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Abstract: Due to increased levels of human activity, various pollutants are frequently detected on
the Tibetan Plateau, where the environment is extremely fragile and sensitive. Therefore, this study
investigated the sources, pollution, and ecological risks of soil potentially toxic elements (PTEs) in
different landscape areas within the Qaidam Basin in the northeastern part of the Qinghai–Tibet
Plateau. The contents of seven PTEs (Cd, Cu, Pb, Zn, As, Cr, and Ni) in 32 topsoil samples (0–2 cm)
were analyzed in different regions of the Qaidam Basin. The concentrations of As, Cd, Cr, Cu, Ni,
Pb, and Zn were 10.4–29.9 mg/kg, 0.08–4.45 mg/kg, 19–66 mg/kg, 8.2–40 mg/kg, 11.7–30.8 mg/kg,
11.1–31.2 mg/kg, and 32–213 mg/kg, respectively. The correlation between Pb and Cd in unpopulated
areas was 0.896 (p < 0.01). The correlations among Pb, Cd, and Zn in agricultural areas, among As,
Cd, Cr, and Zn in saline lake areas, and among As, Cd, Cr, Cu, Ni, Pb, and Zn in residential areas
were all greater than 0.65 (p < 0.05). The principal component analysis results showed that Pb and Cd
in unpopulated areas, Pb, Cd, and Zn in agricultural areas, As, Cd, Cr, Zn, and Pb in saline lake areas,
and As, Cd, Cr, Cu, Ni, Pb, and Zn in residential areas were affected by human activities (significant
factor >0.70). Based on the geological accumulation index and single-factor pollution index results,
the maximum Cd values were found to be 4.93 and 45.88, respectively; Cd was thus the most serious
PTE pollutant. The comprehensive pollution index of Nemero showed that moderately and severely
polluted areas accounted for 18.89% and 18.46% of the total area, respectively. The results of the
potential risk index showed that very strong and strong ecological risk points together accounted
for 18.8% of the total points. The spatial variations in PTE pollution and the potential ecological
risk index had similar patterns; both increased from the unpopulated areas in the northeastern
Qaidam Basin to Golmud city in the south-western Qaidam Basin. These results indicate that human
activities negatively impacted the soil ecological environment in the Qaidam Basin during the rapid
development of the economy and urbanization and that these negative impacts tended to spread
to unpopulated areas. Therefore, it is necessary to emphasize the significant impacts of human
activities on environmental quality and formulate preventive measures to reduce PTE pollution in
the Qinghai–Tibet Plateau.

Keywords: potentially toxic element; northeastern margin of the Qinghai–Tibet plateau; different
landscape areas; soil; pollution; risk assessment
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1. Introduction

The increasing concentrations of PTEs caused by human activities have led to a se-
ries of serious environmental problems, such as air pollution, water pollution, and soil
pollution [1–3]. Soils are important sinks of nutrients and pollutants which play a crucial
role in ecological stability and security [4]. However, soil pollution has become a serious
obstacle to regional development and human health in recent decades [5,6]. As a major soil
pollutant type, PTEs have become important pollutants in soils around the world [7] be-
cause of the rapid economic development and the development of metallurgical technology,
the amounts of PTEs emitted to the atmosphere have increased locally and globally [8] and
the PTEs pollution has become increasingly serious worldwide and has attracted global
attention due to the associated environmental toxicity, enrichment, and persistence [9].
The presence of PTEs in soils originates from natural and human activities [10], and the
anthropogenic origins mainly include mineral mining [11], smelting [12], fossil fuel com-
bustion [13], and agricultural activities [14]. With the occurrence of industrialization and
urbanization processes after the industrial revolution, the concentrations of PTEs in soils
are increasing regionally and globally [8]. Even in remote and sparsely populated areas,
the accumulation of PTEs in soils cannot be ignored [15–17]. PTEs can be adsorbed on the
particulate matter to undergo long-distance transportation through the atmosphere [8] and
finally deposited into soils in remote areas, ultimately leading to the enrichment of PTEs in
these soils [16]. Previous studies have shown that soils in the Third Pole [4], Antarctica [18],
the Arctic region [19], and high-latitude Siberia [20] were enriched with PTEs.

Considered the “third pole of the world,” the Tibetan Plateau is one of the most remote
and isolated regions in the world [17]. Due to its low urbanization and industrialization
levels [15], most of the regional ecosystems on the Tibetan Plateau are well preserved. Its
unique topography, fragile ecosystems, and special monsoon circulation [14] make it highly
sensitive to external influences. Even small-scale human activities may lead to significant
environmental changes [21]. Previous studies have shown that the highest Pb, Zn, Cr,
and Cd concentrations in the soils on the Qinghai–Tibet Plateau can reach 1075.69 mg/kg,
1474 mg/kg, 153.61 mg/kg, and 11.56 mg/kg, respectively [22]. Therefore, soil PTE
pollution on the Qinghai–Tibet Plateau should not be ignored. Existing studies have mainly
focused on investigating PTEs in Qingha-Tibet soils [4,23,24], glacial soils [25], railways [22],
highways [15] and the litter catchment [26]. And found that the cryosphere (glaciers,
permafrost, ice, and snow) was the essential source of PTEs during climate warming [27].
However, regrettably, these studies still make it hard to understand the source of PTEs from
located human activities, such as agricultural activities, mining activities, and urbanization
in a different region of Qinghai–Tibet Plateau, and they did not adequately elucidate the
contamination, ecological or health risks associated with PTEs in soils and the sources of
PTEs in soils in different land-use type in Qinghai–Tibet Plateau.

The Qaidam Basin is located at the northeastern edge of the Qinghai–Tibet Plateau
and is the region of the plateau with the largest population and the highest degree of
industrialization [15]. Saline lakes and the Gobi Desert are typical landscapes in this area.
With the increase in human activities, PTE pollution in the region is becoming increasingly
serious. Previous studies have mainly focused on the distributions of PTEs in the soils
along with expressway and railway areas in the northeastern region of this area [15,22].
However, research on the sources of soil PTEs regarding different human activities and
their impacts on local ecosystems is lacking. Therefore, the purpose of this study was to
investigate the distribution of soil PTEs under the influence of different human activities
on the northeastern margin of the Qaidam Basin, the potential sources of the identified soil
PTEs, and the impacts of these PTEs on the local environment and ecology. The results can
provide a different perspective for soil pollution assessments and soil protection measures
on the Qinghai–Tibet Plateau.
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2. Materials and Methods
2.1. Research Area

The research area is located in the Qaidam Basin on the northeastern margin of the
Qinghai–Tibet Plateau. The Qaidam Basin is a large inland discontinuous mountain basin
with a frequently cold and warm climate and a dry-and-wet climate succession pattern.
The basin is filled with Mesozoic–Cenozoic sediments derived from the surrounding
mountains, and the sedimentary sequence is more than 16,000 m thick and lies on top of
the pre-Mesozoic basement which comprises metamorphic and igneous rocks [28]. The
formation of regional topography is closely related to the uplift of the Qinghai-Tibet Plateau,
and the area is also sensitive to climate change across the whole Qinghai-Tibet Plateau. The
basin has a plateau continental climate, with annual precipitation decreasing from 200 mm
in the southeast to 15 mm in the northwest. The annual relative humidity is 30–40%, the
annual average temperature is below 5 ◦C, and the absolute annual temperature difference
can reach over 60 ◦C. The ecological environment of the study area is fragile, and small
environmental changes can thus critically impact the local ecology.

2.2. Sample Collected and Chemical Analysis

Samples were collected in August 2020 along a sampling route from G3011 and G109 to
Naomuhong town, where the transect intersected with G315 to form a closed ring (Figure 1).
From Nuomuhong to G315, economic (medlar) forests are widely distributed. A total of
32 surface soil samples were collected, including 7 samples in the agricultural areas,
7 samples in the unmanned areas, 4 samples in the residential areas, 4 samples in the
salt lake areas, anfigurefid others collected on the highway roads. The samples were col-
lected at a 10-cm × 10-cm × 2-cm volume in the surface layer [29], the sample was 2 cm
in depth [29], and the average weight of collected samples was approximately 8 g. After
being collected, the samples were placed into a polyethylene ziplocked bag, numbered,
sealed, weighed, and taken back to the laboratory. Then, they were placed in a constant-
temperature oven and dried at 60 ◦C until they reached a constant weight. Stones, roots,
and other particles were removed from the samples by passing them through a 100-mesh
sieve. Finally, the screened samples were packed into polyethylene ziplocked bags and
stored after being numbered.

The method described by Kuklová et al. [30] was used to pre-treat the samples before
the elemental content determination. A given weight of a mixed sediment sample (~125 mg)
was placed in a 50 mL Teflon beaker. After that, the sediment was digested by microwaves
with a volumetric mixture of concentrated HNO3 + HCl + HF + HClO4 at a ratio of 1:1:1:1
until the sample was completely dissolved. The residue was then transferred to a Teflon
beaker, placed on a heating plate at approximately 200 ◦C until the sample was dry, and
then diluted with deionized water to 25 mL. The measurement of the PTEs in each sample
was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES;
Agilent VISTA, La Jolla, CA, USA) and inductively coupled plasma mass spectrometry (ICP–
MS; Agilent 7700X, La Jolla, CA, USA). The PTEs measurements were quality controlled
using blank samples, repeated samples, and separately determined reference substances
(OREAS 90 and GBM908-10). The relative deviation and relative precision control error were
both less than 10%. The analytical accuracy of the samples was reported at a confidence level
above 95%. Elemental determination was performed in the Mineral Analysis Laboratory of
Aoshi Analytical Testing in Guangzhou, China.

2.3. Evaluating the Pollution and Ecological Risks of PTEs in Soils

This study used the geological accumulation index (Igeo), single factor pollution index
(Pi), and Nemerow pollution index (NPI) to evaluate the pollution of PTEs in the topsoil on
the northeastern Qinghai–Tibet Plateau. The background concentrations of PTEs in soils
used to calculate Igeo, Pi, and NPI were established by referring to MEPC (1990) [31]. The
Igeo, Pi, and NPI classification schemes are shown in Table 1.
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Table 1. Classification of geological accumulation index (Igeo), single factor pollution index (Pi),
Nemerow pollution index (NPI), and potential ecological risk index (RI).

Igeo Pi NPI RI

≤0 Unpolluted ≤1 Clean ≤0.7 Safe <150 Low ecological risk

0–1 Unpolluted to
moderately polluted 1–2 Mild pollution 0.7–1 Clean 150–300 Moderate ecological risk

1–2 Moderately polluted 2–3 Moderate pollution 1–2 Mild pollution 300–600 Considerable ecological risk
2–3 Moderately to heavily polluted >3 Serious pollution 2–3 Moderate pollution ≥600 Very high ecological risk
3–4 Heavily polluted >3 Serious pollution
4–5 Heavily to extremely polluted
≥5 Extremely polluted

Igeo was employed to assess the PTE pollution level in sediments. Igeo can be calculated
as follows [32]:

Igeo = log2
Ci

s
1.5 × Cb

where Cs
i is the concentration of PTE i in the sample, Cb is the background concentration

value, and the background values of As, Cd, Cr, Cu, Ni, Pb, and Zn are 11.2 mg/kg,
0.097 mg/kg, 61 mg/kg, 22.6 mg/kg, 26.9 mg/kg, 26 mg/kg, and 74.2 mg/kg, respectively [31].

Pi can be used to evaluate changes in the amounts of individual PTE elements in the
soil. The calculation formula of the single-factor pollution index method is as follows [33]:
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Pi =
Ci

s
Cb

where Pi is the pollution index of PTE element i in soil. The pollution grade standards are
shown in Table 1.

NPI is used to evaluate the overall situation of PTEs in soils. This index considers not
only the effects of PTEs with high concentrations on the environment but also the impact of
each PTE on the environmental quality by analyzing its average value. NPI is calculated by
the following equation [34]:

NPI =

√
(max(Pi))2 + (avg(Pi))2

2

where NPI is the comprehensive pollution index of the sampling point; Pi is the single-factor
index evaluation value of the PTE i; max (Pi) is the maximum value of Pi, and avg (Pi) is the
average value of Pi. The pollution classification scheme is shown in Table 1.

PTEs exert potential ecological risks to soil systems. The potential ecological risk index
(RI) represents the sensitivity of a biological community to pollutants and illustrates the
resulting potential ecological risk [33]. The equation used to calculate RI is as follows:

RI =
n

∑
i=1

Ei
r =

n

∑
i=1

Ti
r × Pi

r

where RI is the potential ecological risk index; Ei
r is the potential ecological risk coefficient

of a single PTE, and Tr
i is the toxicity coefficient of a single PTE. The toxicity coefficients

of PTEs are as follows: As = 10, Cu = Ni = Pb = 5, Zn = 1, Cr = 2, and Cd = 30. Pir is a
single-factor index of the measured values of the PTEs. The RI classification scheme is
shown in Table 1.

3. Results and Discussion
3.1. Spatial Distributions of PTE Concentrations

The variation of PTEs were shown in Table 2. The mean values were 18.2 ± 10.3 mg/kg,
0.02 ± 0.01 mg/kg, 0.38 ± 0.74 mg/kg, 39.6 ± 10.4 mg/kg, 19.1 ± 5.28 mg/kg,
34.5 ± 41.1 mg/kg, and 75.8 ± 36.5 mg/kg for As, Cd, Cr, Cu, Ni, Pb, and Zn, respectively.
The variation coefficients of the seven PTEs measured in the topsoil in the study area were
ranked in the following order: Cd (194.11%) > Pb (119.04%) > As (56.34%) > Zn (48.16%)
> Cu (40.11%) > Ni (27.68%) > Cr (26.31%). The variation coefficients of Cd (194.11%) and
Pb (119.04%) were large, suggesting that the Cd and Pb contents varied greatly in the study
area. However, the coefficients of variation in Cr (26.31%) and Ni (27.68%) were less than
35%, indicating that the regional distributions of Cr and Ni are relatively stable and may
be less disturbed by human activities than those of other PTEs [35]. The average values
of Cr, Cu, and Ni derived in this study were lower than those calculated by predecessors
(58.46 mg/kg, 20.16 mg/kg, and 23.78 mg/kg, respectively; [36]), while the average values
of Pb and Zn were higher than those reported by Yang et al. (2021) [36] for the surface soil
of the Qaidam Basin (20.37 mg/kg and 57.2 mg/kg, respectively). The Cd, Cr, Cu, Ni, Pb,
and Zn concentrations were lower than their average values of 0.68 mg/kg, 93.29 mg/kg,
40.74 mg/kg, 54.73 mg/kg, 72.49 mg/kg, and 145.64 mg/kg, respectively, in the surface
soil of the northeastern Tibetan Plateau [4]. The average values of As, Cd, and Pb were
higher than those of Qinghai Province and China as a whole (Table 2), while the average
values of Cu and Ni were lower than the provincial and national values; all average Zn
values were similar.

The spatial distributions of PTEs were obtained by deriving the spatial differences of
the inverse distance weights of the PTEs (Figure 2). The highest values of As appeared in
the unpopulated area (0816tr13), while the highest values of Cd, Cu, Pb, and Zn appeared in
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the residential area (0816tr01), which was located near a gas station. The maximum values
of Cr and Ni were found in the saline lake area (0817tr05) and farmland area (0816tr12),
respectively. By comparing the mean PTE values among different regions, we found few
differences in the mean values of As, Cr, Cu, and Ni among different regions, the variations
in the mean values of Cd, Pb, and Zn were relatively large. By combining these results with
the spatial distributions of PTEs, the As, Cr, Cu, Pb, and Zn contents could be seen to be high
in urban areas. However, the Cu and Ni element contents were high in agricultural areas.

Table 2. Statistical summary of PTEs concentrations (mg/kg) in soil samples.

PTE As Cd Cr Cu Ni Pb Zn

Minimum value 10.4 0.08 19 8.2 11.7 11.1 32
Maximum value 29.9 4.45 66 40 30.8 76.8 213

Mean value 18.2 0.38 39.57 17.3 19.1 34.5 75.77
SD 10.3 0.74 10.41 6.69 5.28 41.08 36.5

Qinghai Province * 14 0.137 70.1 22.2 29.6 20.9 80.3
China soil * 11.2 0.097 61 22.6 26.9 26 74.2

* Mean values of PTEs in the soil (data were given by [31]).

Toxics 2021, 9, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 2. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb, and Zn in agricultural areas, residential 

areas, unpopulated areas, and saline lake areas in the Qaidam Basin on the northeastern Qinghai–

Tibet Plateau. 

3.2. Sources of PTEs in the Soil 

Figure 2. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb, and Zn in agricultural areas, residen-
tial areas, unpopulated areas, and saline lake areas in the Qaidam Basin on the northeastern
Qinghai–Tibet Plateau.



Toxics 2022, 10, 368 7 of 15

3.2. Sources of PTEs in the Soil

Anthropogenic and diagenetic inputs are often mixed, and both contribute to the
presence of PTEs in soils [10]. The correlation analysis results obtained for PTEs in different
landscape regions are shown in Table 3. PCA was used to further confirm the sources of
PTEs (Table 4). There was a significant correlation between Cd and Pb in unpopulated areas
(R = 0.896; p < 0.01), and As, Cr, Cu, and Ni were well-correlated (R > 0.700; p < 0.01). This
result was consistent with those obtained using PCA, and the high correlation indicates
that these two groups of PTEs have different sources or have undergone different surface
geochemical processes [14]. Previous studies have shown that the Pb and Cd contents
measured in ice cores from the northeastern margin of the Qinghai–Tibet Plateau and
the third pole are mainly of anthropogenic origin and were input through atmospheric
deposition following large-scale transportation [37–39]. Unpopulated areas are similar to
glaciers in that they are inaccessible and thus less affected by human activities. Therefore,
Cd and Pb in unpopulated areas are significantly affected by pollutant input through
atmospheric deposition on a long timescale. Previous studies have shown that the Cr in the
surface soils of the northeastern margin of the Qinghai–Tibet Plateau is mainly generated by
the natural weathering of the basin [11,15]. Therefore, the high correlations among As, Cu,
Ni, and Cr and the high significance of the first principal component (PC1) indicate that the
weathering of these elements is the main source of the PTEs in unpopulated watersheds.

In agricultural areas, the correlations among Pb, Cd, and Zn were good (R > 0.6;
p < 0.05), and As, Cr, Cu, and Ni were also well-correlated (R > 0.6; p < 0.05). The PCA
results showed that As, Cr, Cu, and Ni were significant factors in PC1 (R > 0.85) and
that Pb, Cd, and Zn were significant factors in PC2 (R > 0.79). Previous studies have
shown that large-scale planting increases the use of chemical fertilizers, thus leading to the
enrichment of Cd and Zn in topsoil [26,40,41]. Moreover, Wang et al. [11] found that the
Pb and Zn contents were relatively high in the farmland area of the Qinghai Lake basin in
the northeastern part of the Qinghai–Tibet Plateau, with a good correlation. In agricultural
areas, Pb and Cd were affected by farming activities. Therefore, the changes in the values
of Pb, Cd, and Zn observed in agricultural areas in this study were closely related to human
planting activities, while the As, Cr, Cu, and Ni contents were controlled by the regional
soil background.

Previous studies have shown that the high Pb values in the surface soils of industrial
and residential areas on the Qinghai–Tibet Plateau are mainly caused by vehicle exhaust
emissions, industrial activities, and metal smelting [11,15,16,42]. In this study, high Pb
values were distributed in the saline lake and Golmud City, where relatively frequent
human activities occur. The accumulation of Pb in soils is intensified by the extensive
exploitation of these saline lakes and smelting factories, so Pb is strongly influenced by
human activities in these two regions. The correlations As, Cd, Cr, and Zn had with Pb were
greater than 0.65, and their significances in PC1 were greater than 0.75, indicating that these
PTEs were strongly influenced by human activities, while the correlation between Cu and
Ni was 0.896, with a high significance in PC2. The Cu and Ni contents in the surface soils of
the saline lake area were mainly consistent with natural background variations. In Golmud
city, all PTEs had correlations greater than 0.740, and only one group arose in the PCA
results; thus, in this region, Pb has been strongly influenced by human activities [4,15,22].
In addition, all PTEs analyzed in this study were strongly affected by human activities in
urban areas; this region (Golmud city) is the region with the most intense human activity
(and the highest population density) in the Qaidam Basin.

3.3. Variation of Igeo, Pi, NPI, and RI in the Soils of Study Areas

To judge the degree of PTE pollution more accurately in the study area, Igeo, Pi, and
NPI were used in this study to discuss the sources and pollution degrees of PTEs. The
inverse distance weight (IDW) method was used to obtain the spatial pollution degree
distribution of the p results.
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Table 3. Fitted linear relationship coefficients between each PTE in the four analyzed landscape types
in the Qaidam Basin.

Unpopulated Areas

As Cd Cr Cu Ni Pb Zn

As 1 −0.229 0.733 ** 0.863 ** 0.772 ** −0.260 0.498
Cd 1 −0.063 −0.093 −0.253 0.896 ** 0.553
Cr 1 0.903 ** 0.903 ** 0.060 0.712 **
Cu 1 0.912 ** 0.031 0.752 **
Ni 1 −0.195 0.578 *
Pb 1 0.638 *
Zn 1

Agricultural areas

As Cd Cr Cu Ni Pb Zn

As 1 0.105 0.619 0.864 ** 0.708 * 0.057 0.670
Cd 1 −0.410 0.029 −0.322 0.878 ** 0.718 *
Cr 1 0.829 * 0.973 ** −0.503 0.264
Cu 1 0.895 ** 0.023 0.698
Ni 1 −0.399 0.358
Pb 1 0.648
Zn 1

Saline lake areas

As Cd Cr Cu Ni Pb Zn

As 1 0.847 * 0.955 ** 0.452 0.483 0.857 * 0.883 **
Cd 1 0.876 ** 0.063 −0.026 0.968 ** 0.742
Cr 1 0.471 0.425 0.837 * 0.942 **
Cu 1 0.896 ** −0.023 0.708
Ni 1 −0.019 0.571
Pb 1 0.658
Zn 1

Residential areas

As Cd Cr Cu Ni Pb Zn

As 1 0.888 * 0.743 0.852 0.778 0.945 * 0.841
Cd 1 0.759 0.942 * 0.752 0.967 ** 0.975 **
Cr 1 0.923 * 0.995 ** 0.828 0.750
Cu 1 0.917 * 0.963 ** 0.946 *
Ni 1 0.842 0.748
Pb 1 0.965 **
Zn 1

* p < 0.05. ** p < 0.01.

The Igeo values of different PTEs were significantly different at different sites. The
minimum and maximum Igeo values were −2.26 (Igeo-Cr) and 4.93 (Igeo-Cd), respectively.
The average Igeo value for PTEs varied from −1.27 (Igeo-Cr) to 0.484 (Igeo-Cd). According
to the classification criteria of Igeo [32], all Igeo-Cr, Igeo-Cu, and Igeo-Ni values in this study
reflected similar changes, and more than 95% of the points where these metals were
sampled were in the unpolluted category. Igeo-Zn and Igeo-As were in the unpolluted
and unpolluted to moderately polluted categories, respectively, and the proportions of
Igeo-Zn and Igeo-As in unpolluted sites were 87.5% and 68.8%, respectively. Igeo-Pb was
classified into four categories: unpolluted, unpolluted to moderately polluted, moderately
polluted, and moderately polluted to heavily polluted, accounting for 81.25%, 12.5%, 3.13%,
and 3.13% of the total sampling sites, respectively. However, Cd reached the heavily to
the extremely polluted category, and the unpolluted, unpolluted to moderately polluted,
moderately polluted, moderately polluted to heavily polluted, and heavy to extremely
polluted categories accounted for 40.63%, 34.38%, 9.38%, 12.50%, and 3.13% of the total
number of sampling points, respectively. The degree of PTE pollution was similar to that
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reported in previous studies [4,15]. The Igeo results obtained for the analyzed PTEs were
not consistent among different regions. According to the average Igeo values derived in
different landscape areas (Figure 3), the Cr, Cu, Ni, and Zn values in all landscape areas
were less than 0, suggesting that Cr, Cu, Ni, and Zn are generally unpolluted in the study
area. In residential areas, Cd is moderately polluted to heavily polluted, Pb is moderately
polluted, and As is not polluted to moderately polluted, indicating that the PTE pollution
in residential areas is the most serious. Human activities are the most frequent in residential
areas among the four considered landscape areas, and the correlations among the PTEs
and the PCA results also indicate that all PTEs in residential areas are affected by human
activities. Golmud city is one of the most intense human activity areas in the Qaidam Basin
and an important transportation hub on the Qinghai–Tibet Plateau. Previous studies have
shown that railway and highway transportation processes will increase the enrichment of
Cd and Pb in soils along the Qinghai–Tibet Plateau [21,43], so the Cd and Pb content in this
region is strongly influenced by human activities. According to the classification criteria of
Igeo, the Cd contents in agricultural areas and saline lakes can be classified as unpolluted to
moderately polluted.

Table 4. Factor loadings of components and those obtained after matrix rotation.

Unpopulated Areas
Component Matrix Rotated Component Matrix

PC1 PC2 PC1 PC2

As 0.859 −0.273 0.882 −0.185
Cd −0.036 0.962 −0.132 0.954
Cr 0.948 −0.004 0.943 0.091
Cu 0.985 −0.035 0.984 0.065
Ni 0.931 −0.233 0.949 −0.139
Pb 0.048 0.981 −0.051 0.981
Zn 0.777 0.615 0.711 0.690

Agricultural areas Component matrix Rotated component matrix

PC1 PC2 PC1 PC2

As 0.870 0.237 0.872 0.232
Cd −0.098 0.959 −0.092 0.959
Cr 0.905 −0.366 0.903 −0.372
Cu 0.978 0.157 0.979 0.151
Ni 0.950 −0.260 0.949 −0.266
Pb −0.165 0.953 −0.159 0.954
Zn 0.591 0.795 0.596 0.791

Saline lake areas Component matrix Rotated component matrix

PC1 PC2 PC1 PC2

As 0.977 −0.063 0.894 0.398
Cd 0.849 −0.515 0.992 −0.062
Cr 0.986 −0.077 0.909 0.390
Cu 0.546 0.815 0.105 0.975
Ni 0.500 0.825 0.059 0.963
Pb 0.818 −0.555 0.982 −0.112
Zn 0.959 0.179 0.766 0.604

Residential areas Component matrix

PC1

As 0.915
Cd 0.953
Cr 0.906
Cu 0.991
Ni 0.911
Pb 0.986
Zn 0.944

Extraction method: Principal component analysis; rotation method: Varimax with Kaiser normalization.

The Pi results are shown in Table 5. The minimum Pi value was 0.31 (Cr), the maximum
Pi value was 45.88 (Cd), and the mean Pi value varied from 0.65 (Cr) to 3.91 (Cd). The
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average Pi values are ranked in the following order: Cd > As > Pb > Zn > Cu > Cr > Ni.
According to the classification criteria of Pi [33], more than 90% of the Pi values of Cr, Ni,
and Ni were distributed in nonpolluted areas, while the other values were distributed in
mildly polluted areas. As was mainly slightly polluted (85.7%) and moderately polluted
(11.43%). Zn was severe to moderately contaminated (2.86%) but was mainly found
in nonpolluted areas (60.0%). Cd and Pb reached the level of severe pollution, with
severe pollution index distributions of 25.71% and 5.71%, respectively; these two elements
occurred as mild pollution and moderate pollution in 45.7% and 17.1%, and in 20% and
8.57% of the areas, respectively. Overall, the results obtained by Pi were similar to those
obtained for Igeo, but the pollution level indicated by Pi was more serious than that indicated
by Igeo.
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Table 5. Pi results were obtained for soil PTEs.

PTEs
Pi Distribution of Pi (%)

Minimum
Value

Maximum
Value

Average
Value

Clean
(Safe) Mild Pollution Moderate Pollution Severe Pollution

As 0.93 2.79 1.45 2.86 85.71 11.43 -
Cd 0.82 45.88 3.91 11.43 45.71 17.14 25.71
Cr 0.31 1.08 0.65 97.14 2.86 - -
Cu 0.36 1.77 0.77 82.86 17.14 - -
Ni 0.43 1.14 0.71 91.43 8.57 - -
Pb 0.43 3.13 1.06 65.71 20.00 8.57 5.71
Zn 0.43 2.87 1.02 60.00 37.14 2.86 -

The NPI results ranged from 0.56 to 32.56 (Table 5), with the highest value indicating
intense pollution. The mean value was 5.93, indicating that seriously polluted areas are
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located in the study region. Combined with the pollution grade classification of NPI [34]
and the spatial distribution characteristics of the pollution grade indicated by Pi (Figure 4),
the safe, clean, mildly polluted, moderately polluted, and severely polluted areas accounted
for 18.4%, 20.8%, 23.4%, 18.9% and 18.5% of the total area, respectively. The safe areas
mainly comprised the unpopulated area in the northeastern part of the research area, and
clean areas were mainly distributed from unpopulated areas to farmland areas. Mildly
polluted areas were mainly distributed in most of the saline lake areas and the farmland
areas near Zongjia town in the south. Severe pollution was distributed in residential areas
(e.g., Golmud city), while moderate pollution was distributed in the saline lake areas and
the transition areas from farmlands to residential areas. Overall, the pollution levels in the
study area showed an increasing trend from the northeast to the southwest. The pollution
level distribution agreed well with the intensity distribution of human activities.
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All pollution indices indicated that PTE pollution exists in some areas of the study
area, requiring effective pollution control and remediation. According to the survey results,
residential areas are the most polluted areas, and there is a phenomenon of pollution spread-
ing outwards. Industrial and agricultural activities should also be carefully planned and
managed to prevent possible pollution. This study provided comprehensive information
regarding the distribution and pollution of PTEs in soils on the northeastern part of the
Qinghai–Tibet Plateau and provided a basis for the formulation of effective environmental
protection measures.

The RI of soil PTEs in the study area varied from 8.3 to 216.4 (Figure 5). According
to the ecological risk grade classification of the RI [33], there are 6 very strong ecological
risk points, 6 strong ecological risk points, 9 medium ecological risk points, and 11 low
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ecological risk points in the region. Except for sampling points 0817TR03 and 0816TR13,
the contribution of Cd to the RI of the other sampling points exceeded 50%, accounting for
51.2% to 93.7% of the total value. Cd controlled the changes in ecological risk coefficients
at these points. The 0817TR03 and 0816TR13 points were controlled by As and Cd (77.8%
and 73.6%, respectively); these points were located in low ecological risk areas. The spatial
distribution of the RI results showed that areas with very strong ecological risks were
mainly distributed in Golmud City, while the farmland areas and saline lake areas had
strong to moderate ecological risks. The unpopulated areas mainly had low ecological risk.
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northeastern Qinghai–Tibet Plateau.

Overall, the spatial distributions of PTE pollution and the potential ecological risk
indices showed similar changes; both showed an increasing trend from the unpopulated
areas in the northeastern Qaidam Basin to Golmud City in the south-western Qaidam
Basin. The areas with serious pollution and very strong ecological risk were concentrated
in Golmud City and spread to the surrounding areas. In addition, the six regions with
high PTEs contents were mainly concentrated in this area, indicating that human activities,
such as urban household waste discharge, transportation, industry, fuel production, and
consumption, have become important sources of PTEs in soils along with the rapid devel-
opment of the economy and urbanization in Qaidam Basin and the increase in soil PTE
contents. Human activities have negatively impacted the soil’s ecological environment,
so the ecological environments of soils in arid areas should not be ignored, especially
regarding the PTE pollution of soils.
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4. Conclusions

The mean values of PTEs in the soil of the study areas ranged from 0.02 (Cd) to
75.8 (Zn) mg/kg. The average values of As, Cd, and Pb were higher than those of Qinghai
Province and China. The results of the correlation analysis and PCA showed that Pb and
Cd were strongly affected by anthropogenic activites through large-scale transportation
and regional input. Four methods were used to evaluate the pollution of PTEs in the soils
of the study area. Cadmium posed the most serious contaminant in the study area based
on Igeo evaluation, with moderately polluted, moderately polluted to heavily polluted, and
heavy to extremely polluted categories accounting for 9.38%, 12.50%, and 3.13% of the total
number of sampling points, respectively. Cadmium and Pb reached the level of severe
pollution, with severe pollution index distributions of 25.71% and 5.71%, respectively;
these two PTEs occurred as mild pollution and moderate pollution in 45.7% and 17.1%
and in 20% and 8.57% of the areas, respectively. NPI results illustrated that moderately
polluted and severely polluted areas accounted for 18.9% and 18.5% of the total area,
respectively. The potential ecological risk value ranged from 8.3 to 216.4. Golmud City and
its surroundings were the most severely polluted areas in the region, accounting for 18.5%
of the total area, which contained very high ecological risk. The spatial variations of PTE
pollution and the potential ecological risk index were similar. They both increased from the
unpopulated area in the northeastern Qaidam Basin to Golmud City in the south-western
Qaidam Basin. The results indicate that human activities have negatively impacted the
soil ecological environment in the rapid development of the economy and urbanization
in the Qaidam Basin and these negative impacts tend to spread to unpopulated areas.
Therefore, it is necessary to emphasize the significant impact of human activities on soil
environmental quality and formulate preventive measures to reduce PTE pollution on the
Qinghai–Tibet Plateau.
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