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Carl A. Shirley1 and Nihal Ahmad1,2*

1 Department of Dermatology, University of Wisconsin, Madison, WI, United States, 2 William S. Middleton Memorial Veterans
Hospital, Madison, WI, United States

Melanoma is one of the seven most common cancers in the United States, and its
incidence is still increasing. Since 2011, developments in targeted therapies and
immunotherapies have been essential for significantly improving overall survival rates.
Prior to the advent of targeted and immunotherapies, metastatic melanoma was
considered a death sentence, with less than 5% of patients surviving more than 5
years. With the implementation of immunotherapies, approximately half of patients with
metastatic melanoma now survive more than 5 years. Unfortunately, this also means that
half of the patients with melanoma do not respond to current therapies and live less than 5
years after diagnosis. One major factor that contributes to lower response in this
population is acquired or primary resistance to immunotherapies via tumor immune
evasion. To improve the overall survival of melanoma patients new treatment strategies
must be designed to minimize the risk of acquired resistance and overcome existing
primary resistance. In recent years, many advances have been made in identifying and
understanding the pathways that contribute to tumor immune evasion throughout the
course of immunotherapy treatment. In addition, results from clinical trials focusing on
treating patients with immunotherapy-resistant melanoma have reported some initial
findings. In this review, we summarize important mechanisms that drive resistance to
immunotherapies in patients with cutaneous melanoma. We have focused on tumor
intrinsic characteristics of resistance, altered immune function, and systemic factors that
contribute to immunotherapy resistance in melanoma. Exploring these pathways will
hopefully yield novel strategies to prevent acquired resistance and overcome existing
resistance to immunotherapy treatment in patients with cutaneous melanoma.
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INTRODUCTION

Melanoma is one of the deadliest cancers of skin and its
incidence has increased significantly at a constant pace in the
past few decades in the United States. Historically, the diagnosis
of distant metastatic melanoma has been associated with
significant mortality. Before the invention of immunotherapies,
less than 10% of patients who received such a diagnosis survived
more than 5 years. From the 1990’s through 2010’s novel
treatments were lacking for melanoma, until the approval of
the first immune checkpoint inhibitor (ICI) in 2011 [reviewed in
(1, 2)]. This discovery launched a revolution that resulted in this
once death sentence into a better manageable disease with a
5-year survival rate as high as 44% [reviewed in (3)]. Melanocytes
have complex interplay with the immune system, as spontaneous
regression of nevi is common in early life, suggesting an active
immune surveillance system that eliminates transformed
melanocytes to prevent tumor formation (4, 5). However,
neoplastic cells skew the immune system to an immunosuppressed
state and acquire mechanisms to escape immune responses (6). This
is reflected by a long lag between enhanced melanocytic proliferation
to neoplastic progression (7).

Immune checkpoint inhibitors are drugs that block proteins
knownas immune checkpoints, whichmonitor the immune system
(e.g. programmed cell death protein 1/programmed death ligand 1
[PD-1/PD-L1) and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4)] (4). These checkpoints negatively regulate the immune
response thatnormallyprotects the individual fromsevere reactions
(8). In cancer patients, this prevents immune cells from targeting
tumor cells, permitting malignant cells to evade the immune
response, which is considered a hallmark of cancer (3). Presently,
immune checkpoint inhibitors are some of the standard treatments
used for melanoma patients.

The clinical trial data showing superior anti-melanoma effects
of ICIs such as pembrolizumab (anti-PD-1), nivolumab (anti-PD-
L1), and ipilimumab (anti-CTLA-4), over traditional therapies,
has led to their rapid FDA approval (9, 10). However,
approximately 66% of melanoma patients still experience disease
progression while on immunotherapy and approximately 50% still
die of melanoma (3). Thus, despite the promising clinical
outcomes, immune checkpoint inhibitors have been associated
with lower than desirable responses due to resistance leading to
disease progression or relapse. The etiology of the resistance to
immunotherapies that often underlies these deaths is often
multifactorial. Mechanisms of immunotherapy resistance are
poorly understood across all cancer types, and melanoma is no
exception. Since the driving cause of resistance is not fully
understood, it is currently not possible to identify which patients
are likely to respond and which patients will develop resistance to
a chosen immunotherapy before initiating treatment.

Although, there are various reviews available focusing on
melanoma and immunotherapies, the goal of this review is to
discuss the recent advancements towards elucidating the
mechanisms of melanoma resistance to immunotherapies. As
this is a pressing area of research, the focus will be on tumor
intrinsic characteristics of resistance, epigenetic mechanisms of
resistance, altered immune function, and systemic factors that
Frontiers in Oncology | www.frontiersin.org 2
contribute to immunotherapy resistance. Due to the complexity
of these pathways, there is some overlap between the groups. We
have also discussed the possible ways to overcome the resistance
to immunotherapies in melanoma.
CURRENT IMMUNOTHERAPIES
FOR MELANOMA

Immune Checkpoint Inhibitors (ICIs)
A number of ICIs are being currently used for melanoma
treatment. Ipilimumab is an anti-CTLA-4 monoclonal antibody,
meaning that it binds to CTLA-4 protein, blocking the interaction
between CTLA-4 and its ligands (CD80 and CD86), and
consequently inhibiting the activity of this protein (11, 12). This
negative regulation activates the proliferation of T cells and
promotes the attack of cancerous cells, including melanoma
(13). Ipilimumab was one of the first treatments to prolong the
survival of metastatic melanoma patients and indeed, after FDA
approval in the year 2011, National Comprehensive Cancer
Network recommended it as category 1 for patients with late-
stage melanoma (12, 14). Ipilimumab is recommended for
unresectable or metastatic melanoma cases, and as an adjuvant
therapy. This marked a milestone in immunotherapy, as selected
patients reaped long-term responses after treatment. Survival
increased in some for up to 10 years (15). On the other hand, at
the beginning of treatment, some patients experience atypical
responses or pseudo-progression —meaning that they
experience an increase in tumor size and/or new lesions present
due to a weak antitumor immune response, or even immune
effector cells aiding tumor growth (16). However, continued
treatment results in an anti-melanoma response (16). Moreover,
since ipilimumab stimulates T-cell proliferation, it can lead to
immune-related adverse effects (irAEs) like dermatitis,
endocrinopathy, and hepatitis, and other side effects including
pruritus, fatigue, and colitis, the latter being the most prevalent
(12, 14, 15). Fortunately, most of these reactions can be treated and
even reversed. Even though a higher percentage of patients (20-
25%) experience long-term beneficial effects including increased
survival rates, overall response rates range on the lower end (12-
19%) (13). Therefore, researchers have been searching for
prognostic and predictive biomarkers that could help determine
which patients would benefit from this treatment the most (12).
Interestingly, patients who experience changes in blood markers
during treatments, like increased counts of eosinophil and
lymphocytes, have better outcomes (17). Nonetheless, more
biomarkers are being explored including peripheral blood cell
markers, molecular markers, and even markers found in the gut
microbiome (17, 18). Overall, due to the low efficacy and high cost
(approximately $80,000-$120,000 per patient) other treatments
are now preferred.

In 2014, pembrolizumab (anti-PD-1) and nivolumab (anti-PD-
L1) were approved as melanoma treatments and are currently used
as first-line therapy for patients with advancedmelanoma (1, 8, 19).
Both of these drugs work by inhibiting PD-1, an immune
checkpoint that, unlike CTLA-4, is activated later in the immune
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response since it is expressed after continuous exposure to antigens
(1). PD-1 is expressed in T cells and after biding to its ligands (PD-
L1 and PD-L2) decreases the proliferation, activity, and survival of
T cells (11, 20). Interestingly, cancer cells often increase the
expression of PD-L1, which allows them to evade being targeted
by immune cells (11, 20). Therefore, inhibiting PD-1 stimulates
immune cells to attack tumor cells (20). Nivolumab is used as
monotherapy, combination therapy, or adjuvant therapy to treat
patients with unresectable or metastatic melanoma (20).
Monotherapy with this agent was shown to increase survival and
response rate (up to 44%) in advanced melanoma patients (15).
Some patients experience minor and manageable side effects (e.g.
diarrhea, nausea, pruritus) and/or irAEs, but nivolumab is
considered safe and effective (21). Comparatively, pembrolizumab
imparts long-term antitumor effects (more than 5 years), increases
survival in advanced melanoma patients, and decreases the risk of
disease progression and death in more than one-third of the
patients (22–24). Interestingly, treatment regimens are adaptable,
but the efficacy remains constant and depending on the patient,
treatment can go on for up to two years (16, 24). Likewise, this
immunotherapy agent is well-tolerated by melanoma patients since
the adverse effects are less frequent, thyroid disorders being one of
the most frequent effects observed (22, 23). Treatments with
nivolumab and pembrolizumab have been more effective than
ipilimumab monotherapy, yielding increased survival rates in
35%-50% of patients as well as having a favorable toxicity profile
and lower rates of irAEs (3, 25). Overall, checkpoint inhibitors are
modern immunotherapeutics that have been shown to improve
melanoma patient prognosis in resectable tumors as well as
metastatic melanoma (13, 19).

Oncolytic Enhanced Immunotherapy
In 2015, FDA approved the use of talimogene laherparepvec (T-
VEC or Imlygic) for advanced melanoma patients, becoming the
first oncolytic virus therapy (OVT) in theUnited States [reviewed in
(26)]. In fact, OVT leads to oncolysis, apoptosis, necrosis,
autophagic cell death, and stimulates an overall anti-tumor
immune response (27). T-VEC is an oncolytic herpes simplex
virus type 1 (HSV-1) that has mutations in several genes
including c34.5, a47, and granulocyte-macrophage colony-
stimulating factor (GM-CSF) (27). Particularly, the first two genes
are deleted while the latter is a transgene derived from humans that
is inserted into the deleted c34.5 loci of the virus [reviewed in (28)].
Deletion of c34.5 is crucial for the virus to selectively replicate in
cancer cells without infecting normal cells, while a47 usually
negatively regulates antigen presentation, hence its deletion
promotes antitumor immune response (29, 30). On the other
hand, the reasoning behind adding GM-CSF relies on its potential
of enhancing antitumor activity, nevertheless, researchers have
suggested that other human genes might be preferred (e.g.
interleukins 12 and 18) due to their key immune-related roles
[reviewed in (28)]. The immunosuppressive TME favoring
melanoma ICI resistance can be taken advantage of as a target for
viral attack; dysfunctional immune signaling allows genetically
engineered non-pathogenic viruses to selectively target cancer
cells and consequently replicate in them to a greater extent than
in normal cells (28, 31). OVTs have been associated with activation
Frontiers in Oncology | www.frontiersin.org 3
of T and NK cells, release of immunogenicity stimulating agents,
release of tumor-specific antigens for APC uptake, type I IFN
signaling, and major histocompatibility complex (MHC)
upregulation (32, 33). The overall response rate to T-VEC
monotherapy is only around 25% (34), but the true promise of OVTs
arguably lies in their immunomodulatory properties.

T-VEC and Anti-PD-1 Therapy
Tumor adenovirus OVT injection drastically alters the immune
landscape with increased NK, T cell and APCmigration occurring.
Interestingly, initial trials observed that OVTswere associated with
an increase ofPD-1andPD-L1 expression (32). In response to these
findings, recent reports reveal PD-L1 expression is an adaptive
mechanismused bymelanoma to generateOVT resistance (33, 35).
The exact relationship between PD-L1 expression and anti-PD1
efficacy remains cloudy, but multiple studies associate high PD-L1
with improved therapeutic outcomes (36, 37). This suggests OVTs
may prevent anti-PD-1 resistance acquisition through PD-L1
regulation, or even reverse acquired resistance. This hypothesis is
supported by a study that found Newcastle Disease Virus (NDV)
sensitized B16-F10 tumors to anti-PD-1 therapy (33). T-VEC was
also found to enhance anti-PD-1 therapy responses (38). Another
recent study taking advantage of PD-L1 OVT response generated a
novel OVT that expressed a PD-L1 inhibitor. This “double-armed”
OVT reactivated T cell responses and specifically targeted B16-F10
melanoma alone, or even more effectively when also paired with
PD-L1 antibodies (39). The re-activation of tumor immune
pathways in response to viral infection already gives a basis for
sensitization to ICIs, but the possibility to overcome resistance
problems through OVT mediated PD-L1 control provides an
appealing prospect for further research.

T-VEC and Anti-CTLA-4 Therapy
T-VEC also positively augments anti-CTLA-4 therapies in
melanoma, as do other OVTs (38, 40). A measles OVT was
developed to express CTLA-4 antibodies and showed promising
results in human melanoma xenografts (41). A recent study
using an anti-CTLA-4 expressing NDV OVT found the
treatment was similar in effectiveness to traditional anti-CTLA-
4 therapy in combination with radiation, in B16-F10 melanoma
(42). Zamarin et al. have discussed how NDV treatment
reactivates the melanoma immune landscape through T and
NK cells, MCH I and II, and interferon signaling to provide a
synergistic effect when combined with anti-CTLA-4 therapy in
B16-F10. They also found NDV therapy increased the expression
of CTLA-4 ligands (CD80 and CD86), thus providing a potential
mechanism for direct modulation of CTLA4 resistance (43). The
interplay between OVTs and anti-CTLA-4 resistance is poorly
researched, but initial studies show promising results for both
combined therapies and insight into potential mechanisms for
ICI therapy resistance deterrence via OVTs.

T-VEC and STING Signaling
As a master regulator of innate immunity pathways, it is
unsurprising that STING signaling inhibits OVT efficacy (31,
44, 45). A recent study used T-VEC to effectively target STING
deficient melanoma (31). OVTs have good potential for targeting
April 2022 | Volume 12 | Article 880876
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ICI-resistant tumors as the same pathways developing resistance
also develop viral susceptibility. Furthermore, if STING
reactivation occurs as a result of OVT, it may re-sensitize
melanoma to ICIs. This remains untested but should be
investigated as it may provide a basis for therapies alternating
between OVT and ICI therapy admission. Overall, OVTs directly
augment ICI therapy efficacy through their viral-induced
immune responses. Many OVTs have poor lytic capabilities,
but recent combinations with ICI therapies have revealed
potential possibilities for avoiding secondary resistance or
overcoming it in primary instances. The relationship between
OVTs and known resistance-pathways desperately need to be
studied so that novel, exploitive, and highly effective OVT/ICI
combinations can be employed.
KEY PLAYERS IN RESISTANCE AGAINST
IMMUNE CHECKPOINT INHIBITORS (ICI)

Despite promising clinical results, immune checkpoint inhibitors
have been associated with sub-optimal responses to single-agent
therapies due to resistance or relapse. Around half of advanced
melanoma patients develop resistance to PD-1 treatments
[reviewed in (25)]. Even though antitumor effects from anti-
PD-1 and anti-CTLA-4 therapies are durable, they are associated
with low response rates likely due to intrinsic and acquired
resistance to treatments [reviewed in (8, 46)]. For these reasons,
researchers have been exploring the potential of combining
treatments (multiple immunotherapies as well as other types of
treatments together with immunotherapies). This pertains
especially to nivolumab and pembrolizumab since they are well
tolerated by patients and have the most promising outcomes.

Beyond honing the current therapeutic arsenal, melanoma
targets governing resistance are also under investigation. T cell
immunoglobulin and mucin domain 3 (TIM-3) and T cell
immunoreceptor with Ig and ITIM domains (TIGIT) are two
extensively studied immune checkpoints responsible for
fortifying melanoma against current immunotherapies,
especially anti-PD-1 treatments (47) and [reviewed in (48–
51)]. The human leukocyte antigen (HLA) complexes I and II
are responsible for antigen presentation, a crucial factor in
lymphocyte function. HLA malfunction in melanoma is well
documented and responsible for deterring anti-PD-1 and anti-
CLTA-4 consequences [reviewed in (8, 52)]. The tumor
microenvironment (TME) is another well-reviewed emerging
area of interest in immunotherapy resistance research [reviewed
in (53, 54)]. Indoleamine 2,3 dioxygenase-1 (IDO) is another
target shown to manifest immunotherapy resistance through the
accumulation of TME immunosuppressants (55) and reviewed
in (50). Past these well-documented resistance factors, newer
reports detail many other mechanisms utilized by melanoma to
impede immunotherapies. Below, we summarize the most recent
advancements towards elucidating the signaling mechanisms of
melanoma resistance to immunotherapies (Figure 1 and
Table 1).
Frontiers in Oncology | www.frontiersin.org 4
Epigenetic Mechanisms of Resistance
Epigenetics is a rapidly evolving field that studies changes in gene
expression that occur without modification of the underlying
DNA sequence. Major epigenetic processes often involve the
addition or removal of compounds to either DNA sequence
itself, or the histones DNA is wrapped around. Histone
acetylation, deacetylation, and methylation are often carried
out by histone acetyltransferases (HATs), histone deacetylases
(HDACs), and histone methyltransferases (HMTs), respectively.
Similar impermanent modifications can also be made to
regulatory elements in DNA by a variety of enzymes, including
DNA methyltransferases (DNMT). Epigenetics is intertwined
with melanoma resistance to immunotherapies through the
modulation of proteins that promote resistance. Aleotti et al.
authored a review article that covers many of the key roles of
global loss of DNA methylation with promoter CpG island
hypermethylation for tumor promotion and lists many
hypermethylated and hypomethylated genes that are associated
with melanoma (79).

A review by Gracia-Hernandez et al. has described many of
the epigenetic modifiers involved in melanoma pathogenesis,
resistance to targeted and immunotherapies, and potential
epigenetic targets for therapeutic adjuvants. They discuss the
role of reduced 4-1BB (CD137) expression by DNA
hypermethylation, HDAC6 promotion of IL-10 and PD-L1
expression, and mutations in the histone methyltransferase
EZH2, which reduces expression of proteins involved in the
antitumor immune response, such as RASSF5 and ITGB2
[reviewed in (80)]. Recent research has expanded the
association of EZH2 with immune evasion. Xu et al. revealed
that EZH2 inhibition enhances STING expression and signaling.
Combining EZH2 inhibition with STING agonist successfully
suppressed melanoma in a mouse model (B16-F10) with poor
immunogenicity. These mice displayed increased MHC I
expression and antigen presentation, increased CD8+ T cell
infiltration of tumors, and improved survival (56). This finding
is promising for the development of a therapy to combat
immune evasion in melanoma that has demonstrated
resistance to immunotherapies.

Recent research has identified several epigenetic regulators
that are altered in melanoma and may contribute to
immunotherapy resistance. KDM5B is a H3K4 demethylase
that has been implicated in melanoma resistance to targeted
BRAF inhibitor therapies (102). However, recent studies have
shown that KDM5B also promotes immune evasion in mouse
models of melanoma by recruiting a H3K9 methyltransferase,
SETDB1 (81). SETDB1 is enriched in many human cancers and
its overexpression is associated with suppressed anti-tumor
immune activity and resistance to immune checkpoint
blockade (82–84). SETDB1 suppresses the anti-tumor immune
response by blocking the expression of immune-related gene
clusters and transposable elements that encode MHC I antigens
recognized by T cells (82). The use of mithramycin A and
mithramycin analog EC-8042 in melanoma cells enhanced the
efficacy of MAPK inhibitor therapies (83, 103). However, despite
the clear impact of KDM5B and SETDB1 on immune evasion,
April 2022 | Volume 12 | Article 880876

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Thornton et al. Mechanisms of Immunotherapy Resistance in Melanoma
there have not been any studies on the effects of their inhibition
in melanoma resistance to immunotherapies. The results of the
above studies on KDM5B and SETDB1 indicate that an
epigenetic axis is likely involved in tumor immune evasion, as
Frontiers in Oncology | www.frontiersin.org 5
discussed by Galassi et al. (104). Further research into this
epigenetic regulator axis may help elucidate therapeutic targets
for melanoma that have successfully evaded immune surveillance
with current immunotherapies.
FIGURE 1 | Immunotherapy Resistance Signaling. Key targets of interest negate therapeutic responses through internal melanoma pathways, acquisition of TME
`immunosuppressants (red) and loss of TME immunostimulants (blue). STING, Stimulator of Interferon Genes; NLRP3, Nucleotide-binding domain, leucine-rich
containing family, pyrin domain-containing-3; PAI-1, Plasminogen Activator Inhibitor-1; LAG3 (Green on T Cell), Lymphocyte-activation gene 3; SK-1, Sphingosine kinase 1;
PD1, Programmed cell death protein 1 (yellow on T Cell); CLTA4, Cytotoxic T-Lymphocyte Associated Protein 4 (Blue on APC); STAT3, Signal transducer and activator of
transcription 3; IL, interleukin; MDSCs, Myeloid-derived suppressor cells; TREGs, Regulatory T cells; TILs, Tumor-infiltrating lymphocytes; APCs, Antigen Presenting Cells (45,
56–78). Visualization created with BioRender.com.
TABLE 1 | Recently revealed drivers of immunotherapy resistance and their influences.

Drivers of Immunotherapy
Resistance

Immune Influence(s) References

CpG promoter Methylation of melanoma genes of interest (79)
EZH2 MHC I expression, antigen presentation, CD8+ T cell infiltration, STING regulator (56)
HDAC6 IL-10 and PD-L1 expression (80)
RASSF5 and ITGB2 Immunogenicity Generation (80)
KDM5B Recruits the H3K9 methyltransferase SETDB1 (81)
SETDB1 Regulates expression of immune-related gene clusters, MHC I expression, antigen presentation (82–84)
FTO Increased PD-1 expression through autophagy (85)
TMB Generates neoantigens to promote successful immunosurveillance (8, 86–88)
LAG3 APC activator when bound to MHC II and negative regulation of T cells (89–91)
SK1 Lymphocyte trafficking and differentiation (92, 93)
STING MHC I expression, metabolic regulation, PD-L1 expression, immunostimulating interferon and chemokine signals (45, 57–61)
NLRP3 Inflammatory interleukin signals, MDSC control, macrophage polarization (64–69)
PAI-1 Macrophage polarization, PD-L1 surface levels, autophagy cycle, TREG control (70–73)
Microbiome Activation of various pathways (including STING) involved in T cell response and interleukin signaling (94–99)
VEGF Inhibition of dendritic cell maturation and T cell tumor infiltration (100, 101)
April 2022 | Volume 12 | A
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Fat mass- and obesity-associated (FTO) protein is a m6A
RNA demethylase that is strongly linked to obesity and is highly
expressed in certain types of acute myeloid leukemia (105). In
melanoma, overexpression of FTO is associated with increased
growth, proliferation, cell migration, and invasion (85). It is
upregulated when melanoma cells are placed under conditions of
metabolic stress, through activation of the autophagy pathway
that also increases PD-1 expression (85). In a study using
immunocompetent C57BL/6 mice with B10-F10 melanoma
tumors as a model for melanoma resistance to immunotherapies,
FTO knockdown restored the efficacy of anti-PD-1 blockade and
significantly inhibited tumor growth (85). Another recent study
showed that Dac51-mediated inhibition of FTO reduced the growth
of injected B16-OVA melanoma tumors (106). A combination of
Dac51 and anti-PD-1 checkpoint blockade demonstrated even
slower tumor growth and prolonged survival of mice without
evidence of significant general toxicity (106). The results are
promising for the use of FTO inhibition as an adjuvant to current
ICI approaches. Further research to identify selective FTO inhibitors
and more research on their effects in melanoma models are
necessary before these results can be adapted to human trials.

Tumor Mutational Burden (TMB)
and Neoantigens
Amajor factor that impacts the immunogenicityof cancers is tumor
mutational burden (TMB), or the number of nonsynonymous
mutations present in a tumor. Higher TMB indicates a greater
number ofmutations, which in turn increases the likelihood that an
abnormal protein may be identified by the immune system. These
proteins are termed neoantigens. Consistent with this theory, high
TMB is generally associated with improved overall survival and
immunotherapy response in melanoma patients (8, 86–88, 107).
However, there is still some debate about a good way to make high
and lowTMBdefinitionsmore consistent across studies to improve
its use as a biomarker for immunotherapy response [reviewed in
(108, 109)]. Recent research has shown that TMB and neoantigen
burden scores can predict response and likelihood of resistance to
immunotherapies (110). However, these scores are limited when
mutations that affect antigen presentation are present, which is true
in approximately 50% of melanoma tumors (8). Many of the
mechanisms underlying this loss are discussed in a recent review
by Olbryt, Rajczykowski, and Widlak (8). In addition,
immunotherapy creates positive selective pressure for low TMB
cells. Patients demonstrating melanoma progression post-
ipilimumab treatment subsequently treated with nivolumab saw a
decreased TMB when this course of action was effective (111). If a
given tumor has subclones with different levels of neoantigen
burden, the ICI therapy may eliminate all high TMB clones but
leaving lowTMBclonesbehind, resulting inanewly resistant tumor
(111). Research to develop combination therapy that targets both
hot and cold immunogenic subclones may decrease rates of
acquired resistance by preventing this selection.

Altered Immune Signaling
Lymphocyte-Activation Gene 3 (LAG3)
Lymphocyte-activation gene 3 (LAG3) is both an activator of
antigen-presenting cells when bound to MHC II and a negative
Frontiers in Oncology | www.frontiersin.org 6
regulator of T cell activation when found on T cells. Because of
this mechanism, LAG3 has both been associated with non-
response to therapy and therapeutics mimicking it has been
used to induce antitumor immunity (52, 89–91). Elevated serum
concentrations of soluble LAG3 are seen in non-responders to
anti-PD1 therapy and increased tumor infiltration with T cells
positive for LAG3 and TIM3 was also correlated with shorter
progression-free survival in patients receiving anti-PD1
immunotherapy (52, 90). To corroborate these findings,
preliminary results from a recent clinical trial combining a
monoclonal antibody against LAG3 (relatlimab) with
nivolumab showed improved progression-free survival in
patients treated with both relatlimab and nivolumab compared
to only nivolumab (112). To note, the cohort treated with the
combination relatlimab and nivolumab treatment did have a
higher rate of treatment-related adverse events than the cohort
only treated with nivolumab (112). More analyses regarding
overall survival and objective response are forthcoming, but the
initial evidence supports the theory that LAG3 may play a role in
impairing response to immunotherapies. Moreover, a clinical
trial combining eftilagimod alpha, a soluble LAG3 protein that
activates antigen-presenting cells, with pembrolizumab, also
shows promising activation of antitumor immune activity (89).
Further research focusing on the many roles of LAG3 in driving
antitumor immunity is necessary to determine the optimum
therapy that can hijack this pathway to overcome and prevent
resistance to immunotherapies.

Sphingosine Kinase 1
Sphingosine kinase 1 (SK1) is a kinase that catalyzes the
phosphorylation of sphingosine to sphingosine-1-phosphate
(S1P), an important regulatory protein for lymphocyte
trafficking and differentiation (92, 93). Past research has shown
that SKI is overexpressed in melanoma and causes elevated levels
of S1P, though the mechanism through which this impacts
immunotherapy response is still unknown (93). However, high
expression of SKI in melanoma cells has been shown to be
associated with resistance to anti-PD-1 immunotherapies in
patients (93). In accordance with this, inhibition of SKI has been
associated with the enhancement of the effect of anti-CTLA-4 and
anti-PD-1 immunotherapies on melanoma cells in vitro (93). This
is promising as several therapies that target the S1P axis have been
approved by the food and drug administration for use in
conditions like multiple sclerosis, and several S1P modulators
are under investigation for use in various human cancers (92).
Further preclinical and clinical research is necessary before these
agents are ready for adaptation to melanoma treatment, but the
initial preclinical data appears promising.

Stimulator of Interferon Genes Protein (STING)
Stimulator of interferon genes (STING) is an endoplasmic
reticulum (ER) protein that regulates the immune response
through interferon (IFN) and chemokine signaling (45, 57–61).
STING signaling is often suppressed or even absent in melanoma
(45). Activation of STING signaling was recently shown to
increase MHC I expression and promote the T cell response
against melanoma through increased type I IFN, and chemokine
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CXCL10 activity (57). In B16-F10 mouse models, STING
stimulation improved anti-CTLA-4 and anti-PD-1 therapy
outcomes through IFN signaling (62). The small molecule
agonist of STING, diABZI, was shown to prevent Nuclear
Factor Erythroid 2–Related Factor 2 (NRF2) activation in
melanoma (58). NRF2 is relevant to therapy resistance as it
regulates PD-L1 expression and drives oxidative metabolic
adaptation (58, 63). Another recent study modified DNA
methylation to enhance STING expression; this approach
vastly increased TIL-mediated killing in melanoma (57). As
discussed previously, EZH2 inhibitor mediated acetylation
enhanced STING expression to improve therapeutic effects.
STING agonist-loaded lipid nanoparticles (STING-LNPs) are a
third method currently under investigation to enhance STING
signaling. STING-LNPs diminished anti-PD-1 resistance in B16-
F10 metastatic melanoma via IFN signaling, and synergistically
provided an antitumor effect (60). Countering the suppression of
STING signaling is an emerging method to improve the innate
anti-tumor response and immunotherapy effectiveness while
deterring therapy resistance. Clinical trials promoting STING
signaling should be developed, and their results studied to
further understand how these potent effects are elicited.

Nucleotide-Binding Domain, Leucine-Rich Containing
Family, Pyrin Domain-Containing-3 (NLRP3)
NLRP3 regulates the caspase 1-dependent release of
proinflammatory interleukins IL-1b and IL-18 through the
formation of the NLRP3 inflammasome (64, 65). IL-1b is a
known pro-tumorigenic and immunosuppressive agent in
melanoma (66, 67). The orally active inhibitor, OLT1177, was
recently used to target NLRP3 in a B16F10 mouse model. This
approach resulted in decreased progression, inflammation, and
normalization ofMyeloid-Derived Suppressor Cell (MDSC) levels.
OLT1177 combined with anti-PD-1 therapy further decreased
MDSC levels and promoted T Cell tumor infiltration for an
enhanced antitumor effect (67). These results were consistent
with another recent study that both silenced NLRP3, or inhibited
it with the small molecule MCC950, to report a greatly reduced
MDSCpresence and increased anti-PD-1 therapy response.NLRP3
activity is especially pertinent in the scope of immunotherapy, as
MDSC recruitment was recently identified as a driver of resistance
acquisition. Furthermore, this recruitment is unavoidable as PD-L1
was found to inhibit STAT3, which in turn activates the NLRP3
inflammasome (68). However, the role of NLRP3 in melanoma is
unclear as another recent report found its activity induces cell death
in BRAF inhibitor-resistant melanomas and improves prognosis
(69). The results of NLRP3manipulationmay therefore depend on
unknown genetic primings previously introduced through therapy.
NLRP3 is also active in theTME;NLRP3 inhibition inmacrophages
withCelastrol resulted in decreasedB16-F10migration (66). The role
of NLRP3 in negating immunotherapy resistance should be further
explored, especially as a key component in adaptive anti-PD-
1 resistance.

Plasminogen Activator Inhibitor-1 (PAI-1)
Plasminogen activator inhibitor-1 (PAI-1) is a member of the
serine protease inhibitor family, specifically responsible for
Frontiers in Oncology | www.frontiersin.org 7
inhibition of tissue plasminogen activator and urokinase (70–
73). PAI-1 was previously reported to promote macrophage M2
polarization and tumor infiltration through an IL-6/STAT3
pathway (72, 74). PAI-1 inhibition with tiplaxtinin in a B16-
F10 mouse model decreased M2 macrophage and TREG tumor
infiltration (73). Exogeneous PAI-1 was recently shown to also
internalize PD-L1 in B16-F10 melanoma through endocytosis
mediation. In a B16-F10 mouse model, PAI-I inhibition with
tiplaxtinin prevented PD-L1 surface loss and provided a
synergistic anti-tumor effect when combined with anti-PD-L1
therapy (70). Interestingly, a separate study also verified
authophagically derived exogenous PAI-1 contributes to an
immunosuppressive TME in melanoma mouse models.
Melanoma cells challenged with mitoxantrone used autophagic
PAI-1 release to gain resistance, suggesting a similar mechanism
may be employed in immunotherapy cases (72). PAI-1 is also a
known regulator of autophagy and its ability to create a paracrine
positive feedback loop fostering further secretion has been
verified, although not in melanoma (72, 73). Targeting PAI-1
may prove useful to deter treatment resistance through negation
of autophagic signaling, macrophage polarization and halting of
PD-L1 loss. The exogenous nature of PAI-I also merits further
investigation in the scope of novel treatment development
focused on TME modification.
OVERCOMING IMMUNOTHERAPY
RESISTANCE

The immune system plays a key role in cancer pathogenesis,
prognosis and therapy responses. The use of ICI in cancer
immunotherapy aims to target the interaction between immune
cells and cancer cells, enhancing the immune system’s capabilities
against tumors. Melanoma has been characterized as one of the
most immunogenic tumors due to the existence of tumor-
infiltrating lymphocytes (TILs) in resected melanoma and
positive clinical responses to immune stimulation (113). Due to
high immunogenicity, melanomas have had widespread success in
being treated using ICI. The major advantage to immunotherapy
over targeted therapy is the more durable response on cancer
growth that can be present even after the drugs have been
discontinued. However, a large percentage of partial responders
(primary resistance) and high rates of resistance acquisition remain
the greatest obstacles to the optimal success of these therapies (114,
115). As discussed above, immunotherapy resistance is the result of
developing multiple interactions between cancer cells and the
immune system. Thus, it appears that the optimal treatment of
melanoma is likely to involve therapeutic regimens that include
multiple agents, given together or in sequence, with molecularly
defined targets. Below,wehave addressed someof the strategies that
may synergize with ICIs for maximal anti-melanoma responses.

Use of Molecularly Targeted Therapy in
Combination With Immunotherapy
This approach relies on the combinations of drugs targeting two
different signaling pathways to induce apoptosis leading to the
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release of tumor-associated antigens, and/or modulating key
cellular pathways that allow cancer cells to maintain an
adaptive resistance. BRAF inhibitors, such as dabrafenib and
vemurafenib, have demonstrated a survival advantage as both
monotherapy and in combination with MEK inhibitor
trametinib in both resectable and unresectable or metastatic
melanomas (116–118). However, most of the patients
ultimately acquire resistance, thereby failing to achieve durable
tumor regression (119). Interestingly, preclinical and clinical
studies combining anti–PD-1/PD-L1 with BRAF/MEK
inhibitors have demonstrated enhanced anti-melanoma
responses and tolerability (120). Similarly, bevacizumab, an
anti-vascular endothelial growth factor (VEGF) monoclonal
antibody, has been found to possess immunomodulatory
properties, as VEGF exerts immunosuppressive functions via
inhibiting dendritic cell maturation and T-cell tumor infiltration.
With this rationale, several clinical trials are evaluating the
combination of immune checkpoint inhibitors with anti-VEGF
therapies across multiple tumor types including melanoma
(100, 101).

Concurrent Inhibition of Two or More
Immune Checkpoints
Combination therapy with anti–CTLA-4 and anti–PD-1 has
been approved or in clinical trials for certain cancers including
melanoma. In a phase I clinical study, involving 142 patients with
metastatic melanoma, the objective-response rate and
progression-free survival have been found significantly higher
with ipilimumab (CTLA-4 inhibitor) and nivolumab (PD-1
inhibitor) combined therapy than ipilimumab monotherapy
(121). Three years post-trial, the average survival rate of the
nivolumab-plus-ipilimumab group was 58%, compared to 52%
for nivolumab alone (122). At five years, the survival rate was
52% for nivolumab-plus-ipilimumab and 44% for nivolumab
alone (123). At six and a half years, the survival rate was 49% for
nivolumab-plus-ipilimumab and 42% for nivolumab alone (124).
These results demonstrate the durability of the response achieved
through utilizing nivolumab alongside ipilimumab (124). The
clinical benefits with this combination therapy may have been
due to complementary mechanisms as ipilimumab is known to
prime T cells, whereas nivolumab reactivates effector responses.
Similarly, anti-PD-L1 along with anti-CTLA-4 and radiotherapy
has been demonstrated to promote a better response in a subset
of patients with metastatic melanoma (125).

Influence of the Microbiome
Several studies have noted the connection between gutmicrobiome
and melanoma response to immunotherapy, and postulated some
theories for howmicrobiome influences immunotherapy responses
(94–97). In patients with microbiota that favors immunotherapy
response, microbiota-derived STING agonists induce IFN1
signaling and spur anti-tumor immune response (94, 95). It is
theorized that gut microbiome may influence response to
immunotherapy through the production of short-chain fatty
acids and their subsequent influence on the epigenome of
melanoma cells. A recent study found that pentanoate induced
epigenetic reprogramming of T cells by inhibiting class 1 histone
Frontiers in Oncology | www.frontiersin.org 8
deacetylases, increasing mTOR activity in CD8+ T cells, and
enhancing expression of CD25 and IL-2, which empirically
increased anti-tumor activity of CD8+ T cells treated with these
short-chain fatty acids (96). In one study, oral administration of
probiotic Bifidobacterium in combination with PD-L1 has been
found to almost abolishmelanoma tumor growth in amousemodel
(98). The molecular analyses suggest that the effects were mediated
by improved dendritic cell function resulting in enhanced CD8+ T
cell priming and accumulation in the TME (98). In an analysis of
fecal microbiome samples of melanoma patients undergoing anti-
PD-1 immunotherapy, diversity and composition of gut
microbiome of responders showed significantly higher alpha
diversity and relative abundance of bacteria of Ruminococcaceae
family compared to nonresponders (99). Moreover, fecal microbiota
transplantation has been found to overcome resistance to PD-1
blockade in germ-free mice (99). Based on these promising
preclinical data, a small phase 1 clinical trial of fecal microbiota
transplant (FMT) and reinduction of anti-PD-1 therapy has been
conducted in patients with melanoma refractory to initial anti-PD-1
immunotherapy (97). The FMT was sourced from patients with
melanoma who responded to anti-PD-1 treatment (97). The study
found that FMT was associated with favorable changes in immune
cell infiltrates and deemedFMT safe to pursue in larger phase clinical
trials (97). If replicated in these larger trials, FMT could be a viable
option for patients who experience melanoma progression while on
anti-PD-1 immunotherapy.

Other Combination Strategies
With Immunotherapy
Similarly, several other combination therapeutic strategies to
overcome immunotherapy resistance are being investigated
[reviewed in (126)]. For example, combining cancer vaccines
with ICI has been found to be beneficial in multiple preclinical
studies as it increases antigen presentation and prime T cells.
Enhanced survival has been noticed with multi-peptide vaccine
and nivolumab adjuvant therapy in melanoma patients (127). In
another study, a personalized neoantigen vaccine (that targets up
to 20 predicted tumor neoantigens) paired with anti-PD-1
therapy showed complete tumor regression in melanoma
patients (128).

Further, a smallmolecule IDO inhibitor Epacadostatwas tested in
combination with pembrolizumab in a metastatic melanoma trial
with 928 patients, however, progression-free survival was not
significantly affected (129). Other Phase 1 and 2 trials combined
the nuclear factor erythroid 2-related factor 2 (NRF2) agonist,
Omaveloxolone, with Ipilimumab or Nivolumab in hopes of
abrogating MDSC-driven immunosuppression (ClinicalTrials.gov
Identifier: NCT02259231). Omaveloxolone was associated with
decreases in tumor iNOS, PD-L1, and IDO-1 expression without
any dose-limiting toxicities and thus, it may overcome ICI resistance
(130). Furthermore, Ipilimumab was also combined with oncolytic
virus (T-VEC) therapy, yielding, a 50%progression-free survival and
67% overall survival at 18months demonstrating superiority over T-
VEC monotherapy. (ClinicalTrials.gov Identifier: NCT01740297)
(131). Given these promising findings, several new clinical trials
have been initiated to devise the strategies to overcome
immunotherapy resistance in melanoma. Concurrently, research
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investigations are also underway to identify biomarkers associated
with ICI resistance and treatment responses.
CONCLUSION

Melanomahas been characterized as one of themost immunogenic
tumors due to the existence of TILs in resected melanoma,
occasional spontaneous regressions, and clinical responses to
immune stimulation. The immunogenicity of melanoma has led
researchers to identify novel immune strategies to overcome tumor
immune evasion. Nevertheless, high rates of resistance acquisition,
lack of long-lasting anti-melanoma responses and higher
percentages of limited responders remain key obstacles to the
realization of immunotherapies. The mechanisms of
immunotherapy resistance need to be identified for successful
future drugs targeting those mechanisms. There are definite
advancements in current research exploring novel mechanisms of
resistance against immunotherapy for melanoma. Sincemelanoma
is notoriously resistant to treatment and current therapeutic
approaches have not been able to effectively manage this
neoplasm, there is no doubt that the future treatment of
Frontiers in Oncology | www.frontiersin.org 9
melanoma will involve therapeutic regimens that include multiple
agents, given together or in sequence, with wide varieties of
molecularly defined and immunologic targets.
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