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Abstract: We investigated the effects of esaxerenone, a novel, nonsteroidal, and selective mineralocor-
ticoid receptor blocker, on cardiac function in Dahl salt-sensitive (DSS) rats. We provided 6-week-old
DSS rats a high-salt diet (HSD, 8% NaCl). Following six weeks of HSD feeding (establishment
of cardiac hypertrophy), we divided the animals into the following two groups: HSD or HSD +
esaxerenone (0.001%, w/w). In survival study, all HSD-fed animals died by 24 weeks of age, whereas
the esaxerenone-treated HSD-fed animals showed significantly improved survival. We used the same
protocol with a separate set of animals to evaluate the cardiac function by echocardiography after
four weeks of treatment. The results showed that HSD-fed animals developed cardiac dysfunction as
evidenced by reduced stroke volume, ejection fraction, and cardiac output. Importantly, esaxerenone
treatment decreased the worsening of cardiac dysfunction concomitant with a significantly reduced
level of systolic blood pressure. In addition, treatment with esaxerenone in HSD-fed DSS rats caused
a reduced level of cardiac remodeling as well as fibrosis. Furthermore, inflammation and oxidative
stress were significantly reduced. These data indicate that esaxerenone has the potential to mitigate
cardiac dysfunction in salt-induced myocardial injury in rats.

Keywords: esaxerenone; nonsteroidal mineralocorticoid receptor blocker; cardiac function; salt-
sensitive hypertension

1. Introduction

The elevated expression of the mineralocorticoid receptor (MR) in the tissues of
the failing human heart [1] and in animal models of heart failure [2] suggest a possible
role for this receptor in the pathophysiology of cardiovascular diseases. Consequently,
MR antagonism has been considered to be an effective therapeutic approach against
cardiovascular injury.

MR antagonists have been used clinically for approximately 30 years, and during this
time, a series of landmark clinical trials evaluated their efficacy in patients with cardio-
vascular diseases. The RALES study demonstrated that spironolactone, a steroidal MR
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antagonist, added on top of an angiotensin-converting enzyme inhibitor in patients with
severe heart failure reduces overall morbidity and mortality [3]. Moreover, treatment with
eplerenone, another selective steroidal MR antagonist, can reduce cardiovascular events,
hospitalization, and death in patients with left ventricular (LV) dysfunction (EPHESUS
study) [4] and in patients with systolic heart failure (EMPHASIS HF study) [5]. In these
trials, aldosterone levels and sodium status of the patients were normal, suggesting the
activation of MR occurs in a ligand (aldosterone) independent manner. Although spirono-
lactone and eplerenone have reportedly been effective in patients with heart failure or
cardiovascular diseases, their usage is limited owing to their unfavorable side effects in
clinical cases with comorbidities [6].

Salt-dependent hypertension is greatly associated with cardiac hypertrophy in mice [7]
and cardiovascular diseases in human subjects [8]. Nevertheless, treatment with steroidal
MR antagonists has effectively reduced blood pressure in salt-sensitive hypertensive pa-
tients with low circulating aldosterone levels [9,10]. Furthermore, Nagata et al. [11] has
demonstrated that treatment with eplerenone attenuated cardiac hypertrophy and failure
in Dahl salt-sensitive (DSS) rats fed a diet high in salt. These data suggest that MR antago-
nism could be a potential therapeutic strategy for patients with salt-sensitive hypertension
and subsequent cardiac damage. Although steroidal MR antagonists have been proven to
be effective in reducing cardiovascular damage, hyperkalemia still remains an issue during
clinical applications. Therefore, there is an unmet need for a novel MR blocker (MRB) with
an improved risk-benefit profile for use as an alternative for patients with cardiac injury.

Among the recently developed nonsteroidal MRBs [12,13], esaxerenone has a unique
binding mode with MR through the MR-ligand binding domain and large side chains;
because of this, esaxerenone has greater affinity and selectivity than other steroidal MR
antagonists [14,15]. Several basic and clinical studies have already demonstrated the
tolerability and suitability of esaxerenone in patients with essential hypertension [16,17]
or in those with hypertension and type 2 diabetes [18,19]. Although an ongoing clinical
study [20] aims to assess the impact of esaxerenone in patients with hypertension and heart
failure, information on the cardioprotective effects of this medication with salt-dependent
hypertension is lacking. High-salt-loaded DSS rats exhibited typical pathophysiology of
heart failure, including LV hypertrophy and ventricular dysfunction [11,21]. Therefore,
in this study, we evaluate the cardioprotective efficacy of esaxerenone and underlying
molecular mechanisms in DSS rats fed a high-salt diet (HSD).

2. Results
2.1. Effects of Esaxerenone on the Parameters Measured

As shown in Table 1, at 16 weeks of age, HSD-fed DSS rats did not show change in
food intake, but showed a significant reduction in body weight as compared with the rats
fed a low-salt diet (LSD). Water intake and 24-h urine volume were also significantly higher
in the HSD-fed rats than the LSD-fed rats. However, adding esaxerenone with HSD did
not affect any of these parameters.

The HSD-fed DSS rats exhibited very low levels of plasma aldosterone concentration
(Table 1). In addition, esaxerenone intervention significantly increased plasma aldosterone
levels in these rats. Importantly, plasma potassium level was not altered in either the rats
fed HSD alone or those concomitantly fed HSD and esaxerenone. Moreover, the HSD-fed
rats showed a significant increase in heart and kidney weight without any obvious changes
in lung and liver weight. Esaxerenone intervention tended to reduce the value of heart and
kidney weight, but these changes were not statistically significant.
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Table 1. Effects of esaxerenone on the parameters measured in DSS rats at 16 weeks of age.

Parameters LSD HSD HSD + Esax

Body weight (g) 390 ± 5 325 ± 10 *** 334 ± 8 ***
Food intake (g) 15.7 ± 0.7 16.2 ± 1.2 17.5 ± 1.4
Water intake (mL) 21.9 ± 0.9 82.9 ± 4.8 *** 84.9 ± 6.8 ***
Urine volume (mL/24 h) 6.2 ± 0.7 66.7± 5.9 *** 64.2 ± 5.5 ***
Plasma aldosterone concentration (pg/mL) 134 ± 15 70 ± 14 146 ± 29 #

Plasma potassium (mmol/liter) 5.6 ± 0.3 5.8 ± 0.3 5.5 ± 0.6
Heart weight/body weight (mg/gm) 3.1 ± 0.1 5.1 ± 0.2 *** 4.7 ± 0.2 ***
Heart weight/tibial length (mg/mm) 30.4 ± 0.8 40.3 ± 1.1 *** 39.3 ± 1.2 ***
LV weight/body weight (mg/gm) 2.3 ± 0.1 3.8 ± 0.1 *** 3.5 ± 0.1 ***
LV weight/tibial length (mg/mm) 22.4 ± 0.7 30.7 ± 0.7 *** 29.3 ± 0.7 ***
Left kidney/tibial length (mg/mm) 35.7 ± 1.6 47.7 ± 2.0 *** 40.5 ± 4.5 *
Right kidney/tibial length (mg/mm) 34.8 ± 1.8 48.0 ± 2.1 *** 45.9 ± 0.8 **
Lung weight/tibial length (mg/mm) 46.7 ± 4.0 46.7 ± 3.8 46.1 ± 1.8
Liver weight/tibial length (mg/mm) 338 ± 12 317 ± 16 307 ± 10

LSD, low-salt diet; HSD, high-salt diet; Esax, esaxerenone; LV, left ventricle. Values are means ± SEM. * p < 0.05,
** p < 0.01, *** p < 0.001 vs. LSD; # p < 0.05 vs. HSD.

2.2. Esaxerenone Treatment Improves Survival

All HSD-fed DSS rats died by 24 weeks of age (18 weeks of HSD feeding), whereas
100% of the LSD-fed DSS rats were alive even at 28 weeks, suggesting that the HSD-fed
rats exhibited a relatively shorter lifespan (Figure 1A). However, 20% of the HSD-fed rats
with concomitant intervention of esaxerenone were alive at 28 weeks. Kaplan-Meier curve
analysis of the cumulative probability of survival revealed that esaxerenone treatment
significantly improved mean survival time in the HSD-fed DSS rats.

Figure 1. Esaxerenone treatment increases survival and reduces SPB in HSD-fed DSS rats. (A) Kaplan–Meier survival
analyses in the LSD (n = 10), HSD (n = 10), and HSD + Esax (n = 10) groups of DSS rats. The HSD-fed rats exhibited
decreased survival as compared with the LSD-fed rats. The HSD-fed rats receiving esaxerenone showed significantly higher
survival than did the HSD-fed rats. (B) Time-dependent changes of SBP during feeding LSD, HSD, and HSD + Esax. SBP
was gradually increased in the HSD-fed rats; however, esaxerenone treatment significantly reduced SBP. *** p < 0.001 vs.
LSD; # p < 0.05, ## p < 0.01 vs. HSD.

Feeding HSD to animals for 6 weeks gradually and dramatically raised the systolic
blood pressure (SBP) (210 ± 4 mmHg) compared with the LSD-fed animals (129 ± 1 mmHg)
(Figure 1B). At 12 weeks of age, the HSD-fed DSS rats were further categorized and pro-
vided the HSD with and without esaxerenone for the subsequent four weeks. During this
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period, SBP increased further and reached 236 ± 3 mmHg. However, concomitant treatment
with esaxerenone significantly suppressed the further elevation of SBP (214 ± 5 mmHg).

2.3. Esaxerenone Treatment Improves Cardiac Function and Remodeling

Echocardiography at 16 weeks of age revealed that interventricular septal thickness
both at diastole (IVSd) and systole (IVSs), and LV posterior wall thickness at diastole
(LVPWd) significantly increased in the HSD-fed DSS rats as compared with their LSD-fed
counterparts (Table 2, Figure 2). However, these parameters were not altered in HSD-
fed DSS rats treated with esaxerenone. Furthermore, the HSD-fed rats exhibited systolic
dysfunction, with a 25% increase in end-systolic LV diameter (LVIDs) and a reduction
in ejection fraction (EF; by 20%), fractional shortening (FS; by 29%), stroke volume (SV,
by 23%), and cardiac output (by 23%) (Figure 2A–E), whereas end-diastolic LV diameter
(LVIDd) was identical to that of the LSD-fed rats. Remarkably, esaxerenone treatment
significantly attenuated systolic dysfucntion by improving all these parameters in the
HSD-fed rats.

Table 2. Echocardiographic data at 16 weeks of age.

Parameters LSD HSD HSD + Esax

IVSd (mm) 1.9 ± 0.1 2.8 ± 0.1 *** 2.6 ± 0.1 **
IVSs (mm) 3.3 ± 0.1 3.8 ± 0.1 * 3.9 ± 0.1 *

LVIDd (mm) 8.1 ± 0.4 7.9 ± 0.1 8.1 ± 0.2
LVPWd (mm) 2.0 ± 0.1 2.7 ± 0.1 *** 2.5 ± 0.1 **
LVPWs (mm) 3.4 ± 0.1 3.6 ± 0.1 3.7 ± 0.1

EDV (mL) 1.2 ± 0.1 1.1 ± 0.1 1.2 ± 0.1
ESV (mL) 0.19 ± 0.04 0.36 ± 0.05 ** 0.24 ± 0.03 #

HR (beats/min) 311 ± 43 306 ± 14 332 ± 19
IVSd, inter ventricular septal thickness at diastole; IVSs, inter ventricular septal thickness at systole; LVIDd, left
ventricular internal diameter at end diastole; LVPWd, left ventricular posterior wall thickness at diastole; LVPWs,
left ventricular posterior wall thickness at systole; EDV, end-diastolic volume; ESV, end-systolic volume; HR,
heart rate. Values are means ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. LSD; # p < 0.05 vs. HSD.

The mRNA expression of NPPA, NPPB and MYH7 that respectively encode atrial
natriuretic peptide (ANP), ventricular or brain natriuretic peptide (BNP), and myosin heavy
chain (MHC)-β were significantly up-regulated in the LV tissues of the HSD-fed DSS rats
as compared with those of the LSD-fed animals (Figure 2F–H). However, the up-regulation
of these cardiac remodeling markers were significantly reduced by esaxerenone treatment
in the HSD-fed rats.

2.4. Esaxerenone Treatment Reduces Cardiac Fibrosis

Azan-Mallory staining of LV tissue (Figure 3A) indicated that cardiac fibrosis escalated
in the interstitial and perivascular regions of myocardium in HSD-fed DSS rats. Strikingly,
esaxerenone treatment significantly reduced fibrosis both in the interstitial and perivascular
regions. Consistent with Azan-Mallory staining, HSD-fed rats showed a sharp increase in
the abundance of mRNA expression of transforming growth factor (TGF)-β, collagen types
I and III, and plasminogen activator inhibitor (PAI)-1 (Figure 3B–E). However, esaxerenone
treatment in the HSD-fed rats reduced these cardiac fibrotic markers significantly. Moreover,
serum and glucocorticoid-regulated kinase (SGK)-1 mRNA expression increased in HSD-
fed rats but decreased in esaxerenone-treated rats (Figure 3F).

2.5. Esaxerenone Treatment Reduces Cardiac Inflammation

The abundance of mRNA expression of tumor necrosis factor (TNF)-α, interleukin(IL)-
6, and CXCL8 were dramatically increased in the HSD-fed DSS rats (Figure 4A–C). Never-
theless, esaxerenone treatment significantly reduced all these inflammatory markers.
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Figure 2. Esaxerenone treatment improves cardiac function and remodeling in HSD-fed DSS rats. The cardiac morphology
and function of the 16-week-old rats were assessed by echocardiography. (A) LV internal diameter during systole (LVIDs),
(B) EF, (C) FS, (D) SV, and (E) cardiac output. The HSD-fed rats showed worsening cardiac function; however, esaxerenone
significantly improved the cardiac dysfunction. The mRNA expression of cardiac remodeling markers: (F) NPPA, encode
atrial natriuretic peptide, ANP; (G) NPPB, encode brain natriuretic peptide, BNP; and (H) MYH7, encode myosin heavy
chain (MHC)-β. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. LSD; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. HSD.
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Figure 3. Esaxerenone treatment improves cardiac fibrosis in HSD-fed DSS rats. (A) Representative
Azan staining in interstitial and perivascular regions of LV tissues, magnification 200×, scale bar:
50 µm. Obvious increase in fibrosis in the HSD-fed rats, which was attenuated in esaxerenone
treatment group. The mRNA expression of cardiac fibrotic markers: (B) transforming growth factor
(TGF)-β; (C) collagen type I; (D) collagen type III; (E) plasminogen activator inhibitor (PAI)-1; and (F)
serum and glucocorticoid-regulated kinase (SGK)-1 in the LV tissue obtained from the LSD, HSD,
and HSD + Esax treatment groups. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. LSD; # p < 0.05 vs. HSD.

2.6. Esaxerenone Treatment Reduces Cardiac Oxidative Stress

Cardiac oxidative stress was evaluated by 4-Hydroxynonenal (HNE) immunostaining.
As shown in Figure 5A, immunoreactivity against 4-HNE increased in the cytoplasm of
cardiomyocytes of LV tissue sections from the HSD-fed rats compared with their LSD-fed
counterparts. However, esaxerenone treatment reduced the 4-HNE immunoreactivity. The
mRNA expression of genes for the gp47phox and p22phox components of NADPH oxidase
were up-regulated in the HSD-fed DSS rats (Figure 5B,C). Treatment with esaxerenone
significantly reduced the abundance of the expression of these genes in the HSD-fed DSS
rats. Furthermore, LV tissue levels of malondialdehyde (MDA), which is an index of lipid
peroxidation, were sharply increased in HSD-fed rats compared with those from LSD-fed
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DSS rats (Figure 5C). Esaxerenone treatment caused a significant decrease in MDA level in
cardiac tissues from DSS rats.

Figure 4. Esaxerenone treatment attenuates cardiac inflammation in HSD-fed DSS rats. The mRNA
expression of inflammatory markers: (A) tumor necrosis factor (TNF)-α; (B) interleukin (IL)-6; and
(C) CXCL8. The inflammatory markers were escalated in the HSD-fed rats; however, esaxerenone
treatment dramatically reduced all these markers. * p < 0.05, ** p < 0.01 vs. LSD; # p < 0.05, ## p < 0.01
vs. HSD.

Figure 5. Esaxerenone treatment suppresses oxidative stress in HSD-fed DSS rats. (A) Immuno-
histochemistry of 4-hydroxynonenal (HNE), magnification 200×, scale bar: 50 µm. The mRNA
expression of oxidative stress markers: (B) gp47phox and (C) p22phox. (D) LV tissue content of mal-
ondialdehyde (MDA). These oxidative stress markers were up-regulated in the HSD-fed DSS rats
but down-regulated in those receiving the esaxerenone treatment. * p < 0.05, *** p < 0.001 vs. LSD;
# p < 0.05, ### p < 0.001 vs. HSD.
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3. Discussion

In this study, we showed that treatment with the novel nonsteroidal MRB, esaxerenone
significantly prolonged the survival of HSD-fed DSS rats. In addition, esaxerenone treat-
ment attenuated cardiac remodeling and prevented systolic dysfunction. Furthermore,
cardiac fibrosis, inflammation, and oxidative stress were reduced after chronic treatment
with esaxerenone. These findings suggest that esaxerenone has the potential to ameliorate
cardiac dysfunction in salt-loaded DSS rats with a low level of plasma aldosterone.

Steroidal MR antagonists have reduced mortality and hospitalization in patients with
heart failure with reduced ejection fraction [3,5]. However, considering that the aldosterone
levels were normal in the above mentioned clinical studies, it is difficult to predict the
case in salt-dependent cardiac hypertrophy and failure with low aldosterone levels. In
the present study, we found that nonsteroidal MRB, esaxerenone significantly enhanced
the survival of HSD-fed DSS rats in comparison with their LSD-fed counterparts. Owing
to the considerably low plasma aldosterone levels, the observed beneficial effects of MR
antagonism could be ligand (aldosterone) independent. A recent study using a transgenic
mouse model with conditional cardiomyocyte-specific overexpression of human MR has
shown severe arrhythmias and high mortality [22]. In a separate study, the cardiomyocyte-
specific overexpression of human MR impairs the nitric oxide-dependent relaxing response
in the coronary artery, suggesting a specific role for cardiomyocyte MR in arrhythmia and
coronary dysfunction [23]. Therefore, in the present study, prolongation of mean survival
time following the antagonizng effects of esaxerenone on cardiac MR could be attributed
to the reduction of arrhythmia and coronary dysfunction in the HSD-fed DSS rats.

Salt-sensitive hypertension is an independent risk factor for cardiovascular disease
and mortality [9,24]. In the prsent study, high-salt loading significantly increased the
SBP in DSS rats; however, esaxerenone treatment abolished the gradual increase in BP,
which might be associated with the cardioprotective effects of esaxerenone. Previous
studies in cardiomyocyte-specific MR knockout (KO) mice that underwent transverse
aortic constriction showed improvements in LV dysfunction [25]. Consistently, cardiac
remodeling was attenuated in cardiomyocyte-specific MR-KO mice following myocradial
infarction [26]. In these mice, cardiac remodeling and functions improved; however, cardiac
hypertrophy remained unchanged. Consistent with previous reports [11], we found that
the HSD-fed DSS rats developed severe LV hypertrophy, evident by a significant increase
in LV weight/tibial length. Furthermore, cardiac remodeling was significantly altered,
which was associated with increases in NPPA, NPPB and MYH7 mRNA levels. Moreover,
the HSD-fed rats exhibited ventricular systolic dysfucntion with an increase in LVIDs and
a reduction in EF, FS, SV and cardiac output. Notably, esaxerenone treatment significantly
improved cardiac remodeling and ventricular systolic dysfunction without any changes in
ventricular hypertrophy. These data suggest that cardiac MR antagonism with nonsteroidal
MRB is cardioprotective in salt-dependent cardiac dysfunction in DSS rats.

Cardiac fibrosis is often observed in association with hypertension, and cardiac hy-
pertrophy and failure. These changes contribute to myocardial and myocyte stiffening,
and hence, can impair ventricular function. In this study, HSD-fed DSS rats showed an
increase in the extent of interstitial and perivascular fibrosis in LV tissues. Treatment with
esaxerenone drastically reduced fibrosis in these rats, which is consistent with a previous
report on the nonsteroidal antagonist, eplerenone [11]. TGF-β is a pleiotropic mediator
that is critical in cardiac fibrosis [27]. Furthermore, TGF-β plays an important role in
the transformation from fibroblasts to myofibroblasts and promotes extracellular matrix
deposition [28]. In the present study, treatment with esaxerenone significantly reduced
mRNA experssion in the HSD-fed DSS rats. In addition, collagens are considered the major
extracellllular matrix protein in the heart, and among different collagen isoforms, collagen
types I and III constitute approximately 85% of the cardiac interstitium [29]. Importantly,
the abundance of both collagen types I and III was greatly increased in HSD-fed rats;
however, their reduction was consequently facilitated by esaxerenone treatment in these
animals. Furthermore, studies have shown that incresead expression of PAI-1 in cardiomy-
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ocyte plays a critical role in cardiac fibrosis through the regioal induction of cytokines
and subsequent progression of LV dysfunction [30]. We also found that PAI-1 mRNA
was significantly increased in the HSD-fed DSS rats, and treatemnt with esaxerenone
significantly reduced the level of PAI-1 mRNA expression. Furthermore, activation of
the renin–angiotensin system plays an important pathophysiological role in hypertensive
cardiac fibrosis and remodeling. Recent studies have demonstrated that SGK-1 plays a
critical role in angiotensin or mineralocorticoid-induced cardiac fibrosis [31,32]. In the
present study, we found that SGK-1 mRNA expression increased in HSD-fed DSS rats.
However, treatment with esaxerenone significantly reduced SGK-1 mRNA levels, which
could be associated with the reduction of cardiac fibrosis. Collectively, all the data suggest
that esaxerenone treatment attenuates cardiac fibrosis by down-regulating most of the
factors involved in this process.

Cardiomyocyte-specific MR-KO mice have shown less inflammatory cell infiltration
and fibrosis induced by deoxycorticosterone and salt [33]. Moreover, TNF-α KO mice have
exhibited worst LV remodeling through cardiac inflammatory or fibrogenic responses [34].
In addition, CXCL8 is a key regulator in the influx of inflammatory cells in inflamma-
tory processes [35]. In the present study, the mRNA abundances of TNF-α, IL-6 and
CXCL-8 were significantly up-regulated in HSD-fed DSS rats. In contrast, treatment with
esaxerenone significantly down-regulated all these genes related to cardiac inflammation,
suggesting a benefial role of MR antagonization with a nonsteroidal MRB.

Oxidative stress activates MR in cardiomyocytes via the ligand-independent Rac1-
dependent pathway [36]. Moreover, heterozygous deletion of Rac1 in cardiomyocytes
has revealed that oxidative stress-stimulated Rac1 plays a role in myocardial dysfunction
through MR activation [37]. Recently, researchers also have demonstarted that oxida-
tive stress can induce motochondrial DNA damage leading to the catastrophic cylce of
mitochondrial functional decline and cardiomyocyte injury in the failing heart [38]. In
the present study, we assesed the oxidative stress by immunostaining with 4-HNE, a
byproduct of lipid peroxidation. The LV tissue from HSD-fed DSS rats exhibited a strong
immunoreactivity for 4-HNE, whereas a faint immunostaining was detected in animals
with esaxerenone treatment. Moreover, the mRNA abundances of genes for the compo-
nents of NADPH oxidase gp47phox and p22phox significantly increased in HSD-fed DSS
rats, whereas treatment with esaxerenone significantly down-regulated the expression of
these genes. Moreover, lipid peroxidation, which was evaluated using MDA levels, was
greatly increased in HSD-fed DSS rats, but it decreased in esaxerenone-treated DSS rats.
These findings are consistent with the results for esaxerenone, which elicits cardioprotective
effects through the suppression of oxidative stress, and this is similar to a previous report
on eplerenone [11].

In the present study, the survival data indicated a beneficial effect of esaxerenone
on prolonging the life span of salt-loaded DSS rats; however, a limitation of this study is
that a relatively small number of animals was used for the survival analysis. Moreover,
we failed to measure the ventricular diastolic function due to the limitations of our ma-
chine performance. Nevertheless, another nonsteroidal MRB, finerenone has been shown
to be effective in attenuating diastolic dysfunction in chronic kidney diseases mice [39],
transgenic mice with cardiac-specific overexpression of Rac1 [40], and deoxycorticosterone
acetate-/salt-challenged rats [41]. These data suggest that esaxerenone might be competent
in preventing ventricular diastolic dysfunction. Although our data clearly indicated that
the improvement of cardiac dysfunction was associated with a reduction in cardiac fibrosis,
inflammation, and oxidative stress, future studies should be undertaken to determine
the beneficial effects of nonsteroidal MR blockers on cardiac cell death especially apop-
tosis, necrosis, or necroptosis. Importantly, esaxerenone is currently under investigation
in a clinical study focusing on LV diastolic function in patients with hypertension and
heart failure [20].

In summary, we observed that HSD-fed DSS rats exhibited ventricular cardiac dys-
function accompanied with a dramatic increase in SBP. This dysfunction is associated with



Int. J. Mol. Sci. 2021, 22, 2069 10 of 14

cardiac fibrosis, inflammation, and oxidative stress. However, treatment with esaxerenone
effectively reduced cardiac dysfunction as well as its associated pathological features in
HSD-fed DSS rats.

4. Materials and Methods
4.1. Ethical Approval

Experimental protocols (Protocol No. 18627) were approved by the Animal Exper-
imentation Ethics Committee at Kagawa University. All experimental procedures were
conducted to conform to the guidelines of the care and use of animals established by
Kagawa University.

4.2. Animals

DSS rats were preferred as a model for cardiac hypertrophy. Five-week-old male
DSS-Iwai rats (Japan SLC, Inc., Shizuoka, Japan) were maintained in specific pathogen-free
facilities under controlled temperature (24 ± 2 ◦C) and humidity (55 ± 5%) conditions
with a 12-h light–dark cycle. Rats were given standard chow (0.5% NaCl) for 1 week. The
experiments were conducted in two phases with different sets of animals to determine
the survival and cardiac function. At 6 weeks of age, rats weighting 160–180 g were
divided (based on the SBP) into either a LSD (0.3% NaCl, n = 10 for survival, and n = 5
for cardiac function study) or a HSD (8% NaCl, n = 20 for survival, and n = 20 animals
for cardiac function study) group, and they were treated for 6 weeks. At 12 weeks of age,
HSD-fed rats were further subdivided into the following two groups: HSD continued
(n = 10) or 0.001% esaxerenone (w/w) was added to the HSD (n = 10). The concentration
of esaxerenone in the HSD was calculated on the basis of our previous report [42], where
DSS rats were gavaged daily with esaxerenone at a dose of 1 mg/kg body weight. In the
survival study, all HSD-fed animals died by 24 weeks of age. However, we continued
the experiment until 28 weeks of age (16 weeks of intervention), at which point only two
animals in the esaxerenone treatment group were still alive. In the cardiac function study,
we administered the intervention for 4 weeks and continued the experiments until 16
weeks of age. Esaxerenone was provided by Daiichi-Sankyo Co., Ltd. (Tokyo, Japan).

4.3. Blood Pressure

SBP was measured in conscious rats by tail-cuff plethysmography (BP-98A; Softron
Co., Tokyo, Japan). Conscious rats were placed in a plastic holder resting on a warm pad at
37 ◦C. After 15 min of acclimatization, SBP was measured at least five consecutive times,
and the three later values were averaged for each rat.

4.4. Echocardiography

Echocardiographic measurements were performed at 16 weeks of age. Rats were anes-
thetized with inhalation of 2% isoflurane and maintained with 1.5% isoflurane. Transtho-
racic echocardiography was performed using a LOGIQ e system (GE Healthcare Japan Co.,
Tokyo, Japan) equipped with a 22-MHz linear transducer. Parasternal long-axis M-mode
tracings of the LV were recorded to measure the LVIDs, LVIDd and to assess the cardiac
function such as FS, EF, SV and cardiac output. These parameters were averaged based on
three measurements from each animal.

4.5. Sample Collection

At the end of the experiment, the animals were anesthetized with isoflurane, and blood
was immediately collected from the abdominal aorta to the Ethylenediaminetetraacetic
acid ontaining tubes on ice. Whole blood was centrifuged at 4 ◦C for 10 min to separate
the plasma. Subsequently, animals were euthanized by an intraperitoneal overdose of
pentobarbital (250 mg/kg), and the heart tissues were harvested. After measuring the
heart weight, the isolated LV tissues were cut into pieces and fixed in a 10% buffered
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paraformaldehyde. The remaining tissues were kept in tubes with RNAlater or snap frozen
in liquid nitrogen.

4.6. Histopathological Examination

Formalin-fixed cardiac LV tissues were embedded in paraffin, cut into 4-µm sections,
and mounted on slides. The sections were then stained with Mallory-Azan reagent. Images
were captured by a light microscope (BX-51/DP-72; Olympus, Tokyo, Japan).

4.7. Immunohistochemistry

After treatment with an endogenous peroxidase activity-blocking solution (0.3% hy-
drogen peroxide in methanol) for 30 min at room temperature (RT; 22–25 ◦C), sections
were incubated with mouse monoclonal antibody against 4-HNE (HNEJ-2) (1:20, JaICA,
Shizuoka, Japan) in a humidified chamber overnight at RT. Then, sections were incubated
with Histofine Simple Stain Rat MAX-PO (Nichirei Bioscience, Tokyo, Japan) for 30 min at
RT. Subsequently, sections were treated with diaminobenzidine (Nichirei Bioscience) and
counterstained with Mayer’s hematoxylin.

4.8. Real-Time Reverse Transcriptase PCR

RNA was isolated from LV tissues by the phenol–chloroform extraction method and
cDNA prepared as described previously [38]. NPPA, NPPB, MYH7, TGF-β, collagen types
I and III, PAI-1, TNF-α, IL-6, CXCL8, gp47phox, p22phox, and SGK-1 mRNA expression
were analyzed by real-time PCR using an ABI Prism 7000 system with Power SYBR Green
PCR Master Mix (Applied Biosystems, Foster City, CA, USA). The list of primers is shown
in Supplementary Table S1. All data showed the relative differences between the LSD-fed
DSS rats and the other groups after normalization to mRNA expression of the 18s gene.

4.9. Plasma Electrolytes and Aldosterone

Plasma potassium was measured by an automated analyzer (7020-Automatic Ana-
lyzer; Hitachi High-Technologies, Tokyo, Japan). Plasma aldosterone concentration was
measured using a competitive radioimmunoassay (RIA) as previously described [42]. In
this RIA, aldosterone from the sample competes with the aldosterone that is labeled with
iodine 125 (tracer) for the specific sites of the antiserum that is coated onto the tubes. The
degree of binding is inversely proportional to the aldosterone concentration of the sample.

4.10. Cardiac TISSUE Level of MDA

LV tissue homogenates were used to determine the MDA levels using the thiobarbi-
turic acid reactive substances method in accordance with the protocol that was provided
with the assay kit (Elabscience, Houston, TX, USA). Protein concentration in the tissue
homogenates was measured by the Bradford assay, and MDA levels were normalized to
the homogenate’s total protein content. The data are presented as nmol/mg protein.

4.11. Statistical Analysis

Data are presented as the means ± SEM. We used one-way analysis of variance
(ANOVA) followed by the Newman-Keuls multiple-comparison test for all cross-sectional,
one-factor data to compare values in the LSD-fed DSS rats with those treated with HSD
alone or with concomitant esaxerenone treatment. The longitudinal data (SBP) were
analyzed by two-way ANOVA followed by the Bonferroni post hoc test. A value of p < 0.05
was considered statistically significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/4/2069/s1, Table S1: List of primers.

Author Contributions: Conceptualization, A.R. and A.N.; methodology, A.R., T.S., A.S., A.H., N.J.,
K.K. and H.O; validation, formal analysis and investigation, A.R., D.N., H.K. and A.N.; resources,
A.N.; data curation, writing—original draft preparation, A.R.; writing—review and editing, A.R.,

https://www.mdpi.com/1422-0067/22/4/2069/s1
https://www.mdpi.com/1422-0067/22/4/2069/s1


Int. J. Mol. Sci. 2021, 22, 2069 12 of 14

T.M. and A.N.; visualization, A.R.; supervision, project administration and funding acquisition, S.K.,
T.I. and A.N. All authors have read and agreed to the published version of the manuscript.

Funding: This study was in part a collaborative study with Daiichi-Sankyo Co., Ltd. (to A.N.). This
study was also supported by Grants-in-Aid for Scientific Research from the Ministry of Education,
Science, and Culture of Japan (18H03191 to A.N.) and from the Salt Sciences Foundation (to A.N.).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Animal Experimentation Ethics Committee at Kagawa
University (Protocol No. 18627).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article or Supple-
mentary Material.

Acknowledgments: We are grateful to Ms. Kaori Enomoto for performing the immunohistochemistry.
We also thank Edanz Group (https://en-author-services.edanz.com/ac, accessed on 7 February 2021)
for editing a draft of this manuscript.

Conflicts of Interest: A.N. has received speaking honoraria from Taisho, Mitsubishi Tanabe, Boehringer
Ingelheim, Daiichi-Sankyo, and has received research funds from Daiichi-Sankyo, Boehringer Ingel-
heim, Bayer, and Taisho. The funders had no role in the study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

References
1. Yoshida, M.; Ma, J.; Tomita, T.; Morikawa, N.; Tanaka, N.; Masamura, K.; Kawai, Y.; Miyamori, I. Mineralocorticoid receptor

is overexpressed in cardiomyocytes of patients with congestive heart failure. Congest. Heart Fail. 2005, 11, 12–16. [CrossRef]
[PubMed]

2. Ohtani, T.; Ohta, M.; Yamamoto, K.; Mano, T.; Sakata, Y.; Nishio, M.; Takeda, Y.; Yoshida, J.; Miwa, T.; Okamoto, M.; et al. Elevated
cardiac tissue level of aldosterone and mineralocorticoid receptor in diastolic heart failure: Beneficial effects of mineralocorticoid
receptor blocker. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R946–R954. [CrossRef] [PubMed]

3. Pitt, B.; Zannad, F.; Remme, W.J.; Cody, R.; Castaigne, A.; Perez, A.; Palensky, J.; Wittes, J. The effect of spironolactone on
morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 1999, 341, 709–717. [CrossRef]

4. Pitt, B.; Remme, W.; Zannad, F.; Neaton, J.; Martinez, F.; Roniker, B.; Bittman, R.; Hurley, S.; Kleiman, J.; Gatlin, M. Eplerenone,
a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 2003,
348, 1309–1321. [CrossRef] [PubMed]

5. Zannad, F.; McMurray, J.J.V.; Krum, H.; van Veldhuisen, D.J.; Swedberg, K.; Shi, H.; Vincent, J.; Pocock, S.J.; Pitt, B. Eplerenone in
patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 2011, 364, 11–21. [CrossRef]

6. Kallistratos, M.S.; Pittaras, A.; Theodoulidis, I.; Grassos, C.; Poulimenos, L.E.; Manolis, A.J. Adverse effects of mineralocorticoid
receptor antagonist administration. Curr. Pharm. Des. 2018, 24, 5537–5541. [CrossRef]

7. Makhanova, N.; Hagaman, J.; Kim, H.S.; Smithies, O. Salt-sensitive blood pressure in mice with increased expression of
aldosterone synthase. Hypertension 2008, 51, 134–140. [CrossRef]

8. Strazzullo, P.; D’Elia, L.; Kandala, N.B.; Cappuccio, F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of
prospective studies. BMJ 2009, 339, 1296. [CrossRef]

9. Takeda, Y. Effects of eplerenone, a selective mineralocorticoid receptor antagonist, on clinical and experimental salt-sensitive
hypertension. Hypertens. Res. 2009, 32, 321–324. [CrossRef]

10. Hood, S.J.; Taylor, K.P.; Ashby, M.J.; Brown, M.J. The spironolactone, amiloride, losartan, and thiazide (SALT) double-blind
crossover trial in patients with low-renin hypertension and elevated aldosterone-renin ratio. Circulation 2007, 116, 268–275.
[CrossRef] [PubMed]

11. Nagata, K.; Obata, K.; Xu, J.; Ichihara, S.; Noda, A.; Kimata, H.; Kato, T.; Izawa, H.; Murohara, T.; Yokota, M. Mineralocorticoid
receptor antagonism attenuates cardiac hypertrophy and failure in low-aldosterone hypertensive rats. Hypertension 2006,
47, 656–664. [CrossRef] [PubMed]

12. Bärfacker, L.; Kuhl, A.; Hillisch, A.; Grosser, R.; Figueroa-Pérez, S.; Heckroth, H.; Nitsche, A.; Ergüden, J.K.; Gielen-Haertwig, H.;
Schlemmer, K.H.; et al. Discovery of BAY 94-8862: A nonsteroidal antagonist of the mineralocorticoid receptor for the treatment
of cardiorenal diseases. ChemMedChem 2012, 7, 1385–1403. [CrossRef] [PubMed]

13. Arai, K.; Homma, T.; Morikawa, Y.; Ubukata, N.; Tsuruoka, H.; Aoki, K.; Ishikawa, H.; Mizuno, M.; Sada, T. Pharmacological
profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist. Eur. J. Pharmacol.
2015, 761, 226–234. [CrossRef]

14. Takahashi, M.; Ubukata, O.; Homma, T.; Asoh, Y.; Honzumi, M.; Hayashi, N.; Saito, K.; Tsuruoka, H.; Aoki, K.; Hanzawa, H.
Crystal structure of the mineralocorticoid receptor ligand-binding domain in complex with a potent and selective nonsteroidal
blocker, esaxerenone (CS-3150). FEBS Lett. 2020, 594, 1615–1623. [CrossRef]

https://en-author-services.edanz.com/ac
http://doi.org/10.1111/j.1527-5299.2005.03722.x
http://www.ncbi.nlm.nih.gov/pubmed/15722665
http://doi.org/10.1152/ajpregu.00402.2006
http://www.ncbi.nlm.nih.gov/pubmed/17023667
http://doi.org/10.1056/NEJM199909023411001
http://doi.org/10.1056/NEJMoa030207
http://www.ncbi.nlm.nih.gov/pubmed/12668699
http://doi.org/10.1056/NEJMoa1009492
http://doi.org/10.2174/1381612825666190222144359
http://doi.org/10.1161/HYPERTENSIONAHA.107.098897
http://doi.org/10.1136/bmj.b4567
http://doi.org/10.1038/hr.2009.29
http://doi.org/10.1161/CIRCULATIONAHA.107.690396
http://www.ncbi.nlm.nih.gov/pubmed/17606839
http://doi.org/10.1161/01.HYP.0000203772.78696.67
http://www.ncbi.nlm.nih.gov/pubmed/16505208
http://doi.org/10.1002/cmdc.201200081
http://www.ncbi.nlm.nih.gov/pubmed/22791416
http://doi.org/10.1016/j.ejphar.2015.06.015
http://doi.org/10.1002/1873-3468.13746


Int. J. Mol. Sci. 2021, 22, 2069 13 of 14

15. Wan, N.; Rahman, A.; Nishiyama, A. Esaxerenone, a novel nonsteroidal mineralocorticoid receptor blocker (MRB) in hypertension
and chronic kidney disease. J. Hum. Hypertens. 2020. [CrossRef] [PubMed]

16. Ito, S.; Itoh, H.; Rakugi, H.; Okuda, Y.; Yoshimura, M.; Yamakawa, S. Double-blind randomized phase 3 study comparing
esaxerenone (CS-3150) and eplerenone in patients with essential hypertension (ESAX-HTN Study). Hypertension 2020, 75, 51–58.
[CrossRef] [PubMed]

17. Rakugi, H.; Ito, S.; Itoh, H.; Okuda, Y.; Yamakawa, S. Long-term phase 3 study of esaxerenone as mono or combination therapy
with other antihypertensive drugs in patients with essential hypertension. Hypertens. Res. 2019, 42, 1932–1941. [CrossRef]

18. Ito, S.; Shikata, K.; Nangaku, M.; Okuda, Y.; Sawanobori, T. Efficacy and safety of esaxerenone (CS-3150) for the treatment of type
2 diabetes with microalbuminuria A randomized, double-blind, placebo-controlled, phase ii trial. Clin. J. Am. Soc. Nephrol. 2019,
14, 1161–1172. [CrossRef]

19. Itoh, H.; Ito, S.; Rakugi, H.; Okuda, Y.; Nishioka, S. Efficacy and safety of dosage-escalation of low-dosage esaxerenone added to a
RAS inhibitor in hypertensive patients with type 2 diabetes and albuminuria: A single-arm, open-label study. Hypertens. Res.
2019, 42, 1572–1581. [CrossRef]

20. UMIN Clinical Trials Registry. Available online: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R0000425
81 (accessed on 7 December 2020).

21. Inoko, M.; Kihara, Y.; Morii, I.; Fujiwara, H.; Sasayama, S. Transition from compensatory hypertrophy to dilated, failing left
ventricles in Dahl salt-sensitive rats. Am. J. Physiol. Hear. Circ. Physiol. 1994, 267, 2471–2482. [CrossRef] [PubMed]

22. Ouvrard-Pascaud, A.; Sainte-Marie, Y.; Bénitah, J.P.; Perrier, R.; Soukaseum, C.; Cat, A.N.D.; Royer, A.; Quang, K.L.; Charpentier,
F.; Demolombe, S.; et al. Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias.
Circulation 2005, 111, 3025–3033. [CrossRef] [PubMed]

23. Favre, J.; Gao, J.; di Zhang, A.; Remy-Jouet, I.; Ouvrard-Pascaud, A.; Dautreaux, B.; Escoubet, B.; Thuillez, C.; Jaisser, F.; Richard,
V. Coronary endothelial dysfunction after cardiomyocyte-specific mineralocorticoid receptor overexpression. Am. J. Physiol. Hear.
Circ. Physiol. 2011, 300, 2035–2043. [CrossRef] [PubMed]

24. Nishiyama, A. Pathophysiological mechanisms of mineralocorticoid receptor-dependent cardiovascular and chronic kidney
disease. Hypertens. Res. 2019, 42, 293–300. [CrossRef]

25. Lother, A.; Berger, S.; Gilsbach, R.; Rösner, S.; Ecke, A.; Barreto, F.; Bauersachs, J.; Schütz, G.; Hein, L. Ablation of mineralocorticoid
receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension 2011, 57, 746–754. [CrossRef] [PubMed]

26. Fraccarollo, D.; Berger, S.; Galuppo, P.; Kneitz, S.; Hein, L.; Schütz, G.; Frantz, S.; Ertl, G.; Bauersachs, J. Deletion of cardiomyocyte
mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation 2011, 123, 400–408. [CrossRef]

27. Ma, Z.G.; Yuan, Y.P.; Wu, H.M.; Zhang, X.; Tang, Q.Z. Cardiac fibrosis: New insights into the pathogenesis. Int. J. Biol. Sci. 2018,
14, 1645–1657. [CrossRef]

28. Desmouliere, A.; Geinoz, A.; Gabbiani, F.; Gabbiani, G. Transforming growth factor-β1 induces α-smooth muscle actin expression
in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 1993, 122, 103–111. [CrossRef]
[PubMed]

29. Zannad, F.; Radauceanu, A. Effect of MR blockade on collagen formation and cardiovascular disease with a specific emphasis on
heart failure. Heart Fail. Rev. 2005, 10, 71–78. [CrossRef]

30. Takeshita, K.; Hayashi, M.; Iino, S.; Kondo, T.; Inden, Y.; Iwase, M.; Kojima, T.; Hirai, M.; Ito, M.; Loskutoff, D.J.; et al. Increased
expression of plasminogen activator inhibitor-1 in cardiomyocytes contributes to cardiac Fibrosis after myocardial infarction. Am.
J. Pathol. 2004, 164, 449–456. [CrossRef]

31. Yang, M.; Zheng, J.; Miao, Y.; Wang, Y.; Cui, W.; Guo, J.; Qiu, S.; Han, Y.; Jia, L.; Li, H.; et al. Serum-glucocorticoid regulated kinase
1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac
fibrosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1675–1686. [CrossRef] [PubMed]

32. Vallon, V.; Wyatt, A.W.; Klingel, K.; Huang, D.Y.; Hussain, A.; Berchtold, S.; Friedrich, B.; Grahammer, F.; BelAiba, R.S.; Görlach,
A.; et al. SGK1-dependent cardiac CTGF formation and fibrosis following DOCA treatment. J. Mol. Med. 2006, 84, 396–404.
[CrossRef]

33. Rickard, A.J.; Morgan, J.; Bienvenu, L.A.; Fletcher, E.K.; Cranston, G.A.; Shen, J.Z.; Reichelt, M.E.; Delbridge, L.M.; Young,
M.J. Cardiomyocyte mineralocorticoid receptors are essential for deoxycorticosterone/salt-mediated inflammation and cardiac
fibrosis. Hypertension 2012, 60, 1443–1450. [CrossRef] [PubMed]

34. Sun, M.; Chen, M.; Dawood, F.; Zurawska, U.; Li, J.Y.; Parker, T.; Kassiri, Z.; Kirshenbaum, L.A.; Arnold, M.; Khokha, R.; et al.
Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 2007,
115, 1398–1407. [CrossRef]

35. Zeilhofer, H.U.; Schorr, W. Role of interleukin-8 in neutrophil signaling. Curr. Opin. Hematol. 2000, 7, 178–182. [CrossRef]
36. Nagase, M.; Ayuzawa, N.; Kawarazaki, W.; Ishizawa, K.; Ueda, K.; Yoshida, S.; Fujita, T. Oxidative stress causes mineralocorticoid

receptor activation in rat cardiomyocytes: Role of small GTPase Rac1. In Hypertension; Lippincott Williams & WilkinsHagerstown:
Alphen aan den Rijn, The Netherlands, 2012; Volume 59, pp. 500–506.

37. Ayuzawa, N.; Nagase, M.; Ueda, K.; Nishimoto, M.; Kawarazaki, W.; Marumo, T.; Aiba, A.; Sakurai, T.; Shindo, T.; Fujita, T.
Rac1-mediated activation of mineralocorticoid receptor in pressure overload-induced cardiac injury. Hypertension 2016, 67, 99–106.
[CrossRef]

http://doi.org/10.1038/s41371-020-0377-6
http://www.ncbi.nlm.nih.gov/pubmed/32661269
http://doi.org/10.1161/HYPERTENSIONAHA.119.13569
http://www.ncbi.nlm.nih.gov/pubmed/31786983
http://doi.org/10.1038/s41440-019-0314-7
http://doi.org/10.2215/CJN.14751218
http://doi.org/10.1038/s41440-019-0270-2
https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_ view.cgi?recptno=R000042581
https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_ view.cgi?recptno=R000042581
http://doi.org/10.1152/ajpheart.1994.267.6.H2471
http://www.ncbi.nlm.nih.gov/pubmed/7810745
http://doi.org/10.1161/CIRCULATIONAHA.104.503706
http://www.ncbi.nlm.nih.gov/pubmed/15939817
http://doi.org/10.1152/ajpheart.00552.2010
http://www.ncbi.nlm.nih.gov/pubmed/21441311
http://doi.org/10.1038/s41440-018-0158-6
http://doi.org/10.1161/HYPERTENSIONAHA.110.163287
http://www.ncbi.nlm.nih.gov/pubmed/21321305
http://doi.org/10.1161/CIRCULATIONAHA.110.983023
http://doi.org/10.7150/ijbs.28103
http://doi.org/10.1083/jcb.122.1.103
http://www.ncbi.nlm.nih.gov/pubmed/8314838
http://doi.org/10.1007/s10741-005-2351-3
http://doi.org/10.1016/S0002-9440(10)63135-5
http://doi.org/10.1161/ATVBAHA.112.248732
http://www.ncbi.nlm.nih.gov/pubmed/22556335
http://doi.org/10.1007/s00109-005-0027-z
http://doi.org/10.1161/HYPERTENSIONAHA.112.203158
http://www.ncbi.nlm.nih.gov/pubmed/23108646
http://doi.org/10.1161/CIRCULATIONAHA.106.643585
http://doi.org/10.1097/00062752-200005000-00009
http://doi.org/10.1161/HYPERTENSIONAHA.115.06054


Int. J. Mol. Sci. 2021, 22, 2069 14 of 14

38. Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and mitochondrial DNA damage in heart failure. Circ. J. 2008,
72 (Suppl. A), A31–A37. [CrossRef]

39. Bonnard, B.; Pieronne-Deperrois, M.; Djerada, Z.; Elmoghrabi, S.; Kolkhof, P.; Ouvrard-Pascaud, A.; Mulder, P.; Jaisser, F.;
Messaoudi, S. Mineralocorticoid receptor antagonism improves diastolic dysfunction in chronic kidney disease in mice. J. Mol.
Cell. Cardiol. 2018, 121, 124–133. [CrossRef] [PubMed]

40. Lavall, D.; Jacobs, N.; Mahfoud, F.; Kolkhof, P.; Böhm, M.; Laufs, U. The non-steroidal mineralocorticoid receptor antagonist
finerenone prevents cardiac fibrotic remodeling. Biochem. Pharmacol. 2019, 168, 173–183. [CrossRef] [PubMed]

41. Kolkhof, P.; Delbeck, M.; Kretschmer, A.; Steinke, W.; Hartmann, E.; Bärfacker, L.; Eitner, F.; Albrecht-Küpper, B.; Schäfer, S.
Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J. Cardiovasc.
Pharmacol. 2014, 64, 69–78. [CrossRef]

42. Li, L.; Guan, Y.; Kobori, H.; Morishita, A.; Kobara, H.; Masaki, T.; Nakano, D.; Nishiyama, A. Effects of the novel nonsteroidal
mineralocorticoid receptor blocker, esaxerenone (CS-3150), on blood pressure and urinary angiotensinogen in low-renin Dahl
salt-sensitive hypertensive rats. Hypertens. Res. 2019, 42, 769–778. [CrossRef]

http://doi.org/10.1253/circj.CJ-08-0014
http://doi.org/10.1016/j.yjmcc.2018.06.008
http://www.ncbi.nlm.nih.gov/pubmed/29981797
http://doi.org/10.1016/j.bcp.2019.07.001
http://www.ncbi.nlm.nih.gov/pubmed/31283930
http://doi.org/10.1097/FJC.0000000000000091
http://doi.org/10.1038/s41440-018-0187-1

	Introduction 
	Results 
	Effects of Esaxerenone on the Parameters Measured 
	Esaxerenone Treatment Improves Survival 
	Esaxerenone Treatment Improves Cardiac Function and Remodeling 
	Esaxerenone Treatment Reduces Cardiac Fibrosis 
	Esaxerenone Treatment Reduces Cardiac Inflammation 
	Esaxerenone Treatment Reduces Cardiac Oxidative Stress 

	Discussion 
	Materials and Methods 
	Ethical Approval 
	Animals 
	Blood Pressure 
	Echocardiography 
	Sample Collection 
	Histopathological Examination 
	Immunohistochemistry 
	Real-Time Reverse Transcriptase PCR 
	Plasma Electrolytes and Aldosterone 
	Cardiac TISSUE Level of MDA 
	Statistical Analysis 

	References

