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ABSTRACT

Objective: To identify and characterize clinical subgroups of hospitalized COVID-19 patients. 

Materials and Methods: Electronic health records of hospitalized COVID-19 patients at 

NewYork-Presbyterian/Columbia University Irving Medical Center were temporally sequenced 

and transformed into patient vector representations using Paragraph Vector models. K-means 

clustering was performed to identify subgroups. 

Results: A diverse cohort of 11,313 patients with COVID-19 and hospitalizations between March 

2, 2020 and December 1, 2021 were identified; median [IQR] age: 61.2 [40.3-74.3]; 51.5% female. 

Twenty subgroups of hospitalized COVID-19 patients, labeled by increasing severity, were 

characterized by their demographics, conditions, outcomes, and severity (mild-

moderate/severe/critical). Subgroup temporal patterns were characterized by the durations in 

each subgroup, transitions between subgroups, and the complete paths throughout the course of 

hospitalization. 

Discussion: Several subgroups had mild-moderate SARS-CoV-2 infections but were 

hospitalized for underlying conditions (pregnancy, cardiovascular disease (CVD), etc.). Subgroup 

7 included solid organ transplant recipients who mostly developed mild-moderate or severe 

disease. Subgroup 9 had a history of type-2 diabetes, kidney and CVD, and suffered the highest 

rates of heart failure (45.2%) and end-stage renal disease (80.6%). Subgroup 13 was the oldest 

(median: 82.7 years) and had mixed severity but high mortality (33.3%). Subgroup 17 had critical 

disease and the highest mortality (64.6%), with age (median: 68.1 years) being the only notable 

risk factor. Subgroups 18-20 had critical disease with high complication rates and long 

hospitalizations (median: 40+ days). All subgroups are detailed in the full text. A chord diagram 

depicts the most common transitions, and paths with the highest prevalence, longest 

hospitalizations, lowest and highest mortalities are presented. Understanding these subgroups 
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and their pathways may aid clinicians in their decisions for better management and earlier 

intervention for patients.
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INTRODUCTION

Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in 

December 2019, there have been over 400 million confirmed cases of Coronavirus Disease 2019 

(COVID-19) worldwide, leading to over 6 million deaths as of April 2022,[1] and over 314,000 

hospitalizations in the United States alone.[2] SARS-CoV-2 infections can lead to a wide range of 

clinical presentations and disease severity, ranging from asymptomatic carriers to critical cases 

with acute respiratory distress syndrome (ARDS), shock, and multiorgan failure.[3] COVID-19 is 

also known to manifest heterogeneously, potentially leading to heart failure, renal failure, liver 

injury, gastrointestinal symptoms, neurological issues, cognitive dysfunction, and systemic 

manifestations.[4–9] 

Electronic health records (EHR) data analyses have been pivotal in contributing to our 

understanding of COVID-19. Argenziano et al. manually abstracted EHR data of the first 1000 

COVID-19 patients admitted at NewYork-Presbyterian/Columbia University Irving Medical Center 

(NYP/CUIMC) to characterize patient demographics, presenting symptoms and comorbidities, 

hospital course, and outcomes.[10] Among key observations, Argenziano et al. found high rates 

of acute renal failure syndrome (ARFS; 78.0% among intensive care unit (ICU) patients) and 

prolonged intubations (median 28.5 days). Brat et al. and the Consortium for Clinical 

Characterization of COVID-19 by EHR (4CE) harmonized EHR data of COVID-19 patients across 

five countries using common data models (CDM) and found that trends towards progressively 

abnormal values of laboratory measurements for inflammatory, immune, hepatic, coagulatory, 

and renal function correlated with worsening disease.[11] Weber et al. performed a retrospective 

cohort study on EHR data using aggregated statistics from 315 hospitals across six countries and 

found that patients hospitalized in the second wave had a 9.9% reduction in the risk of severe 

disease relative to the first wave, with significantly lower relative risk among patients aged 26-49 

(0.77 [0.63-0.94]) and 50-69 (0.84 [0.72-0.97]), and among Black patients (0.89 [0.81-0.98]).[12] 
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Kostka et al. conducted an Observational Health Data Sciences and Informatics (OHDSI) Network 

study to characterize comorbidities, symptoms, medications, and outcomes in three cohorts: 

COVID-19 patients; hospitalized COVID-19 patients; and hospitalized COVID-19 patients 

requiring intensive services, finding both similarities and differences in the cohort characteristics 

across the international sites.[13]

To better understand the heterogeneity of COVID-19, researchers have adopted many 

approaches to identify and characterize subtypes of the SARS-CoV-2 virus and COVID-19 

disease presentation. Morais et al. analyzed global samples of SARS-CoV-2 genomic sequences 

by identifying segments of high genetic variability and clustering the widely shared 

polymorphisms, finding six well-defined subtypes with polymorphisms in genes coding for 

nonstructural, spike, nucleocapsid, and accessory proteins that may confer phenotypic 

implications.[14] Chen et al. analyzed immune signatures in leukocytes and identified three 

COVID-19 subtypes that varied by levels of enrichment of immune-inciting and immune-inhibiting 

signatures; the subtype with the highest immune-inciting and lowest immune-inhibiting signatures 

had the best outcomes.[15] Huang et al. assessed symptoms at 61+ days post-diagnosis using 

non-negative matrix factorization on symptom co-occurrences from EHR and found five symptom 

clusters among long-haulers: chest pain-cough, dyspnea-cough, anxiety-tachycardia, abdominal 

pain-nausea, and low back pain-joint pain.[16] Lusczek et al. performed ensemble clustering on 

EHR data collected within 72 hours of hospital admission and found three clinical COVID-19 

phenotypes with different comorbidities, complications, and outcomes, including phenotype-III 

with respiratory comorbidities, phenotype-II patients with moderate severity, and phenotype-I with 

hematologic, renal, and cardiac comorbidities, and 7.30-fold increase in hazard of death relative 

to phenotype-III.[17] Sudre et al. applied unsupervised time-series clustering to the first five days 

of self-reported symptoms, yielding six clusters of symptom presentations, which were predictive 

of need for respiratory support.[18] In a prospective cohort study, Kenny et al. performed multiple 
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correspondence analysis and hierarchical clustering on self-reported symptoms present more 

than 4 weeks after symptom onset and found three clusters among long-COVID patients 

associated predominantly with 1) pain symptoms, 2) cardiovascular symptoms, and 3) fewer long-

COVID symptoms.[19] Oh et al. analyzed temporal patterns in EHR data, including lab 

measurements and treatments, collected during the first 24 hours of ICU admission using 

sequence clustering methods.[20] Oh et al. identified four clinical subphenotypes in critical 

COVID-19 patients, ranging from patients with few invasive interventions during the first 24 hours 

who experienced good outcomes to patients who deteriorated during the first 24 hours and 

ultimately had poor outcomes. 

In this study, we retrospectively analyzed EHR data of hospitalized COVID-19 patients to identify 

and characterize highly detailed clinical subgroups of COVID-19 patients. We developed an 

analysis pipeline to extract EHR data into medical coding sequences and transformed them into 

patient vector representations using Paragraph Vector embedding models. We applied K-means 

clustering on the patient vectors to identify COVID-19 clinical subgroups and characterized each 

of the subgroups based on demographics, baseline health prior to SARS-CoV-2 infection, and 

conditions and outcomes observed. We evaluated the patient vectors daily to characterize 

temporal patterns between subgroups, identifying subgroup paths with the highest prevalence, 

longest duration, lowest and highest mortality.

MATERIALS AND METHODS

Figure 1 illustrates the major steps within the study design for clinical and temporal 

characterization of COVID-19 subgroups using patient vector embeddings of EHR data, including 

(A) selecting the COVID-19 inpatient cohort and characterization windows, (B) transforming 

structured EHR data into medical coding sequences (MCS), (C) inferring patient vectors from 
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MCSs using paragraph vector models, (D) identifying COVID-19 patient clusters, and (E) 

summarizing clinical and temporal characteristics of each subgroup. The main details are 

described here with additional details provided in the Supplementary Materials. Supplementary 

Table S1 provides a list of abbreviations used throughout the manuscript. 

EHR data

We analyzed EHR data from NYP/CUIMC’s Observational Medical Outcomes Partnership 

(OMOP) database. NYP/CUIMC is a quaternary care academic medical center serving New York, 

NY, and the surrounding area. Longitudinal inpatient and outpatient EHR were collected and 

stored in the clinical data warehouse (CDW) as part of the routine clinical care. The NYP/CUIMC 

CDW was converted to OMOP CDM v5.3 on December 5, 2021; the resulting OMOP database 

contained records spanning from October 1985 to December 2021. Vaccination data for New 

York City (NYC) residents were also imported from the NYC Vaccine Registry. This study received 

institutional review board approval with a waiver for informed consent.

Patient vectors 

Generating patient vectors consisted of two stages: 1) converting patients’ longitudinal EHR data 

(OMOP CDM) into temporal sequences, and 2) training vector embedding models using the 

NYP/CUIMC EHR data (Fig. 1). 

Medical coding sequences

EHR data for each patient was transformed from the OMOP database into a linear sequence (the 

MCS) of medical concepts (conditions (e.g., diagnosed diseases, signs or symptoms), drugs, 

procedures, lab tests, and death) arranged in temporal order.  Concepts observed multiple times 

daily were only recorded in the MCS once per day to minimize the overrepresentation of repetitive 

data elements. Records observed within the same day were randomly shuffled to dissociate 

patterns in how the EHR system records and timestamps clinical events (e.g., some events are 
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timestamped at midnight regardless of actual time of occurrence) from affecting the learned vector 

representation. Consequently, events occurring at the same time (e.g., laboratory test panel 

measurements) may be distributed randomly throughout a day’s sequence, but the relative order 

of events across different calendar days will be preserved.

Medical coding sequence embedding

We derived patient-centered vector representations by treating each patient’s MCS as a 

document and applying the Paragraph Vector (PV) Distributed Memory (PV-DM) and Distributed 

Bag-of-Words (PV-DBOW) algorithms.[21] We trained the PV models using data from all patients 

in the NYP/CUIMC OMOP database and converting patients’ entire clinical histories into MCSs. 

The PV-DM and PV-DBOW models were configured as 100-dimensional vectors and 

concatenated (200-dimensions total) to become the patient vectors. 

COVID-19 clinical subgrouping

COVID-19 inpatient cohort definition

We adapted the cohort definition applied in the OHDSI study.[13] We identified patients with 

hospitalizations beginning on or after March 1, 2020, with at least one confirmatory diagnosis or 

at least one positive SARS-CoV-2 diagnostic test result between 21 days before admission to 

discharge (Fig. 1). The first qualifying event per patient was used. We deviate from the OHDSI 

definition by removing antibody tests from the inclusion criteria and removing the requirement for 

a 365-day observation period before hospitalization.  

COVID-19 clinical subgroup analysis

To infer vector representations of the COVID-19 patients, we generated MCSs from patients’ 

clinical data starting from admission and including up to the maximum of 1) 28 days following 

admission (including additional visits) or 2) hospital discharge; henceforth referred to as COVID-
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characterization window. The COVID-19 MCSs were converted to patient vectors using the PV 

models described above. To identify COVID-19 clinical subgroups, we applied K-means clustering 

to the COVID-19 patient vectors. To guide the selection of K (number of clusters), we employed 

the elbow method (comparing distortion against the number of clusters) and visualized the 

clustering results using t-distributed stochastic neighbor embedding (t-SNE). We aimed to 

balance K such that the major visually distinct clusters within the t-SNE plots were well separated 

while minimizing K to limit the complexity of subgroup comparisons and increase statistical power 

for detecting differences between subgroups. We evaluated K=[5,10,15,20,25,30,35,40]. 

COVID-19 clinical subgroup characterization

For each of the identified COVID-19 clinical subgroups, we characterized the group’s age, sex, 

race-ethnicity, hospital start date, hospital length of stay (LOS), primary discharge diagnoses, 

number of visits within the COVID-characterization window, and number of visits between 730 

and 22 days before hospital admission (henceforth referred to as baseline-characterization 

window). Patients’ vaccination statuses prior to hospitalization were evaluated using vaccination 

records from NYP/CUIMC and the NYC vaccination registry (covering NYC residents). Patients 

who were not NYC residents and who did not receive their vaccinations from CUIMC may not 

have their vaccinations captured. Patients were considered fully vaccinated if they received the 

Janssen, Moderna, or Pfizer-BioNTech vaccines according to protocol along with the minimum 

delay time prior to their hospitalization. Characteristics of each subgroup were compared against 

the complementary patients from the COVID-19 cohort. Sex, race-ethnicity, and vaccination rate 

were evaluated using chi-square, α=5×10-5. Age, hospital start date, hospital LOS, and visit counts 

were evaluated using the Mann-Whitney U Test, α=5×10-5.

For each of the COVID-19 clinical subgroups, we characterized the subgroup by evaluating the 

EHR prevalence rates of clinical concepts observed within their COVID-characterization window. 

Similarly, we evaluated each group’s baseline characteristics by evaluating the EHR prevalence 

Page 9 of 89

https://mc.manuscriptcentral.com/jamia

Journal of the American Medical Informatics Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

rates of condition concepts within their baseline-characterization window. Some concepts known 

to be associated with COVID-19 were evaluated as concept sets (Tables S2 and S3) and 

compared against the subgroup’s complement (chi-square, α=5×10-6). The EHR prevalence rates 

of all observed conditions with greater than 10% prevalence within the subgroup were individually 

compared against each subgroup’s complement (chi-square, α=5×10-8). 

We used a modified version of the 4CE severe COVID-19 phenotyping algorithm[22] to label 

patients with non-severe, severe, or critical COVID-19. Patients were labeled as “critical” if the 

patients had at least one record of death, ARDS, septic shock, or invasive mechanical ventilation 

(Table S4). Patients without the above records but with at least one record of acute hypoxemic 

respiratory failure (AHRF), hypoxemia, or noninvasive oxygen therapy were labeled “severe”. All 

other patients were labeled “mild-moderate”. The frequency of the severity phenotypes in each 

subgroup was compared to the subgroup’s complement (chi-square, α=5×10-6). 

By default, K-means clusters are identified by random numeric labels. We relabeled each 

subgroup in ascending order of mean severity by assigning scores of 1, 2, and 3 for severity 

phenotypes mild-moderate, severe, and critical, respectively.

COVID-19 clinical subgroup generalizability

Prior to performing the subgroup analysis, 20% of the COVID-19 inpatient cohort were held out 

to evaluate generalizability of the subgroups. 10% of the patients with the most recent 

hospitalizations were held out for out-of-time generalizability evaluation, and 10% of patients were 

randomly selected from the remaining patients for in-time generalizability evaluation. The 

remaining 80% of patients were used in the analyses above. For each subgroup, we calculated 

the 95th-percentile distance of training patient vectors to their clusters’ centroids. For a given 

holdout patient vector, its subgroup membership can be predicted via minimum Euclidean 

distance to the centroids of the trained K-means model. We then calculated the distance of the 
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holdout patient vectors to their predicted clusters’ centroids, counted the number of holdout 

patient vectors farther than the 95th-percentile distance among the training patient vectors, and 

compared this to the expected frequency of 5% (chi-square, α=0.05).

COVID-19 subgroup temporal analysis 

For each patient whose primary discharge diagnoses included COVID-19, sepsis, or viral 

pneumonia, we used the methods described above to create patient vectors for each day of 

hospitalization, containing cumulative EHR data from admission up to the given date, and 

assigned the nearest COVID-19 subgroup. To characterize the temporal relationships between 

subgroups, we counted the transitions between subgroups and the durations in each subgroup. 

We identified distinct subgroup paths as the observed series of contiguous COVID subgroups 

that the patients transitioned between during hospitalization. We grouped discharge statuses into 

1) death or discharge to hospice; 2) discharge to additional care services; or 3) discharge (Table 

S5). We counted the number of patients following each path and determined the median total 

duration. 

To determine if any of the subgroups are associated with prognosis, we compared the frequency 

of death or discharge to hospice among patients who began their hospitalization in each of the 

subgroups to the rate among the subgroup’s complement (chi-square, α=0.0025).

Statistical analyses

The statistical tests (two-sided) and significance levels are described alongside each evaluation.  

We used the Python packages SciPy v1.4.1 to perform chi-square and Mann-Whitney U tests, 

SciKit-Learn v0.22.2 for K-means and t-SNE, and Gensim v3.8.1 for paragraph vector 

embedding.[23]
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RESULTS

Hospitalized COVID-19 cohort characteristics

11,313 patients were identified with hospitalizations and either a condition code for COVID-19 or 

a positive test for SARS-CoV-2. Hospitalization start dates ranged from March 2, 2020 to 

December 1, 2021. Figure 2 shows the distribution of a) age, b) race-ethnicity, c) hospitalization 

LOS, d) hospitalization start date, e) number of prior healthcare visits within the baseline-

characterization window, and f) number of healthcare visits within the COVID-characterization 

window for the full inpatient COVID-19 cohort. The median [interquartile range (IQR)] age was 

61.2 [40.3-74.3]. There were four modes in the age distribution, with peaks occurring in the 0-4, 

30-34, 65-69, and 80+ age groups. 51.5% of patients were female. Race-ethnicity included 40.1% 

Hispanic, 3.2% Asian, American Indian and Alaska Native, and Native Hawaiian and Pacific 

Islander, 10.5% Black, 32.7% White, and 13.4% other/unknown. Most hospitalizations were 

between 3-9 days. There were three peaks in the hospitalization dates, largely corresponding with 

the reported number of new cases in NYC: April 2020, January 2021, and August 2021. Many of 

the patients hospitalized with COVID-19 had very little healthcare utilization at NYP/CUIMC in the 

prior 2 years, with 30.5% and 12.6% of patients having 0 and 1-2 visits, respectively. However, 

21.9% of patients had high healthcare utilization, with 20 or more visits. Within the COVID-

characterization window, for 51.2% of patients, the hospitalization was their only visit. 5.4% of 

patients were fully vaccinated prior to their hospitalization. 

COVID-19 clinical subgroup analysis

10% (1131/11313) of patients with the most recent hospitalizations (July 20, 2021 – December 1, 

2021) were held out for the out-of-time generalizability evaluation, and 10% (1131/11313) were 

randomly held out for the in-time generalizability evaluation. 80% (9051/11313) of patients were 

used for the subgroup analysis.
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For K-means clustering, we selected K=20 based on subjective analysis using the elbow method 

and t-distributed stochastic neighbor embedding (t-SNE) scatterplot. Figure 3 shows the t-SNE 

scatterplot of COVID-19 patient vectors. The subgroup labels (Subgroups 1-20) were assigned in 

ascending order of each subgroup’s severity score, e.g., Subgroup 1 and Subgroup 20 identify 

the subgroups with the lowest and highest severity scores, respectively. Subgroup labels will be 

abbreviated from Subgroup # to SG#

COVID-19 clinical subgroup characteristics

Table 1 shows the summary statistics of the full COVID-19 cohort and the clinical subgroups. 

Subgroups 2, 6, and 8 were the most common, comprising 16.9%, 13.5%, and 9.2% of the cohort, 

respectively. Subgroups 4 and 13 had the youngest and oldest populations, with median ages of 

6.9 [1.9-14.1] and 82.7 [74.0-89.4], respectively. SG1 was comprised almost entirely of female 

patients (98.8%), while SG19 had the highest percentage of male patients (68.8%). SG3 had the 

highest vaccination rate (8.9%). SG2 had the shortest median hospital duration (3 days), while 

SG18 had the longest (46 days). The median [IQR] number of visits within the COVID-

characterization window was 1 [1-3] visits and did not vary widely among subgroups, although 

the subgroups with lower severities tended to have more visits. The number of visits within the 

baseline-characterization window had a larger spread: most patients in Subgroups 15, 18, and 20 

had no prior visits, whereas SG7 had a median of 58 visits. 

Table 2 shows the prevalence rates of selected clinical concepts within the EHR within the 

COVID-characterization window for each subgroup compared to each subgroup’s complement 

(chi-square; α=5×10-6).  Table S6 shows the prevalence rates within the COVID-characterization 

window in each subgroup of individual conditions with at least 10% subgroup prevalence and 

significant difference with the subgroup’s complement (chi-square; α=5×10-8). Table 3 and Table 

S7 show the analogous results from the baseline-characterization window. Table S8 shows the 
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three most common primary discharge diagnoses (PDD) for each subgroup. Detailed discussion 

of these results per COVID-19 clinical subgroup will follow in the Discussion section. 
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Table 1. Summary statistics of the full COVID-19 cohort and subgroups. Values were 

compared to each subgroup’s complement; bold: significant difference; blue/red: subgroup values 

were significantly less/greater than the complementary cohort values. Sex, race-ethnicity, and 

vaccinated: count (percentage); chi-square, α=5×10-5. Age, hospital start date, hospital length, 

number of visits, number of prior visits: median [interquartile range]; Mann-Whitney U Test, 

α=5×10-5. AIAN: American Indian and Alaska Native; NHPI: Native Hawaiian and Pacific Islander.

Full 1 2 3 4 5 6 7 8 9 10
Count 9051 (100%) 740 (8.2%) 1530 (16.9%) 372 (4.1%) 274 (3.0%) 176 (1.9%) 1225 (13.5%) 242 (2.7%) 831 (9.2%) 263 (2.9%) 263 (2.9%)

Age 61.6
[41.7, 74.4]

31.3
[26.9, 35.8]

56.7
[34.9, 72.0]

60.3
[47.0, 69.0]

6.9
[1.9, 14.1]

65.5
[56.3, 72.8]

57.4
[43.2, 69.2]

62.1
[50.9, 68.7]

68.3
[57.9, 77.9]

64.6
[56.0, 75.2]

61.0
[48.4, 72.3]

Sex (female) 4599 (50.8%) 731 (98.8%) 801 (52.4%) 186 (50.0%) 133 (48.5%) 60 (34.1%) 650 (53.1%) 89 (36.8%) 403 (48.5%) 88 (33.5%) 115 (43.7%)

Race-ethnicity
Hispanic
Asian,AIAN,NHPI
Black
White
Other,Unknown

2686 (29.7%)
190 (2.1%)
1527 (16.9%)
2857 (31.6%)
1791 (19.8%)

297 (40.1%)
24 (3.2%)
78 (10.5%)
242 (32.7%)
99 (13.4%)

307 (20.1%)
44 (2.9%)
234 (15.3%)
617 (40.3%)
328 (21.4%)

33 (8.9%)
6 (1.6%)
44 (11.8%)
212 (57.0%)
77 (20.7%)

50 (18.2%)
8 (2.9%)
44 (16.1%)
118 (43.1%)
54 (19.7%)

18 (10.2%)
4 (2.3%)
19 (10.8%)
83 (47.2%)
52 (29.5%)

440 (35.9%)
23 (1.9%)
225 (18.4%)
285 (23.3%)
252 (20.6%)

48 (19.8%)
11 (4.5%)
54 (22.3%)
104 (43.0%)
25 (10.3%)

325 (39.1%)
8 (1.0%)
151 (18.2%)
188 (22.6%)
159 (19.1%)

98 (37.3%)
7 (2.7%)
82 (31.2%)
45 (17.1%)
31 (11.8%)

77 (29.3%)
6 (2.3%)
55 (20.9%)
75 (28.5%)
50 (19.0%)

Vaccinated (%) 227 (2.5%) 23 (3.1%) 73 (4.8%) 33 (8.9%) 0 (0.0%) 6 (3.4%) 14 (1.1%) 21 (8.7%) 8 (1.0%) 6 (2.3%) 5 (1.9%)

Hospital start date 2020-10-29
[2020-04-18,
2021-02-04]

2020-11-03
[2020-06-03,
2021-03-08]

2020-11-10
[2020-09-07,
2021-02-04]

2020-11-23
[2020-09-15,
2021-03-05]

2020-08-19
[2020-05-09,
2021-01-09]

2020-11-30
[2020-09-29,
2021-02-01]

2020-12-19
[2020-04-13,
2021-02-12]

2020-11-05
[2020-05-09,
2021-02-18]

2020-12-21
[2020-04-17,
2021-02-13]

2020-07-13
[2020-04-10,
2021-01-22]

2020-11-05
[2020-06-01,
2021-02-15]

Hospital length 
(days)

6.0
[3.0, 11.0]

4.0
[3.0, 4.0]

3.0
[2.0, 4.0]

4.0
[2.0, 6.0]

5.0
[4.0, 10.0]

10.0
[7.0, 17.0]

4.0
[3.0, 6.0]

9.0
[7.0, 18.0]

5.0
[4.0, 7.0]

9.0
[6.0, 14.0]

12.0
[7.0, 21.5]

Number of visits 1.0
[1.0, 3.0]

2.0
[2.0, 3.0]

2.0
[1.0, 3.0]

2.0
[2.0, 3.0]

3.0
[1.0, 4.0]

2.0
[1.0, 3.0]

1.0
[1.0, 2.0]

3.0
[1.0, 5.0]

1.0
[1.0, 2.0]

1.0
[1.0, 2.0]

2.0
[1.0, 4.0]

Number of prior 
visits

4.0
[0.0, 17.0]

15.0
[9.0, 22.0]

7.0
[2.0, 19.0]

7.0
[3.0, 17.0]

4.0
[0.0, 25.8]

5.0
[1.0, 14.0]

1.0
[0.0, 8.0]

58.0
[34.2, 86.0]

2.0
[0.0, 11.0]

15.0
[2.0, 39.0]

12.0
[2.0, 42.0]

Full 11 12 13 14 15 16 17 18 19 20
Count 9051 (100%) 349 (3.9%) 650 (7.2%) 720 (8.0%) 454 (5.0%) 43 (0.5%) 58 (0.6%) 367 (4.1%) 220 (2.4%) 160 (1.8%) 114 (1.3%)

Age 61.6
[41.7, 74.4]

71.8
[59.0, 84.2]

63.3
[51.0, 75.0]

82.7
[74.0, 89.4]

70.2
[60.8, 78.3]

9.7
[4.2, 15.7]

68.3
[58.3, 75.4]

68.1
[57.9, 76.8]

60.5
[50.6, 70.6]

66.0
[57.2, 73.4]

61.5
[51.3, 70.0]

Sex (female) 4599 (50.8%) 163 (46.7%) 294 (45.2%) 352 (48.9%) 173 (38.1%) 16 (37.2%) 20 (34.5%) 149 (40.6%) 86 (39.1%) 50 (31.2%) 40 (35.1%)

Race-ethnicity
Hispanic
Asian,AIAN,NHPI
Black
White
Other,Unknown

2686 (29.7%)
190 (2.1%)
1527 (16.9%)
2857 (31.6%)
1791 (19.8%)

29 (8.3%)
15 (4.3%)
52 (14.9%)
187 (53.6%)
66 (18.9%)

241 (37.1%)
9 (1.4%)
113 (17.4%)
145 (22.3%)
142 (21.8%)

223 (31.0%)
8 (1.1%)
127 (17.6%)
224 (31.1%)
138 (19.2%)

193 (42.5%)
2 (0.4%)
77 (17.0%)
82 (18.1%)
100 (22.0%)

7 (16.3%)
0 (0.0%)
5 (11.6%)
18 (41.9%)
13 (30.2%)

7 (12.1%)
3 (5.2%)
9 (15.5%)
30 (51.7%)
9 (15.5%)

125 (34.1%)
6 (1.6%)
73 (19.9%)
86 (23.4%)
77 (21.0%)

82 (37.3%)
3 (1.4%)
29 (13.2%)
48 (21.8%)
58 (26.4%)

46 (28.7%)
0 (0.0%)
34 (21.2%)
38 (23.8%)
42 (26.2%)

40 (35.1%)
3 (2.6%)
22 (19.3%)
30 (26.3%)
19 (16.7%)

Vaccinated (%) 227 (2.5%) 18 (5.2%) 1 (0.2%) 9 (1.2%) 1 (0.2%) 0 (0.0%) 1 (1.7%) 2 (0.5%) 2 (0.9%) 4 (2.5%) 0 (0.0%)

Hospital start date 2020-10-29
[2020-04-18,
2021-02-04]

2021-01-26
[2020-12-16,
2021-03-06]

2020-04-08
[2020-03-30,
2020-04-30]

2020-05-03
[2020-04-08,
2021-01-10]

2020-04-30
[2020-04-09,
2021-01-13]

2020-04-30
[2020-04-08,
2021-01-29]

2021-01-24
[2020-12-06,
2021-02-26]

2020-04-16
[2020-04-01,
2020-12-29]

2020-12-03
[2020-04-16,
2021-02-09]

2020-04-21
[2020-04-03,
2021-01-08]

2020-03-31
[2020-03-26,
2020-04-06]

Hospital length 
(days)

6.0
[3.0, 11.0]

9.0
[6.0, 15.0]

9.0
[6.0, 13.0]

7.0
[4.0, 10.0]

12.0
[8.0, 17.0]

45.0
[22.5, 81.0]

41.0
[20.0, 62.8]

13.0
[7.0, 19.5]

46.0
[32.8, 69.0]

40.0
[26.0, 59.2]

45.0
[30.0, 61.0]

Number of visits 1.0
[1.0, 3.0]

1.0
[1.0, 2.0]

1.0
[1.0, 2.0]

1.0
[1.0, 2.0]

1.0
[1.0, 2.0]

1.0
[1.0, 2.0]

1.0
[1.0, 1.0]

1.0
[1.0, 1.0]

1.0
[1.0, 1.0]

1.0
[1.0, 1.0]

1.0
[1.0, 2.0]

Number of prior 
visits

4.0
[0.0, 17.0]

3.0
[0.0, 10.0]

1.0
[0.0, 10.0]

3.0
[0.0, 12.0]

2.0
[0.0, 13.0]

0.0
[0.0, 12.0]

2.0
[0.0, 9.0]

1.0
[0.0, 10.0]

0.0
[0.0, 8.0]

1.0
[0.0, 5.0]

0.0
[0.0, 4.8]
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Table 2. COVID-19 subgroup concept prevalence rates. The prevalence rates during the COVID-characterization window of relevant 

concept sets and COVID-19 severity are shown for each subgroup and compared to each subgroup’s complement (chi-square; α=5×10-

6). Bold: significant difference; blue/red: subgroup rates were significantly less/greater than the complementary cohort rates. AHRF: 

acute hypoxemic respiratory failure; ARDS: acute respiratory distress syndrome; ARFS: Acute renal failure syndrome; ESRD: end-

stage renal disease; Altered mental S: Altered mental status; Ventilation: invasive respiratory ventilation. 

Full 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Count 9051 740 1530 372 274 176 1225 242 831 263 263 349 650 720 454 43 58 367 220 160 114
Fever 33.5% 5.3% 5.4% 4.0% 60.2% 10.2% 49.1% 36.0% 34.1% 36.5% 33.8% 35.8% 62.8% 36.4% 52.2% 69.8% 53.4% 42.8% 59.5% 53.1% 78.9%
Cough 27.3% 2.8% 3.3% 2.4% 12.8% 5.7% 52.5% 22.7% 37.3% 27.4% 11.8% 30.7% 59.2% 26.1% 46.5% 16.3% 25.9% 34.9% 33.2% 36.2% 56.1%
Diarrhea 10.0% 0.9% 2.9% 0.5% 16.4% 0.6% 14.7% 27.3% 11.0% 10.6% 10.6% 16.6% 16.0% 5.4% 13.9% 20.9% 20.7% 10.4% 17.3% 16.9% 17.5%
Constipation 11.3% 4.1% 5.0% 7.5% 11.7% 14.2% 6.0% 9.9% 8.5% 11.8% 25.9% 20.6% 9.4% 16.9% 17.6% 25.6% 27.6% 12.3% 28.2% 35.0% 29.8%
Dyspnea 44.6% 3.4% 7.0% 3.8% 11.3% 34.7% 68.5% 52.5% 56.4% 51.0% 36.1% 63.0% 80.3% 43.5% 76.2% 23.3% 58.6% 74.9% 80.9% 86.9% 86.0%
Viral pneumonia 48.0% 3.8% 2.8% 0.8% 11.7% 5.1% 69.6% 47.5% 66.1% 56.3% 24.7% 71.6% 91.7% 62.4% 90.5% 32.6% 74.1% 83.1% 83.2% 85.0% 95.6%
Hypoxemia 38.6% 1.2% 2.5% 5.1% 15.7% 31.2% 47.2% 42.6% 44.6% 38.4% 28.5% 64.2% 68.3% 45.0% 70.9% 25.6% 69.0% 79.3% 95.0% 86.2% 85.1%
AHRF 35.3% 0.3% 1.5% 1.3% 14.2% 14.2% 35.3% 27.7% 38.4% 37.3% 18.3% 47.3% 67.8% 45.8% 74.2% 65.1% 79.3% 86.1% 95.9% 94.4% 97.4%
ARDS 13.5% 0.3% 1.0% 0.5% 19.0% 5.7% 3.1% 8.7% 5.2% 5.3% 5.7% 5.4% 9.5% 11.4% 14.5% 65.1% 70.7% 68.1% 92.3% 87.5% 100.0%
Pleural effusion 15.2% 0.1% 2.5% 4.6% 14.2% 71.0% 5.3% 28.5% 5.9% 22.1% 35.0% 26.1% 6.6% 12.6% 10.1% 67.4% 82.8% 41.4% 77.3% 65.6% 43.0%
Atelectasis 11.1% 1.4% 3.7% 7.0% 16.8% 56.2% 7.3% 15.7% 6.7% 9.9% 29.3% 18.1% 6.2% 11.2% 6.2% 76.7% 50.0% 14.7% 33.2% 36.9% 18.4%
Anemia 12.4% 5.5% 3.8% 3.8% 9.9% 23.3% 6.4% 17.8% 10.0% 19.0% 30.8% 18.1% 6.3% 14.3% 10.6% 34.9% 46.6% 19.9% 47.7% 49.4% 43.9%
Tachycardia 23.6% 4.9% 10.0% 10.8% 20.8% 44.3% 20.8% 31.0% 22.6% 21.3% 39.5% 21.5% 21.8% 26.7% 31.7% 65.1% 44.8% 41.7% 71.8% 65.6% 64.9%
Heart failure 13.1% 0.1% 6.3% 1.1% 4.4% 35.2% 6.0% 15.3% 15.5% 45.2% 14.1% 20.6% 8.3% 24.2% 15.9% 44.2% 36.2% 24.0% 22.3% 31.2% 16.7%
ARFS 30.3% 1.5% 4.7% 4.8% 6.9% 30.7% 15.8% 63.6% 33.5% 38.8% 47.1% 39.0% 28.6% 52.9% 52.2% 44.2% 81.0% 75.2% 89.5% 85.6% 88.6%
ESRD 5.3% 0.3% 1.8% 0.3% 0.0% 4.5% 1.1% 30.6% 0.5% 80.6% 3.0% 4.6% 0.3% 1.0% 0.2% 2.3% 25.9% 6.0% 15.0% 15.0% 11.4%
Sepsis 14.4% 0.1% 0.7% 0.5% 5.8% 8.0% 5.1% 18.2% 5.5% 19.0% 26.6% 12.0% 9.7% 22.1% 14.5% 27.9% 60.3% 56.9% 80.0% 81.9% 80.7%
Septic shock 8.5% 0.0% 0.2% 0.0% 2.9% 5.1% 0.3% 5.0% 0.6% 5.7% 13.3% 4.6% 0.9% 6.9% 2.6% 23.3% 56.9% 50.1% 79.5% 71.9% 70.2%
Delirium 6.0% 0.0% 0.1% 1.6% 0.7% 4.0% 0.7% 6.6% 3.6% 6.1% 11.8% 7.7% 3.7% 19.7% 9.0% 16.3% 19.0% 9.8% 26.8% 32.5% 25.4%
Altered mental S 11.2% 0.3% 1.4% 4.3% 4.7% 2.8% 1.7% 9.9% 8.8% 23.2% 24.3% 17.2% 3.4% 33.8% 13.7% 20.9% 31.0% 25.1% 42.3% 39.4% 46.5%
Ventilation 11.4% 0.1% 0.3% 0.5% 10.2% 14.8% 0.2% 10.3% 0.8% 2.3% 9.5% 3.7% 1.1% 4.0% 1.1% 65.1% 82.8% 80.4% 96.4% 98.8% 100.0%
Dead 11.6% 0.0% 1.3% 0.3% 0.4% 4.0% 1.8% 6.6% 6.4% 11.4% 17.5% 10.3% 9.8% 33.3% 13.4% 11.6% 41.4% 64.6% 45.0% 38.1% 26.3%
Mild-Moderate
Severe
Critical

50.2%
30.2%
19.6%

98.2%
1.4%
0.4%

95.3%
3.2%
1.5%

92.7%
6.5%
0.8%

66.4%
19.7%
13.9%

56.8%
25.0%
18.2%

40.4%
56.7%
2.9%

51.2%
34.7%
14.0%

43.2%
49.6%
7.2%

45.2%
38.4%
16.3%

54.0%
18.6%
27.4%

23.8%
61.3%
14.9%

15.4%
71.7%
12.9%

34.7%
27.4%
37.9%

12.1%
66.7%
21.1%

11.6%
16.3%
72.1%

3.4%
3.4%
93.1%

0.3%
5.2%
94.6%

0.5%
0.0%
99.5%

0.0%
0.6%
99.4%

0.0%
0.0%
100.0%
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Table 3. Subgroup condition prevalence rates at baseline. The prevalence rates within the baseline-characterization window of 

relevant concept sets are shown for each COVID-19 subgroup and compared to each subgroup’s complement (chi-square; α=5×10-6). 

Bold: significant difference; blue/red: subgroup rates were significantly less/greater than the complementary cohort rates. T2DM: type-2 

diabetes mellitus; COPD: chronic obstructive pulmonary disease; Atherosclerosis CA: atherosclerosis of coronary artery; ARFS: acute 

renal failure syndrome; CKD: chronic kidney disease; ESRD: end-stage renal disease; SOT: solid organ transplant. 

Full 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Count 9051 740 1530 372 274 176 1225 242 831 263 263 349 650 720 454 43 58 367 220 160 114

Obesity 12.9% 28.9% 15.8% 8.1% 6.9% 12.5% 9.8% 17.4% 14.2% 22.1% 16.7% 6.3% 8.2% 6.4% 12.1% 2.3% 8.6% 11.2% 7.3% 6.9% 8.8%

Hypertension 31.5% 4.9% 31.8% 20.4% 7.7% 36.4% 24.0% 84.7% 43.3% 57.0% 42.6% 28.7% 26.5% 43.9% 40.7% 11.6% 36.2% 32.2% 27.7% 24.4% 24.6%

Hyperlipidemia 21.8% 0.7% 22.0% 14.0% 1.1% 28.4% 15.0% 59.5% 31.5% 54.4% 24.0% 18.1% 15.4% 31.4% 33.7% 0.0% 24.1% 24.8% 19.1% 16.9% 14.9%

T2DM 19.1% 1.4% 14.7% 6.5% 2.2% 19.3% 5.4% 53.3% 47.4% 57.8% 21.3% 9.2% 6.5% 22.2% 43.8% 2.3% 20.7% 25.9% 21.4% 18.8% 15.8%

Pregnant 8.2% 88.6% 1.8% 1.1% 4.0% 0.0% 1.4% 0.0% 0.4% 0.8% 0.4% 0.6% 0.9% 0.0% 0.7% 2.3% 0.0% 1.4% 0.0% 0.0% 0.0%

Constipation 9.7% 4.6% 8.0% 10.2% 18.2% 2.8% 6.2% 23.6% 9.3% 23.2% 26.6% 6.0% 7.2% 15.1% 9.0% 4.7% 8.6% 7.9% 8.6% 4.4% 5.3%

Diarrhea 5.0% 2.3% 4.4% 4.0% 12.0% 4.0% 3.7% 24.8% 4.8% 9.1% 12.9% 5.7% 3.4% 3.5% 3.1% 7.0% 8.6% 4.1% 3.6% 1.2% 0.9%

Cough 10.0% 7.8% 8.2% 4.8% 14.2% 9.1% 11.0% 35.1% 9.1% 17.9% 10.6% 7.4% 9.2% 11.1% 8.8% 4.7% 3.4% 10.1% 7.3% 7.5% 4.4%

Dyspnea 15.7% 7.2% 17.5% 9.9% 10.6% 27.8% 13.1% 52.5% 13.7% 44.9% 24.0% 9.5% 12.9% 14.2% 16.5% 4.7% 13.8% 14.4% 11.8% 10.0% 4.4%

COPD 4.5% 0.3% 3.7% 3.0% 1.1% 5.1% 5.0% 10.7% 7.0% 9.5% 4.9% 2.3% 4.9% 5.3% 5.1% 0.0% 1.7% 7.9% 3.6% 0.6% 0.9%

Pleural effusion 4.3% 0.4% 3.1% 3.2% 4.7% 8.0% 1.9% 21.1% 2.5% 16.0% 13.7% 4.3% 2.6% 4.4% 2.6% 4.7% 5.2% 6.8% 3.6% 5.0% 1.8%

Atherosclerosis CA 12.1% 0.1% 13.0% 6.2% 0.4% 28.4% 5.3% 32.6% 15.8% 44.1% 13.3% 12.6% 6.6% 18.6% 16.3% 2.3% 17.2% 14.4% 8.2% 10.0% 2.6%

Heart disease 21.3% 1.4% 24.4% 10.8% 13.5% 55.7% 10.8% 55.0% 23.6% 61.6% 28.9% 24.1% 13.4% 30.8% 23.6% 16.3% 25.9% 24.0% 13.2% 15.6% 7.0%

ARFS 9.6% 0.4% 7.0% 4.6% 6.6% 9.1% 3.8% 40.5% 10.6% 34.6% 21.3% 8.9% 4.6% 15.6% 12.3% 7.0% 10.3% 13.4% 9.5% 7.5% 4.4%

CKD 12.0% 0.1% 8.4% 3.0% 3.6% 13.1% 4.2% 67.8% 13.2% 73.4% 12.9% 11.2% 4.9% 16.0% 14.5% 0.0% 12.1% 14.7% 11.8% 10.6% 7.9%

ESRD 4.4% 0.1% 2.9% 0.8% 1.5% 4.0% 1.1% 34.7% 0.7% 59.3% 2.3% 3.4% 0.9% 1.5% 0.9% 0.0% 6.9% 4.1% 5.0% 3.1% 1.8%

Vitamin D deficiency 5.0% 1.6% 5.2% 5.4% 5.5% 4.5% 3.4% 26.0% 4.6% 14.1% 6.1% 6.0% 2.3% 4.7% 3.1% 4.7% 1.7% 3.5% 4.5% 3.8% 2.6%

Immunodeficiency 1.9% 0.1% 1.4% 1.3% 5.5% 0.6% 0.6% 29.8% 0.6% 0.8% 3.0% 4.0% 0.3% 0.1% 0.0% 0.0% 8.6% 1.6% 1.4% 0.0% 0.0%

Dementia 4.3% 0.0% 1.6% 0.5% 0.0% 0.0% 1.7% 0.4% 4.6% 9.1% 0.8% 6.0% 2.3% 25.3% 7.3% 0.0% 0.0% 5.2% 1.8% 1.2% 2.6%

SOT 4.4% 0.4% 3.3% 1.6% 5.8% 2.3% 0.9% 86.4% 1.7% 7.2% 2.7% 2.9% 0.8% 0.4% 0.2% 11.6% 5.2% 2.5% 3.6% 4.4% 4.4%

Page 17 of 89

https://mc.manuscriptcentral.com/jamia

Journal of the American Medical Informatics Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

Table 4. Holdout evaluation. The K-means model trained on the training set was used to predict 

the COVID-19 clinical subgroup of each holdout patient vector. We counted the number of holdout 

patient vectors that were farther than the 95th percentile distance of the training patient vectors 

from their respective cluster centers. The frequency of these outliers among the full holdout set 

were compared against the expected frequency of 5% to determine statistical significance (chi-

square, α=0.05). This test was performed for the in-time holdout, out-of-time holdout, and the 

combined holdout sets. 

 In-time holdout Out-of-time holdout Combined holdout
1 6 / 105 (5.7%) 2 / 115 (1.7%) 8 / 220 (3.6%)
2 10 / 201 (5.0%) 15 / 240 (6.2%) 25 / 441 (5.7%)
3 3 / 42 (7.1%) 4 / 56 (7.1%) 7 / 98 (7.1%)
4 3 / 29 (10.3%) 2 / 57 (3.5%) 5 / 86 (5.8%)
5 0 / 20 (0.0%) 1 / 24 (4.2%) 1 / 44 (2.3%)
6 9 / 141 (6.4%) 11 / 193 (5.7%) 20 / 334 (6.0%)
7 1 / 28 (3.6%) 1 / 19 (5.3%) 2 / 47 (4.3%)
8 6 / 106 (5.7%) 1 / 79 (1.3%) 7 / 185 (3.8%)
9 3 / 30 (10.0%) 3 / 16 (18.8%) 6 / 46 (13.0%)
10 6 / 36 (16.7%) 1 / 38 (2.6%) 7 / 74 (9.5%)
11 2 / 47 (4.3%) 5 / 121 (4.1%) 7 / 168 (4.2%)
12 8 / 83 (9.6%) 1 / 23 (4.3%) 9 / 106 (8.5%)
13 2 / 91 (2.2%) 12 / 66 (18.2%) 14 / 157 (8.9%)
14 3 / 57 (5.3%) 0 / 23 (0.0%) 3 / 80 (3.8%)
15 0 / 2 (0.0%) 0 / 4 (0.0%) 0 / 6 (0.0%)
16 1 / 5 (20.0%) 2 / 17 (11.8%) 3 / 22 (13.6%)
17 3 / 43 (7.0%) 4 / 24 (16.7%) 7 / 67 (10.4%)
18 4 / 34 (11.8%) 0 / 16 (0.0%) 4 / 50 (8.0%)
19 0 / 18 (0.0%) 0 / 0 (NA) 0 / 18 (0.0%)
20 2 / 13 (15.4%) 0 / 0 (NA) 2 / 13 (15.4%)
Full 72 / 1131 (6.4%) 65 / 1131 (5.7%) 137 / 2262 (6.1%)
P-value 0.204 0.515 0.135
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COVID-19 subgroup temporal analysis

The COVID-19 subgroup temporal analyses were performed only among patients with PDDs 

including COVID-19, sepsis, or viral pneumonia (N=5843). Figure 4 is a chord diagram that 

depicts how patients transitioned between COVID-19 subgroups on a day-to-day basis throughout 

the course of hospitalization. Each link in the chord diagram represents patients transitioning from 

the source subgroup on one day (indicated at the beginning of each link) to the target subgroup 

on the following day (indicated at the end of each link). The link width is proportional to the number 

of observed transitions, e.g., the most common transitions are represented by the widest links. 

The link outline color represents the median number of days patients remained in the source 

subgroup before transitioning to the target subgroup, e.g., green or red outlines indicate patients 

spent 1 or 10+ day(s), respectively, in the source subgroup before transitioning to the target 

subgroup. To reduce complexity of the figure, we removed Subgroups 1, 3, 5, 15, and 16, as 

these accounted for fewer than 1% of transitions among these patients. Table S9 quantitatively 

shows the transition counts and median durations, including all subgroups. All transitions with 

counts fewer than five were excluded from both Figure 4 and Table S9. Here, we describe a few 

transitions. The most common starting states (widest links originating from admission) were in 

Subgroups 6 and 2. Many of the patients in SG2 transitioned to either SG6 or SG8 after a median 

of 1 day. Most of the patients in SG6 were discharged after a median of 3 days or transitioned to 

SG12 after a median of 3 days. The most common subgroups that progressed to death or hospice 

were Subgroups 13, 17, and 18, with median durations of 5, 5, and 16 days, respectively.  

Table 5 shows the top five complete paths throughout the hospitalization with 1) the highest 

frequency, 2) longest duration, 3) lowest mortality, and 4) highest mortality. There were 778 

unique paths. 85 paths had at least 10 patients, accounting for 76.8% (4490/5843) of patients 

(Table S10). For each path, these tables show the constituent states with their median durations, 

total duration for the entire path, and mortality (including death and discharge to hospice) among 
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all patients with the same base path (the path leading up to discharge or death). For the longest 

duration, only paths with at least 10 patients are shown. For the lowest and highest mortality rates, 

only paths with at least 50 and 10 patients, respectively, with the base path are shown. 
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Table 5. Top paths of interest. The top five paths with the highest frequency, longest duration, 

lowest mortality, and highest mortality among patients with a primary discharge diagnosis related 

to COVID-19 (5843 patients). The median number of days spent in each state before transitioning 

to the following state is shown in parentheses. Total Duration: median and interquartile range of 

hospital duration. Count: number (percentage) of patients characterized by the path. Mortality: 

percentage of patients who died or were discharged to hospice. 

State 1 State 2 State 3 State 4 State 5 Total Duration 
(days) Count (%) Mortality (%)

Most Frequent
6 (4.0 days) Discharged    4.0 [3.0, 5.0] 856 (14.7%) 30 / 1030 (2.9%)
6 (3.0 days) 12 (4.0 days) Discharged   8.0 [6.0, 11.0] 344 (5.9%) 37 / 498 (7.4%)
2 (1.0 days) 6 (2.0 days) Discharged   4.0 [3.0, 5.0] 214 (3.7%) 4 / 276 (1.4%)
8 (4.0 days) Discharged    4.0 [3.0, 6.0] 189 (3.2%) 21 / 325 (6.5%)
6 (1.0 days) 8 (3.0 days) Discharged   4.0 [3.0, 7.0] 157 (2.7%) 16 / 254 (6.3%)

Longest Duration
6 (3.0 days) 12 (4.0 days) 17 (15.0 days) 18 (44.0 days) Care 64.0 [48.0, 95.0] 13 (0.2%) 10 / 25 (40.0%)

13 (1.0 days) 17 (11.0 days) 20 (53.0 days) Care  62.0 [49.0, 77.0] 13 (0.2%) 2 / 15 (13.3%)
13 (2.0 days) 17 (15.5 days) 18 (43.5 days) Care  61.0 [46.25, 76.0] 20 (0.3%) 10 / 30 (33.3%)

8 (1.5 days) 17 (17.0 days) 18 (34.5 days) Care  57.0 [40.25, 69.0] 10 (0.2%) 10 / 20 (50.0%)
13 (2.0 days) 17 (9.0 days) 19 (43.5 days) Care  55.0 [45.75, 80.25] 14 (0.2%) 12 / 26 (46.2%)

Lowest Mortality
2 (1.0 days) 6 (3.0 days)    4.0 [3.0, 6.0] 276 (4.7%) 4 / 276 (1.4%)
6 (4.0 days)     4.0 [3.0, 5.0] 1030 (17.6%) 30 / 1030 (2.9%)
6 (3.0 days) 11 (5.0 days)    9.0 [6.0, 13.0] 157 (2.7%) 9 / 157 (5.7%)
6 (1.0 days) 8 (3.0 days)    5.0 [3.0, 8.0] 254 (4.3%) 16 / 254 (6.3%)
8 (5.0 days)     5.0 [3.0, 7.0] 325 (5.6%) 21 / 325 (6.5%)

Highest Mortality
8 (4.0 days) 14 (4.0 days) 17 (4.0 days)   17.0 [12.0, 20.0] 11 (0.2%) 11 / 11 (100.0%)
6 (1.0 days) 8 (4.0 days) 17 (9.0 days)   17.0 [9.5, 22.0] 11 (0.2%) 9 / 11 (81.8%)
8 (5.0 days) 14 (3.0 days) 17 (11.0 days) 18 (31.0 days)  53.0 [43.0, 113.0] 13 (0.2%) 10 / 13 (76.9%)
8 (3.0 days) 17 (7.0 days)    9.5 [5.0, 14.0] 34 (0.6%) 26 / 34 (76.5%)
2 (1.0 days) 13 (1.0 days) 17 (5.0 days)   10.0 [6.0, 16.0] 15 (0.3%) 11 / 15 (73.3%)
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In the most common path, 14.7% (856/5843) of patients spent a median of 4 days in SG6 before 

being discharged. In the path with the longest total duration, 0.2% (13/5843) of patients spent a 

median of 3 days in SG6, 4 days in SG12, 15 days in SG17, and 44 days in SG18 before being 

discharged to other services for additional care; median 64 days total. In the path with the lowest 

mortality (4/276, 1.4%), patients spent 1 day in SG2, 3 days in SG6, and were discharged. In the 

path with the highest mortality (11/11, 100%), patients spent a median of 4 days in SG8, 4 days 

in SG14, and 4 days in SG17 before passing away or being discharged to hospice.

Table S11 shows the mortality rate (death or discharge to hospice) among patients whose first 

day of hospitalization was classified in each subgroup; subgroup mortality was compared against 

the subgroup’s complement (chi-square; α=0.0025). The full cohort experienced 11.1% mortality. 

Patients starting in Subgroups 1-4 had significantly lower mortality (0%, 7.1%, 0.7%, and 2.1%, 

respectively), while patients starting in Subgroups 8, 10, 11, and 13 had significantly higher rates 

(19.2%, 66.7%, 40.9%, and 40.1%, respectively). 

DISCUSSION

COVID-19 clinical subgroup analysis

Figure 3 shows that K-means clustering achieved good separation of patient vectors, as 

visualized by t-SNE. Some subgroups, especially those with lower severity (e.g., Subgroups 2, 4, 

6, 8), appeared diffuse with patient vectors spread out across the plot. Other subgroups, 

especially those with higher severity (e.g., Subgroups 16-20), were well localized. Still, the t-SNE 

plot shows a few clusters of patients that may be visually separated from other nearby patients, 

but which were not isolated by K-means with K=20 (e.g., the far-left clusters within SG3). We 

visually evaluated the t-SNE plots with larger K but felt that the additional separation did not 
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warrant the added complexity and decreased power to detect differences in the subgroups. 

Subgroup severity tended to increase toward the right of the t-SNE plot.

COVID-19 clinical subgroup characteristics

This section provides a condense description of the COVID-19 clinical subgroups using summary 

data from Table 1, COVID-characterization window prevalence rates from Tables 2 and S6, 

baseline-characterization window prevalence rates from Tables 3 and S7, and PDDs from Table 

S8. For brevity, throughout this section, we do not call out these tables when data are referenced. 

A more comprehensive description is provided in the Supplementary Materials. 

SG1 had 740 (8.2%) patients. These patients were younger (median [IQR]: 31.3 [26.9-35.8] 

years) and 98.8% female. At baseline, SG1 had many prior visits (15 [9-22] visits) and 88.6% 

prevalence in pregnancy concepts. Within the COVID-characterization window, COVID-related 

concepts had low prevalence, and severity was 98.2% mild-moderate. Their hospital PDDs were 

mostly related to pregnancy. Thus, SG1 primarily represented patients with pregnancy-related 

hospitalizations and non-severe COVID-19.

SG2 was the largest, with 1530 (16.9%) younger (56.7 [34.9-72.0]) patients. At baseline, SG2 

had lower prevalence of type-2 diabetes mellitus (T2DM), chronic kidney disease (CKD), and 

dementia. Within the COVID-window, COVID-related concepts had lower prevalence, severity 

was 95.3% mild-moderate, and PDDs were mostly not COVID-related. The patient vectors 

appeared dispersed in the t-SNE, signaling heterogeneity within the group. Thus, SG2 likely 

represented patients primarily hospitalized for a variety of other non-COVID conditions who had 

non-severe SARS-CoV-2 infections. 

SG3 had 372 (4.1%) patients. Race-ethnicity had highest representation among White patients 

(57.0%). Vaccination rate (8.9%) was the highest. At baseline, SG3 had more prior visits (7 [3-

17] visits) and higher prevalence of neck and spine conditions, but lower prevalence of COVID-
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related concepts (e.g., T2DM, heart disease). Within the COVID-window, most COVID-related 

concepts had lower prevalence rates, and severity was 92.7% mild-moderate. 48.5% of PDDs 

were related to findings of the spinal region. The patient vectors appeared dispersed in the t-SNE 

plot. Thus, SG3 likely represented another group of patients primarily hospitalized for non-COVID 

conditions who had non-severe SARS-CoV-2 infections. 

SG4 had 274 (3.0%) patients. These patients were children (6.9 [1.9-14.1] years). Within the 

COVID-window, most of the common COVID conditions were less prevalent, however, fever was 

more prevalent (60.5%), which may be enriched since parents often seek medical attention when 

young children have fevers. Severity was mixed, with 66.4% mild-moderate, 19.7% severe, and 

13.9% critical. Only one third of their PDDs were related to COVID-19. Thus, SG4 represented 

young children who primarily had non-severe SARS-CoV-2 infections. 

SG5 had 176 (1.9%) patients; 65.9% male. At baseline, they had higher rates of heart disease 

(55.7%) and atherosclerosis of coronary artery (28.4%). Within the COVID-window, common 

COVID conditions were less prevalent, but SG5 had the second highest rates of pleural effusion 

(71.0%) and atelectasis (56.2%), likely driven by the high rates of heart failure (35.2%) and 

baseline heart disease. Correspondingly, 86.1% of their PDDs were CVDs. Although the severity 

algorithm detected 25.0% severe and 18.2% critical cases, the observed hypoxemia, AHRF, 

ARDS, and ventilation codes detected by the phenotyping algorithm may have been attributable 

to cardiovascular surgery,[24,25] overestimating frequency of severe and critical cases. Thus, 

SG5 represented patients hospitalized for CVDs who likely had non-severe SARS-CoV-2 

infections. 

SG6 had 1225 (13.5%) patients. At baseline, this group had fewer prior visits (1 [0-8] visits) and 

lower prevalence of most risk factors, like T2DM (5.4%), CKD (4.2%), and heart disease (10.8%). 

Within the COVID-window, SG6 had higher than average prevalence of dyspnea (68.5%), cough 

(52.5%), fever (49.1%), and hypoxemia (47.2%), but lower rates of many high-severity conditions, 
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including ARDS (3.1%), sepsis (5.1%), and death (1.8%). The severity distribution was 40.4% 

mild-moderate, 56.7% severe, and 2.9% critical. Hospitalizations were shorter (4.0 [3.0-6.0] days) 

and  PDDs were primarily related to COVID-19. Thus, SG6 primarily represented patients who 

had fewer risk factors and mostly developed mild-moderate or severe cases of COVID, but few 

critical cases and low mortality.

SG7 had 242 (2.7%) patients; 63.2% male. At baseline, SG7 had the most prior visits (58.0 [34.2-

86.0]) and the most enriched set of baseline conditions, including solid organ transplant (SOT, 

86.4%), immunodeficiency disorder (29.8%), T2DM (53.3%), CKD (67.8%), etc. Within the 

COVID-window, SG7 had higher rates of diarrhea, pleural effusion, and ESRD relative to other 

COVID patients, but these were similar to the patients’ baseline prevalence; only ARFS was 

higher than at baseline (63.6% vs. 40.5%). The top PDDs were COVID-19 (35.5%) and 

complication of transplanted lung (12.8%). Despite the history of transplants and 

immunocompromised status, half of SG7 had mild-moderate cases, while the other half were 

severe or critical. A review article on COVID-19 in immunocompromised hosts found that patients 

with SOTs were predominantly older, male patients with comorbidities including hypertension, 

diabetes, CVD, CKD, and obesity (corresponding with our results), and symptoms including fever, 

dry cough, and diarrhea.[26] Fever and cough were present in SG7 but at similar rates to other 

COVID-19 inpatients. SG7 had the highest rate of diarrhea, but diarrhea was elevated at baseline. 

The review found risks for mechanical ventilation and mortality ranged from 5-67%, whereas SG7 

had similar rates of ventilation (10.3%) and death (6.6%) to other patients. 

SG8 had 831 (9.2%) older (68.3 [57.9-77.9]) patients. At baseline, they had elevated rates of 

T2DM (47.4%), essential hypertension (43.3%), and hyperlipidemia (31.5%). Within the COVID-

window, SG8 had higher rates of dyspnea (56.4%), cough (37.3%), and asthenia (23.3%), but 

lower rates of ARDS (5.2%), sepsis (5.5%), and ESRD (0.5%). SG8 was also recorded with 70.6% 

essential hypertension and 65.7% T2DM, higher than observed within the baseline-window, likely 
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because more than 25% of these patients had no visits within the baseline-window. The severity 

distribution was 43.2% mild-moderate, 49.6% severe, and 7.2% critical. Hospitalizations were 

shorter (5 [4-7] days), and their PDDs were primarily COVID-related. SG8 had similar prevalence 

rates of COVID-window conditions to SG6, but SG8 had higher prevalence of ARFS (33.5% vs. 

15.8%), likely due to risk factors, including T2DM, age, and hypertension.[5] Thus, SG8 appeared 

to represent patients with T2DM who experienced mostly non-severe and severe cases of 

COVID-19. 

SG9 had 263 (2.9%) older (64.6 [56.0-75.2]), 66.5% male patients. These patients had the highest 

representation among Black (31.2%) and lowest among White (17.1%) patients. At baseline, SG9 

had more prior visits (15 [2-39] visits) and high rates of renal and cardiovascular diseases, 

including CKD (73.4%), ESRD (59.3%), heart disease (61.6%), atherosclerosis of coronary artery 

(44.1%), and T2DM (57.8%). Within the COVID-window, ESRD (80.6%) and heart failure (45.2%) 

were more prevalent than in other patients and elevated relative to baseline. Hospitalizations were 

longer (9 [6-14] days), but only half their PDDs were COVID-related. Thus, SG9 primarily 

represented patients with a history of kidney disease, CVDs, and T2DM whose severity 

distribution was similar to other patients, but with exacerbations to their underlying conditions 

(ESRD and heart failure). 

SG10 had 263 (2.9%) patients. At baseline, SG10 had elevated rates of many conditions, 

including anemia, ARFS, cirrhosis, etc. Within the COVID-window, SG10 had higher rates of 

many conditions relative to the other patients, but these were also elevated at baseline: ARFS 

(COVID-window: 47.1%; baseline-window: 21.3%), tachycardia (35.4%; 19.4%), pleural effusion 

(35.0%; 13.7%), anemia (30.8%; 25.1%), atelectasis (29.3%; 13.7%), and sepsis (26.6%; 13.3%). 

Their hospitalizations were predominantly not COVID-related. SG10’s patient vectors appeared 

dispersed (Fig. 3). Thus, SG10 appeared to be composed of a heterogeneous group of patients 
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with a variety of underlying conditions which may have been exacerbated by SARS-CoV-2 

infection.

SG11 had 349 (3.9%) older (71.8 [59.0-84.2]) patients. Within the COVID-window, SG11 had 

higher rates of dyspnea (63.0%), hypoxemia (64.2%), and AHRF (47.3%). Severity was 23.8% 

mild-moderate, 61.3% severe, and 14.9% critical. Hospitalizations were longer (9 [6-15] days), 

and PDDs were mostly COVID-related. SG11 represented older patients who mostly developed 

severe cases. 

SG12 had 650 (7.2%) patients. At baseline, prevalence rates were lower for conditions, including 

T2DM (6.5%), heart disease (13.4%), and CKD (4.9%). Within the COVID-window, SG12 had 

higher rates of some conditions, like dyspnea (80.3%) and AHRF (67.8%), but lower rates of 

others, like sepsis (22.1%), pleural effusion (6.6%), ESRD (0.3%), etc. Their severities were 

mostly severe (70.3%). Hospitalizations occurred mostly within the first wave, were longer (9 [6-

13] days), and PDDs were predominantly related to COVID-19. SG12 primarily represented 

patients from the first wave with lower prevalence of baseline conditions who developed severe 

cases of COVID-19.

SG13 had 720 (8.0%) patients. This was the oldest subgroup (82.7 [74.0-89.4]). At baseline, 

SG13 had higher prevalence of essential hypertension (43.9%), hyperlipidemia (31.4%), heart 

disease (30.8%), and dementia (25.3%). Within the COVID-window, SG13 had higher ARFS 

(52.9%), AHRF (45.8%), and death (33.3%), but lower invasive ventilation (4.0%). Along with 

42.6% dementia within the COVID-window, these patients experienced altered mental status 

(33.8%) and delirium (19.7%). The severity was split: 34.7% mild-moderate, 27.4% severe, and 

37.9% critical. Hospitalizations mostly occurred in the first two waves, were longer (7 [4-10] days), 

and their PDDs were mostly COVID-related. Compared to subgroups with higher severity, SG13, 

with the oldest patient population, exhibited lower prevalence of many COVID-related conditions 

and invasive ventilation but higher mortality.
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SG14 had 454 (5.0%) older (70.2 [60.8-78.3] years), 61.9% male patients. SG14 had the highest 

representation among Hispanic patients (42.5%). At baseline, SG14 had higher prevalence of 

T2DM and hyperlipidemia, and within the COVID-window, baseline conditions were recorded at 

higher rates: T2DM (78.0%), hyperlipidemia (55.9%), hypertension (70.5%), and CKD due to 

T2DM (28.9%). Additionally, they had high prevalence of dyspnea (76.2%), AHRF (74.2%), and 

ARFS (52.2%), but low ESRD (0.2%) and invasive ventilation (1.1%). Their severities were mostly 

severe and critical. Their hospitalizations occurred during the first two waves, lasted 12 [8-17] 

days, and were predominantly COVID-related. SG14 mostly represented older and more 

commonly male patients with T2DM, hypertension, and some CKD, who developed severe and 

critical COVID-19 with ARFS but not ESRD. 

SG15 had 43 (0.5%) patients. These patients were children (9.7 [4.2-15.7] years) and 62.8% 

male. Within the COVID-window, we saw higher rates of fever (69.8%), ARDS (65.1%), pleural 

effusion (67.4%), atelectasis (76.7%), and invasive ventilation (65.1%). 44.2% had heart failure, 

the second highest rate, and 23.3% had congenital heart disease, likely predisposing them to 

heart failure. Their severities were mostly critical and severe. Hospitalizations were much longer 

(45.0 [22.5-81.0] days). Only 30.2% of PDDs were COVID-19, but 44.2% were cardiac disorders. 

SG15 represented children who primarily developed critical SARS-CoV-2 infections, many of 

whom had congenital heart disease and were primarily hospitalized for their CVDs, often leading 

to pleural effusion and atelectasis. 

SG16 had 58 (0.6%) patients; 65.5% male. Within the COVID-window, SG16 had high AHRF 

(79.3%), ARDS (65.1%), pleural effusion (82.8%), atelectasis (50.0%), heart failure (36.2%), 

ARFS (81.0%), septic shock (56.9%), invasive ventilation (82.8%), and death (41.4%). Severity 

was 93.1% critical. Their hospitalizations lasted 41.0 [20.0-62.8] days and were mostly COVID-

related. SG16 represented patients who developed critical COVID-19 with long hospitalizations 

and high rates of pleural effusion, atelectasis, heart failure, and mortality.
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SG17 had 367 (4.1%) older (68.1 [57.9-76.8]) patients. Within the COVID-window, SG17 had 

elevated prevalence of AHRF (86.1%), ARDS (68.1%), pleural effusion (41.4%), heart failure 

(24.0%), ARFS (75.2%), and septic shock (50.1%). 80.4% had invasive ventilation and 64.6% 

passed away, the highest rate among the subgroups, despite age being the only significant risk 

factor at baseline and other groups exhibiting more critical complications. Their severity was 

critical (94.6%). Their hospitalizations occurred mostly during the first two waves, were longer 

(13.0 [7.0-19.5] days), and their PDDs were COVID-related. Similar to SG13, SG17 primarily 

represented older patients who, despite not having significantly higher prevalence rates of risk 

factors at baseline other than age, continued to develop severe or critical cases of COVID-19 and 

experienced very high mortality. While SG17 was younger than SG13, SG17 had higher 

prevalence rates of critical complications (e.g., ARDS 68.1% vs. 11.4%, ARFS 75.2% vs. 52.9%, 

septic shock 50.1% vs. 6.9%) and mortality (64.6% vs. 33.3%).

Subgroups 18, 19, and 20 generally have similar characteristics and are described together. 

Subgroups 18-20 had 220 (2.4%), 160 (1.8%), and 114 (1.3%) patients, respectively. They were 

predominantly male (60.9-68.8%). Within the COVID-window, Subgroups 18-20 commonly had 

elevated rates of high-severity concepts, including ARDS (87.5-100.0%), pleural effusion (43.0-

77.3%), ARFS (85.6-89.5%), septic shock (70.2-79.5%), and altered mental status (39.4-46.5%). 

Severities were nearly all critical. SG19 had hospitalizations during the first two waves and  SG20 

during the first wave. Their PDDs were mostly COVID-related. In general, aside from having more 

male patients, these subgroups were not significantly different from other patients at baseline, but 

they developed critical cases of COVID-19 with long hospitalizations (40.0-46.0 days median), 

invasive ventilation (96.4-100%), and high mortality (26.3-45.0%). Despite the similarities 

between Subgroups 18-20, Fig. 3 shows the subgroups were well separated. Compared to the 

other two subgroups, SG20 had the lowest rates of heart failure, pleural effusion, and atelectasis, 

and although SG19 had the highest rates of heart failure and atelectasis, SG18 had the highest 
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rate of pleural effusion. Given the different stages of the pandemic over which these subgroups 

occurred, there likely were also differences in the clinical care captured by the patient vectors, but 

which were not presented in this subgroup characterization. 

Looking at vaccination rates across the subgroups, we see a trend with higher rates among the 

lower severity subgroups and lower vaccination rates among the higher severity groups. However, 

subgroup vaccination rates were also affected by when the hospitalizations within the subgroup 

occurred and the availability of the vaccine. For example, Subgroups 4, 15, and 20 had no patients 

vaccinated, but these groups primarily had their hospitalizations prior to FDA vaccine emergency 

use authorization for their constituents, e.g., children in Subgroups 4 and 15, and first-wave 

pandemic patients in SG20. Patient vaccination status was also likely underestimated since 

vaccination data were only collected from CUIMC EHR and NYC registry; thus, non-NYC 

residents who were vaccinated in other healthcare systems were not captured by these sources.

Clinical subgroup generalizability

The in-time and out-of-time holdout evaluations showed good generalizability of the identified 

COVID-19 clinical subgroups to patients whose data were not seen during training of the K-means 

clustering algorithm (Table 4). As expected, there was some variance in the frequency of outliers 

within the small sample sizes of each subgroup, but among each of the holdout sets, the outlier 

frequency was not significantly different from the expected frequency of 5.0%. The out-of-time 

holdout evaluation showed that clinical subgroups were representative of the most recent 

hospitalizations (July 20, 2021 – December 1, 2021). However, Subgroups 19 and 20, which had 

hospitalizations primarily in the first wave of the pandemic, were not assigned to any patients in 

the out-of-time holdout set, suggesting that changes in clinical practice and/or recording may have 

made these subgroups obsolete. Despite this, we observed similar outlier frequencies between 

the out-of-time and in-time holdout sets (5.7% vs. 6.4%, P=0.600), suggesting that the subgroups 

could represent new patients as well as those contemporaneous to the patients in the training 
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data. Generalizability has not yet been tested against patient data from other institutions or 

geographic locations. 

COVID-19 subgroup temporal analysis

Subgroup transition analysis

The chord diagram in Fig. 4 depicts day-to-day transitions between COVID-19 subgroups when 

the patient vectors were generated per day of hospitalization among patients with PDDs related 

to COVID-19. This format helps visualize how the COVID-19 clinical subgroups were interrelated 

and facilitates recognition of the most common transitions and their durations, while Table S9 

provides the quantitative details. For example, the most common starting state was SG6, which 

primarily represented patients who had fewer risk factors and primarily developed mild-moderate 

(40.4%) or severe (56.7%) cases of COVID-19. Thus, these patients likely already had moderate 

or severe COVID-19 when they were admitted to the hospital. The most common transition from 

SG6 was for these patients to be discharged after a median of 3 days, corresponding with the 

complete path (SG6discharge) being the most common path (Table 5). Patients who were not 

discharged from SG6 commonly transitioned to SG12 after a median of 3 days. SG12 had more 

severe cases of COVID-19 with higher prevalence rates of AHRF (67.8% vs. 35.3%), dyspnea 

(80.3% vs. 68.5%), and ARFS (28.6% vs. 15.8%), suggesting that these patients’ conditions 

worsened approximately three days after admission. Fig. 4 also shows a general trend that the 

lower subgroups (e.g., Subgroups 2-13) had relatively quick transitions into them (1-3 days), as 

seen by the green-yellow outlines of the inbound links. In contrast, patients in the higher 

subgroups (e.g., Subgroups 14-20) tended to remain in these states for long durations (7+ days, 

orange-red outlines) before transitioning out. 

Few patients transitioned into the most severe subgroups (Subgroups 18-20) without first passing 

through SG17. SG17 had much shorter hospitalizations (median 13 days vs. 40-46 days) and 
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lower rates of ARDS (68.1% vs. 87.5-100%), sepsis (56.9% vs. 80.0-81.9%), septic shock (50.1% 

vs. 70.2-79.5%), invasive ventilation (80.4% vs. 96.4-100%), etc. However, SG17 had the highest 

mortality (64.6% vs. 26.3-45.0%). This may suggest the risk of death peaked when patients were 

in SG17, and patients who survived this high-risk period may enter a state with more 

complications and longer hospitalizations but lower risk of death.  

Subgroup path analysis

Table S10 shows the complete paths throughout the hospitalization, and Table 5 shows a sample 

of interesting paths with 1) the highest frequency, 2) longest duration, 3) lowest mortality, and 4) 

highest mortality. In the most common path, 14.7% (856/5843) of patients spent a median of 4 

days in SG6 before being discharged, as described above. 

The five paths with the longest total durations shared some commonalities. In all five paths, 

patients spent 9.0-17.0 days (median durations) in SG17 as their penultimate state before 

transitioning into one of Subgroups 18-20 as the last state before being discharged. This last state 

was where these patients spent for the majority of their hospitalization, with median durations 

ranging from 34.5-53.0 days. Even after their lengthy hospitalizations, these patients were 

discharged to additional care services, indicating that they still required professional care.

In the path with the lowest mortality, patients spent a median of 1 day in SG2 and 3 days in SG6 

before being discharged. The mortality and hospice rate was only 1.4% (4/276) among patients 

who experienced this base path. Surprisingly, the path with only a single state in SG2 had higher 

mortality (13/171, 7.6%), and death occurred sooner (median 2 days) despite SG2 having slightly 

lower mortality than SG6 (1.3% vs. 1.8%, Table 2) in the clinical subgroup analysis. This may be 

because the clinical subgroup analysis included all COVID-19 hospitalizations, whereas this 

subgroup temporal analysis only included patients with COVID-19 PDDs. The PDD criterion 
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removed 93.9% of the patients from SG2, which may have substantially shifted the composition 

of SG2. 

In the five base paths with the highest mortality, mortality ranged from 73.3% (11/15) to 100% 

(11/11) among the paths, though each path had small sample sizes. Four of these paths ended 

on SG17 and had medium hospital lengths of stay (median durations ranged from 9.5-17.0 days). 

In the fifth path, patients passed through SG17 before transitioning to SG18 and ultimately 

passing away after an extended hospitalization (median 53.0 days). From the clinical subgroup 

analysis, SG17 and SG18 were also observed with the highest mortality, 64.6% and 45.0%, 

respectively (Table 2). With four of the highest mortality paths ending on SG17, this path analysis 

corroborates the previous observation that the risk of death may have peaked when patients were 

in SG17.

Admission state mortality analysis

Table S11 shows the mortality rates among patients whose first day of hospitalization were 

classified into each of the subgroups. Patients starting in Subgroups 1-4 had significantly lower 

mortality rates, while patients starting in Subgroups 8, 10, 11, and 13 had significantly higher 

mortality rates. Although the COVID-19 subgroups were defined by applying a clustering 

algorithm on patient vectors derived from clinical data covering the entire COVID-characterization 

window, the patient vectors and corresponding subgroup predictions based on data from the 

admission day captured enough information to differentiate patients into subgroups associated 

with varying risk for mortality. This suggests that the patient vectors containing admission data 

alone may be useful for predicting prognosis. 

Research in context

A few studies were previously published looking at subgroups of hospitalized COVID-19 patients. 

Lusczek et al. analyzed EHR data from the first 72 hours of hospitalization of 1,022 COVID-19 
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patients and found three clinical phenotypes associated with various comorbidities and outcomes. 

Phenotype-I patients (23.1%) were older and commonly had renal, hematologic, and cardiac 

comorbidities. Phenotype-II patients (60%) were associated with moderate severity. Phenotype-

III patients (16.9%) were more often female and had respiratory comorbidities. Compared to 

Phenotype-III, Phenotypes I and II had increased odds of complications (respiratory, renal, and 

metabolic) and worse outcomes (ICU admission, ventilation, hospital LOS, and death). Oh et al. 

analyzed temporal patterns in EHR data from the first 24 hours of ICU admission for 1036 patients 

and identified four clinical subphenotypes. Subphenotype I patients (22.5%) had rapid respirations 

and heartbeat and enjoyed a relatively good prognosis with less need for invasive interventions. 

Subphenotype II patients (40.3%) were younger and had the fewest abnormal biomarker levels, 

low mortality, and the highest probability of being discharged. Subphenotype III patients (25.0%) 

were older, more likely male, and experienced clinical deterioration during the first 24 hours of 

ICU admission, leading to poor outcomes. Subphenotype IV patients (12.2%) nearly all 

experience ARDS and required mechanical ventilation within 24 hours of ICU admission.

This study performed a deeper dive on more precisely defined subgroups by analyzing EHR data 

from a larger data collection window (minimally including the entire hospitalization) on 9051 

patients and provided a highly detailed characterization of each subgroup’s demographics, 

baseline health, vaccination status, COVID-19 severity, conditions, outcomes, and visit details. 

Patients in several subgroups were hospitalized for underlying conditions (pregnancy, CVD, etc.) 

and only experienced mild-moderate COVID-19. SG7 included transplant recipients who mostly 

developed mild-moderate or severe disease. SG9 had a history of T2DM, kidney disease, and 

CVD, and suffered the highest rates of heart failure and ESRD. SG13 was the oldest (median: 

82.7 years) and had mixed severity but high mortality (33.3%). SG15 included children, many of 

whom had congenital heart diseases and experienced critical cases of COVID-19 with high rates 

of pleural effusion and atelectasis. SG17 had critical disease and the highest mortality (64.6%), 
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with age being the only notable risk factor. Subgroups 18-20 had critical disease with high rates 

of ARDS, ARFS, septic shock, and long LOS (median: 40+ days). We further analyzed how 

patients transitioned through these subgroups throughout the course of hospitalization to 

characterize temporal patterns between subgroups, including the duration (days) patients spent 

in each subgroup, common transitions between them, and subgroup paths with the highest 

prevalence, longest duration, and lowest and highest mortality. 

The findings from this study could be used in many ways to support clinical decision making. 

Understanding these subgroups may help clinicians triage patients for better management and 

earlier intervention. The evaluation of the assigned COVID-19 subgroup at hospital admission 

suggests that the identified subgroups may be predictive of outcomes. Therefore, the patient 

embeddings have potential for being used to predict risks of patients developing complications 

like ARFS or atelectasis, which can further inform the level of vigilance required for monitoring 

high-risk patients, tailoring treatment plans to reduce these risks, and coordinating care across 

specialties when patients are at risk of multiple organ failure. Data from the visit characteristics 

could be leveraged for planning hospital resource utilization, especially for subgroups with long 

hospitalizations or for those who ultimately transfer for skilled nursing facilities and other care 

services. Clinical trials could possibly stratify participants according to these subgroups to 

determine whether the intervention is more effective or has fewer adverse outcomes in certain 

subgroups. 

Limitations

There are several limitations to this study. The K-means clustering method required manual 

selection of the number of clusters; thus, the number of COVID-19 subgroups identified was 

influenced by subjective decision. Prior to selecting K-means clustering for this study, we 

evaluated several clustering methods on a preliminary data set, some of which allow clustering to 

be performed without manual selection of hyperparameters. With the other tested algorithms, we 
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found either patients poorly distributed over the resulting clusters (e.g., most patients in a single 

cluster or many clusters with a single patient), or clusters poorly separated on t-SNE, thus, we 

ultimately selected K-means for this study. The elbow method to guide the selection of K yielded 

a broad curve which only helped eliminate lower and upper extreme values from consideration. 

We selected K=20 upon visual inspection of the t-SNE plot, prior to performing subgroup 

characterization. However, the subgroup characterization revealed that we may have been 

slightly too conservative in our choice, as several groups appeared to contain heterogeneous sets 

of subpopulations, such as Subgroups 2-4, which may have benefitted from a larger selection of 

K to differentiate their subpopulations. Additionally, the use of Euclidean distance in K-means 

clustering is not ideal for the high-dimensional patient vectors. Although we found the clusters 

identified by K-means to be meaningful, other clustering methods may produce better results. 

The inclusion criteria for this study could have been adjusted to make the results more specific to 

COVID-19. As seen in Table S8, many of the included patients did not have COVID-19 as their 

primary discharge diagnosis, indicating that these patients were primarily hospitalized for other 

health reasons and may have been asymptomatic or mildly symptomatic of COVID-19. However, 

by not requiring the COVID-19 PDD in the subgroup analysis, the resulting COVID-19 subgroups 

are more representative of all patients who test positive while hospitalized, including those with 

non-severe cases, which may have been excluded if the COVID-19 PDD was required. For 

prospective application, these classifications need to be applicable to all SARS-CoV-2 positive 

patients since the PDDs will not be known until the patient is discharged.

This study was performed using observational EHR data. EHR data are collected as part of routine 

clinical care, as opposed to being collected systematically for research purposes, resulting in EHR 

data commonly having known data quality issues and biases.[27–29] For example, individually, 

race and ethnicity were not well captured in our EHR data; we combined race and ethnicity into a 

single variable to minimize the impact of missingness in the individual variables. Healthcare 
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processes can influence EHR data in many ways, e.g., recorded conditions and procedures are 

biased by reimbursement incentives, laboratory measurements exhibit diurnal variations due to 

overnight measurements ordered on sicker patients, etc.[30] In several subgroups, we could see 

chronic conditions being reported at higher prevalence rates within the COVID-characterization 

window than in the baseline-characterization window. This was likely an underestimation of 

baseline prevalence rates as the conditions could have been under-coded since many patients 

had no or few visits within the baseline-characterization window. Also, the EHR data analyzed in 

this study included data from the beginning of the pandemic through to December 2021, a time 

range where much changed, including changing best treatment practices, emergence of new 

SARS-CoV-2 variants, availability of vaccines, and fluctuating levels of stress to the hospital 

system through the waves of the pandemic. These changes were not controlled for in the 

subgroup analysis, and some subgroups can even be characterized based on these external 

factors, e.g., SG20 had most of its hospitalizations within the weeks after the first confirmed case 

in New York. 

Finally, the results of this study have not been externally validated yet. The National COVID 

Cohort Collaborative (N3C) has collected EHR data on over 12 million patients with over 4 million 

SARS-CoV-2-positive cases from over 50 data partners with released data. N3C data are stored 

in the same Observational Medical Outcomes Partnership (OMOP) CDM format as used in this 

study and present an opportunity for robust validation.

CONCLUSION

Using a patient embedding model and clustering methods, twenty subgroups of hospitalized 

COVID-19 patients were identified and labeled in order from lowest to highest severity. These 

subgroups varied widely according to their demographics, baseline health, complications, 
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outcomes, severity, and temporal characteristics. This manuscript provides a highly detailed 

characterization of each subgroup and the common temporal transitions and paths between them 

throughout the course of hospitalization. The entire analysis pipeline, including transforming EHR 

data from OMOP into medical coding sequences and, subsequently, into patient vector 

representations and clinical characterization, is publicly available (see data availability statement). 

Future studies will investigate using these findings toward predictive analytics to improve 

outcomes for COVID-19 patients. 
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The code used in this analysis are available at:

https://github.com/WengLab-InformaticsResearch/covid_subgrouping.

FIGURE LEGENDS

Fig. 1. Methodology overview. (A) The patient timeline depicts the COVID-19 cohort inclusion 

criteria and the definitions of the baseline-characterization and COVID-characterization windows. 

(B) Patient-level EHR data were extracted from an OMOP database and transformed into medical 

coding sequences (MCS). Unique concepts were recorded and shuffled for each day. (C) Patient 

MCSs were converted into vector embeddings using paragraph vector models (distributed 

memory and distributed bag-of-words; concatenated). (D) Patient vectors were clustered to 

identify COVID-19 clinical subgroups. (E) Subgroups were characterized by demographics, visit 

details, conditions and outcome prevalence rates, and temporal patterns between subgroups.

Fig. 2. COVID-19 cohort characteristics. Normalized distributions from the full COVID-19 

inpatient cohort: (A) age, (B) race-ethnicity, (C) hospitalization length of stay, (D) hospitalization 

start date, (E) number of healthcare visits in the baseline-characterization window, and (F) 

number of healthcare visits in the COVID-characterization window. AIAN: American Indian and 

Alaska Native; NHPI: Native Hawaiian and Pacific Islander. 

Fig. 3. t-distributed stochastic neighbor embedding of COVID-19 patient vectors. Each 

marker is a vector representation of a patient in the COVID-19 inpatient cohort; the symbol 

indicates the COVID-19 subgroup. 

Fig. 4. COVID-19 subgroup transitions. The chord diagram depicts the transitions between 

COVID-19 subgroups among patients with primary discharge diagnoses related to COVID-19. A 

link between two groups indicates the transition from the source group to the target group. Link 

width is proportional to the number of transitions. Links are arranged clockwise in descending 

order of the transition count. Link outline color (colorbar legend) represents the median number 
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of days patients remained in the source subgroup before transitioning to the target subgroup. Link 

fill color indicates the group each transition originates from, matching the fill color of the arc 

representing each subgroup. For figure clarity, transitions with fewer than five counts were 

excluded, and Subgroups 1, 3, 5, 15, and 16 were excluded since few patients entered these 

groups. Care: patients discharged to additional care services; death: patients died or discharged 

to hospice.
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