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Secreted Wnt ligands appear to activate a variety of sig-

 

naling pathways. Two papers in this issue now present ge-
netic evidence that “noncanonical” Wnt signaling inhibits
the “canonical” Wnt/

 

�

 

-catenin pathway. Westfall et al.
(2003a) show that zebrafish embryos lacking maternal

 

Wnt-5

 

 function are dorsalized due to ectopic activation of

 

�

 

-catenin, whereas Topol et al. (2003) report that chondro-

 

genesis in the distal mouse limb bud depends on inhibition
of Wnt/

 

�

 

-catenin signaling by a paralogue of 

 

Wnt-5

 

. These

 

studies present the first genetic confirmation of the previous
hypothesis that vertebrate Wnt signaling pathways can act
in an antagonistic manner.

 

Wnt signaling regulates differentiation and proliferation of a
variety of cell types during animal development and is also
implicated in tumor formation. Some Wnts activate a sig-

 

naling pathway that results in increased levels of 

 

�

 

-catenin,

 

which in turn modulates transcription of target genes
(Huelsken and Behrens, 2002). The earliest function of this
so-called “canonical” Wnt/

 

�

 

-catenin pathway in vertebrate
embryogenesis is to specify dorsal cell fates. Consequently,
overexpression of some Wnts (such as Wnt-8) in early ze-

 

brafish and 

 

Xenopus

 

 embryos promotes formation of excess
dorsal cells at the expense of ventral cell fates. In contrast,

 

overexpression of other Wnts (including Wnt-5 and Wnt-11)

 

interferes with gastrulation movements rather than modulating

 

�

 

-catenin or cell fates (Torres et al., 1996). Genetic evidence
for the existence of such “noncanonical” Wnt signaling in

 

vertebrates has been provided by analysis of zebrafish 

 

Wnt-11

 

mutations, which cause defects in gastrulation movements
that cannot be rescued by 

 

�

 

-catenin (Heisenberg et al.,
2000; Tada et al., 2002).

Intriguingly, for many years there has been evidence that

 

the biological activities of some Wnts might work in an
opposing manner. For example, overexpression of a 

 

Wnt-5

 

paralogue blocks the ability of 

 

Wnt-8

 

 to promote dorsal
cell fate in 

 

Xenopus

 

 (Torres et al., 1996), and overexpression

 

of 

 

Wnt-5

 

 can activate the nemo-like kinase, which in 

 

C.
elegans

 

 and mammalian cells inhibits Tcf transcription
factors to which 

 

�

 

-catenin binds to regulate gene expression
(Ishitani et al., 2003). However, there has so far been no

 

genetic evidence supporting the apparent antagonism of
some Wnts in vertebrates.

The laboratories of Diane Slusarski and Yingzi Yang now
present this genetic evidence (Fig. 1) (Westfall et al., 2003a;
Topol et al., 2003). Slusarski’s laboratory shows that re-
moval of both the maternal and zygotic function of zebrafish

 

Wnt-5

 

 (

 

MZWnt-5

 

) not only enhances the morphogenesis
defects of zygotic 

 

Wnt-5

 

 mutants, but also results in variable
degrees of dorsalization, including formation of a secondary
axis (Westfall et al., 2003a). These phenotypes resemble
those obtained by overactivation of Wnt/

 

�

 

-catenin signal-

 

ing, and indeed the authors find ectopic stabilization of

 

�

 

-catenin and ectopic expression of 

 

�

 

-catenin target genes
in 

 

MZWnt-5

 

 mutant embryos. These findings add strong
genetic support to the previously suggested requirement of a
Wnt signal for development of ventral cell fates and antago-
nism of dorsal fates, as has been proposed based on the
ability of dominant–negative forms of Wnt-11 and of a
frizzled receptor to interfere with ventral cell fates in 

 

Xenopus

 

(Itoh and Sokol, 1999; Kühl et al., 2000a). Similarly, Yang’s

 

laboratory shows that in the distal tip of mouse limb
buds 

 

Wnt-5a

 

 antagonizes Wnt/

 

�

 

-catenin signaling, since in

 

Wnt-5a

 

�

 

/

 

�

 

 limbs higher levels of 

 

�

 

-catenin can be detected

 

in the distal tip where a 

 

�

 

-catenin–responsive reporter is
ectopically expressed (Topol et al., 2003). Chondrocyte dif-
ferentiation, which is defective in the 

 

Wnt-5a

 

�

 

/

 

�

 

 limbs, can
be partially restored by transplantation of cells expressing a
secreted Wnt inhibitor, which presumably interferes with
canonical Wnts only. Thus, in the mouse limb bud, Wnt-5a
signaling appears to promote chondrocyte differentiation by
antagonizing the Wnt/

 

�

 

-catenin pathway.
Which signaling pathway(s) do Wnt-5 paralogues activate

to inhibit Wnt/

 

�

 

-catenin signaling? Noncanonical Wnts
have been reported to be able to activate a wide variety of
cellular responses upon overexpression in vertebrate embryos
or cultured mammalian cells. In some cellular contexts,

 

Wnt-5 paralogues activate the Wnt/Ca

 

2

 

�

 

 pathway, which
involves Ca

 

2

 

�

 

 release from intracellular stores, stimulation of
protein kinase C (PKC), the Ca

 

2

 

�

 

/calmodulin–dependent
kinase CamKII, and the Ca

 

2

 

�

 

-dependent transcription fac-
tor NFAT (Kühl et al., 2000b; Saneyoshi et al., 2002). Wnt-5
paralogues might also modulate a vertebrate counterpart to
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the 

 

Drosophila

 

 planar cell polarity (PCP) pathway (Tada et
al., 2002; Mlodzik, 2002).

Wnt/Ca

 

2

 

�

 

 signaling has previously been implicated in
specification of ventral cell fates in 

 

Xenopus

 

, since both a
dominant–negative Wnt-11 (thought to interfere with non-
canonical Wnts) and a dominant–negative CamKII promote
dorsal cell fates (Kühl et al., 2000a). In addition, interfer-
ence with the phosphatidylinositol (PI) cycle—an important
signaling pathway that leads to intracellular Ca

 

2

 

�

 

 release—
likewise dorsalizes 

 

Xenopus

 

 and zebrafish embryos (Kume et
al., 1997; Westfall et al., 2003b). However, there has been
no genetic evidence supporting these observations. Westfall
et al. (2003a) now show that zygotic zebrafish 

 

Wnt-5

 

 mu-
tant embryos have slightly reduced Ca

 

2

 

�

 

 fluxes at early
stages and that a constitutively active CamKII can partially
rescue the morphogenesis defects of such mutants. In addi-
tion, lower doses of PI cycle inhibitors can phenocopy the
morphogenesis defects of zygotic 

 

Wnt-5

 

 mutants. These re-
sults indicate that Wnt-5 may indeed be required for cal-
cium signaling and might regulate gastrulation movements
via the Wnt/Ca

 

2

 

�

 

 pathway. However, a growing body of ev-
idence also suggests that PCP signaling is required for gas-
trulation movements (Tada et al., 2002), and at present it is
unclear whether these pathways act in parallel or overlap.

The papers by Westfall et al. (2003a) and Topol et al.
(2003) also raise a number of questions. Although both
groups show that Wnt-5 paralogues are required as repres-
sors of 

 

�

 

-catenin signaling, it is not clear if this is through
Ca

 

2

 

�

 

 signaling or by something else activated by Wnt-5.
Thus, further research will be needed to elucidate the signal-
ing pathway used by Wnt-5 to antagonize Wnt/

 

�

 

-catenin by
rescue and genetic interaction experiments in 

 

MZWnt-5

 

 ze-
brafish embryos, as well as determining Ca

 

2

 

�

 

 flux in these
embryos. Moreover, Topol et al. (2003) provide evidence
that the inhibition of 

 

�

 

-catenin they see is not mediated by
activation of CamKII, PKC, NFAT, or c-jun NH

 

2

 

-terminal
kinase (JNK). Therefore, currently described effectors of
Wnt/Ca

 

2

 

�

 

 signaling do not appear to adequately explain the
inhibitory effect of Wnt-5 on 

 

�

 

-catenin signaling in cul-
tured mammalian cells. Topol et al. (2003) go on to show
that 

 

Siah2

 

, a component of a known 

 

�

 

-catenin destruction
complex, is transcriptionally activated by Wnt-5a, concomi-
tant with observed decreases in 

 

�

 

-catenin levels. Given the

 

paucity of information on how Wnt signaling might regu-
late gene expression in a 

 

�

 

-catenin–independent manner, it
will be interesting to study how 

 

Siah2

 

 is regulated.
Another question regards the relevance of these findings

to cancer biology, given that activation of 

 

�

 

-catenin func-
tion is observed in many cancers. The finding of Topol et al.
(2003) that Wnt-5a inhibits 

 

�

 

-catenin levels and transcrip-
tional activity in a colon cancer cell line adds to the sporadic
literature suggesting that this Wnt might be involved in
some cancers.

Although our understanding of noncanonical Wnt signal-
ing lags far behind our knowledge of the Wnt/

 

�

 

-catenin
pathway, the papers of Westfall et al. (2003a) and Topol et
al. (2003) make valuable contributions to understanding the
involvement of noncanonical Wnt signaling in promoting
ventral cell fates in embryos, and chondrogenesis, respec-
tively. Both papers also provide the first genetic hint that
distinct vertebrate Wnt signaling pathways may indeed be
capable of cross-talk, leading to functional antagonism.
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