scale to 64%
(32/50 cases) for the dichotomous scale (Mooney et al., 2017b).
Although investigators try to develop novel sequences or imaging
grades to accurately assess sellar structures, the invasiveness
of PAs is difficult to accurately diagnose due to limitations of
macroscopic identification, need for advanced imaging facilities,
and time constraints (Yoneoka et al., 2008; Cao et al., 2013; Lang
et al., 2018).

Machine learning can capture the information of each pixel
as meticulously as possible through the algorithm to more
accurately identify the details than the naked eye. Machine
learning can significantly reduce the cost for centers that
unconditionally update more advanced imaging facilities. There
have been several tentative applications and investigations in
the diagnosis and management of intracranial tumors, including
the diagnosis of PAs and tumor characteristics (Deepak and
Ameer, 2019; Fan et al., 2020; Wang et al., 2021). A total of 194
PAs with Knosp grade 2–3 was included in the latest radiomic
study to identify invasion of the cavernous sinus (ICS) (Niu
et al., 2019). This study extracted image data through manual
delineation and segmentation, and 2553 image features were
analyzed using SVM models to identify ICS. The AUC values
of the training and test sets were 0.85 and 0.83, respectively,
indicating that the model was reliable to distinguish cases with
or without ICS in the Knosp grade. This literature confirms the
feasibility of machine learning models in imaging identification

and classification of PAs. However, the most critical step in the
application of radiomics is the delineation of tumor margins.
The quality of delineation will directly affect the results of data
analysis. In addition to manual bias, this method has a limited
identification range and low efficiency, which is not conducive to
clinical application and promotion, so it is more used to study
clinical diseases (Yip and Aerts, 2016; Fan et al., 2020).

In the current study, a deep learning-based model was
described to accurately classify the invasiveness of PA according
to imaging data. With improved algorithms and computer
modules, deep neural networks can train and generalize relatively
small amounts of data with high sensitivity and specificity. There
are few applications of deep learning in the pituitary tumor.
Wei et al. (2020) used a deep learning convolution model to
discriminate acromegaly (n = 1139), Cushing’s disease (n = 880),
and normal human facial images (n = 12,667). The accuracy
of the external testing set (n = 60) was 91.7%, confirming the
reliability of CNN for the diagnosis of PA. Li et al. (2021)
recently reported a deep learning network that was constructed
using 168 patients with PAs. The model can accurately assess
functional and non-functional PAs according to imaging data.
In our cohort, 1413 PA images were collected to develop a CNN
to diagnose SFI. The accuracy of prediction was 97.0 and 94.6%
in the training and validation sets, respectively. The model has
high generalization ability. Through the performance evaluation
of the 100-case testing set, the prediction accuracy of SFI was 96%
with an AUC-ROC value of 0.98. The accuracy of the model for
SFI diagnosis is much higher than that of Hardy classification.
Therefore, the CNN model might become a valuable tool to
identify and correctly diagnose the properties of PAs.

Recognizing the invasiveness of PA through deep learning
provides not only an objective and stable basis for surgical
strategies and prognostic evaluation, but also a more accurate
invasive diagnosis for patients without surgical conditions,
especially for aggressive PA requiring drug chemotherapy.
The assessment of invasiveness is essential for diagnosing the
presence of aggressive PAs that are significantly tolerated by
traditional medical and surgical treatment (Lopes, 2017). In the
latest guidelines for diagnosing and managing aggressive PAs,
temozolomide was considered the first-line pharmacotherapy
(Raverot et al., 2018; Luo et al., 2021). Consequently, a higher
accuracy diagnosis of sellar invasion is required according to
imaging data. The deep machine learning model in this study
was confirmed to be stable and effective for diagnosing sellar
invasion. In the future, machine models can be utilized to
form image reports automatically. Furthermore, the location
of invasion might be accurately simulated and marked by
computer vision. Machine learning can compensate for the
macroscopic shortcomings of low reading efficiency and
recognition bias.

In addition, the model does not have any prior medical
knowledge except for two groups of images and labels. It
spontaneously discovers appropriate interpretable features to
assess sellar invasion. This suggests that deep learning methods
can extract human-understandable domain knowledge from
supervised data and have the ability to predict on the basis of the
extracted knowledge.
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Strengths and Limitations
This study used the convolutional depth neural network model to
identify SFI and achieve high diagnostic efficacy. After training,
the model was gradually stable, and the generalization ability
was excellent. This model is expected to be applied in clinical
practice to assist clinicians in screening and distinguishing
sellar invasion and improve reading efficiency. In addition,
manual segmentation was not used in this study, which reduced
the bias caused by manual factors during sampling. At the
same time, this study has some limitations. Given that only
contrast-enhanced sequences were collected in this study, no
healthy population was used as a control group to promote
the model to recognize normal sellar structures. In addition,
although the model constructed in this study had good evaluation
performance, the number of input images was not enough to
support the model to learn more details of the sellar region.
For example, the rare cases of conchal type sphenoid sinus were
extremely limited in this study, the recognition ability of the
model for this type was weak, and misinterpretation occurred in
the testing set. Expanding the dataset and adding sequence types
and healthy human saddle area images can further improve the
performance and generalization ability of the model.

CONCLUSION

The convolutional deep learning neural network can objectively
and stably identify SFI. The CNN model has the potential to assist
clinicians in accurately evaluating PA invasiveness to improve
medical strategies.
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