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Background: Placenta accreta spectrum (PAS) is a significant contributor to maternal morbidity and 
mortality. Our objective was to develop a quantitative analysis framework utilizing magnetic resonance 
imaging (MRI)-anatomical-clinical features to predict 3 clinically significant parameters in patients with PAS: 
placenta subtype (invasive vs. non-invasive placenta), intraoperative bleeding (≥1,500 vs. <1,500 mL), and 
hysterectomy risk (hysterectomy vs. non-hysterectomy).
Methods: A total of 125 pregnant women with PAS from 2 medical centers were enrolled into an internal 
training set and an external testing set. Some 21 MRI-anatomical-clinical features were integrated as input 
into the framework. The proposed quantitative analytic framework contains mainly 3 classifiers built by 
extreme gradient boosting (XGBoost) and their testing in external datasets. We also further compared the 
accuracy of placenta subtype prediction between the proposed model and 4 radiologists. A quantitative 
model interpretation method called SHapley Additive exPlanations (SHAP) was conducted to explore the 
contribution of each feature.
Results: The placenta subtype (invasive vs. non-invasive), intraoperative bleeding (≥1,500 vs. <1,500 mL), 
and hysterectomy risk (hysterectomy vs. non-hysterectomy) demonstrated impressive area under the receiver 
operating characteristic curve (AUROC) values of 0.93, 0.88, and 0.90, respectively, in the internal validation 
set. Even in the external testing set, these metrics maintained their strength, achieving AUROC values of 0.91, 
0.82, and 0.82, respectively. Comparing our proposed framework to the 4 radiologists, our model exhibited 
superior accuracy, specificity, and sensitivity in predicting placental subtypes within the external testing 
cohort. The features associated with intraplacental dark T2 bands played a crucial role in the decision-
making process of all 3 prediction models.
Conclusions: The quantitative analysis framework can provide a robust method for classification of 
placenta subtype (invasive vs. non-invasive placenta), intraoperative bleeding (≥1,500 vs. <1,500 mL), and 
hysterectomy risk (hysterectomy vs. non-hysterectomy) based on MRI-anatomical-clinical features in PAS.
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Introduction

Placenta accreta spectrum (PAS) disorders signify 
the diverse extents of direct infiltration of the uterine 
myometrium by placental trophoblast cells, impeding 
the partial or complete detachment of the placenta from 
the myometrium (1). These conditions have exhibited an 
augmented frequency over the past few decades (1). PAS 
can be classified into 3 distinct subtypes, namely accreta, 
increta, and percreta, based on the extent of trophoblastic 
infiltration (1,2). The deeper the invasion of placental 
trophoblast cells, the greater the likelihood of encountering 
unfavorable pregnancy outcomes, potentially resulting 
in profound hemorrhage, necessitating hysterectomy, 
causing damage to the urinary system, and even leading 
to maternal and fetal mortality. It is noteworthy, however, 
that not all pregnant women diagnosed with placenta 
accreta are exposed to extreme risk (2). Consequently, the 
identification of placental subtypes during prenatal care 
and the identification of high-risk pregnant individuals 
vulnerable to intraoperative hemorrhage and hysterectomy 
carry significant clinical implications (3).

In recent times, machine learning (ML) techniques 
have exhibited their potential in facilitating intricate 
medical image or data analysis, thereby enhancing the 
productivity of physicians (4-6). In the context of PAS, 
these investigations have predominantly focused on the 
remarkable diagnostic accuracy and value of magnetic 
resonance imaging (MRI) radiomics (7,8). Although 
some studies have reported outstanding performance in 
methodological metrics, 3 current restrictions remain. 
Firstly, the model’s dependence on manually annotated 
regions of interest (ROIs) by radiologists has proven 
impractical in clinical settings (7-9). Secondly, the algorithm 
utilized in the studies is excessively simplistic, and the 
majority of research lacks the inclusion of multicenter data, 
thereby imposing limitations on the generalizability of the 
research findings (8,10). Thirdly, due to the inherent “black 
box” nature of ML methods, interpreting the decision-
making process within the model becomes challenging, 
leading to clinicians’ reluctance in utilizing it (7-10). 

To the best of our knowledge, no existing literature 
has reported a comprehensive framework utilizing ML 
for the systematic prediction of PAS placenta subtype, 
intraoperative bleeding, and hysterectomy risk. In this 
study, we devised an integrated approach that combined 
MRI-anatomical-clinical features and employed the robust 
extreme gradient boosting (XGBoost) algorithm. This 
framework facilitated a quantitative analysis of placenta 
subtype (invasive vs. non-invasive), intraoperative bleeding 
(≥1,500 vs. <1,500 mL), and hysterectomy risk (hysterectomy 
vs. non-hysterectomy). Additionally, we performed a 
quantitative assessment of the influence of MRI-anatomical-
clinical features on each model’s decision-making process, 
employing SHapley Additive exPlanations (SHAP) values to 
provide insights into how these decisions are derived.

Methods

Participant cohorts

In this retrospective study, pregnant women who were 
suspected of having PAS in 2 medical centers (Shenzhen 
People’s Hospital and The Third Affiliated Hospital of 
Shenzhen University) from January 2018 to October 2022 
were collected. The former hospital is a tertiary referral 
center under municipal administration, whereas the latter 
is a tertiary referral center under district administration. 
Initially, a total of 243 cases were screened for inclusion in 
this study. We rigorously adhered to the specified inclusion 
and exclusion criteria, as depicted in Figure 1. The inclusion 
criteria encompassed the following: (I) gestational age 
exceeding 28 weeks; (II) singleton pregnancy; and (III) 
MRI had been conducted prior to the cesarean operation. 
Conversely, the exclusion criteria were as follows: (I) 
inadequate availability of complete clinical, surgical, and 
pathological information; (II) presence of severe motion 
artifacts or other image-related anomalies; (III) coagulation 
disorders; (IV) occurrences of placental abruption or 
uterine rupture; and (V) fetal malformations. The diagram 
of the analysis framework is shown in Figure 2. The study 
was conducted in strict accordance with the Declaration of 
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Helsinki (revised in 2013), and approval from the Research 
Ethics Committee (No. KY2022-038-01) was obtained 
for this research. The requirement for informed consent 
documents was waived for this retrospective analysis. 

MRI protocol and acquisition

The MRI image acquisition was performed using a 1.5-T 
scanner with a phased-array body coil at both centers. The 
T2-weighted sequences were obtained in 3 planes (axial, 
sagittal, and coronal) during the MRI scanning. The specific 
parameters used for the MRI scans are provided in Table S1.

MRI-anatomical-clinical features evaluation

Based on the guidelines of Society of Abdominal Radiology 
(SAR) and European Society of Urogenital Radiology 
(ESUR) in 2020 for MRI imaging of PAS (11), and taking 
into consideration clinical practices and related studies  
(12-16), we incorporated several morphological findings and 
anatomical indicators about the MRI of PAS. Morphological 
findings (see Tables S1,S2 and Figure S1) included the 
following: (I) placental heterogeneity; (II) placental 
tissue protrusion into the cervical canal (Figure S1A);  

(III) uterine placental bulge; (IV) intraplacental dark T2 
bands (Figure S1B); (V) loss of low T2 retroplacental 
line (Figure S1C); (VI) myometrial thinning disruption; 
(VII) bladder wall interruption (Figure S1D); (VIII) focal 
exophytic placental mass; (IX) placenta previa subtype 
at MRI; (X) main location of placental attachment; and 
(XI) location of intraplacental dark T2 bands. Anatomical 
indicators included the following: (I) cervical canal length; 
(II) diameter of placental abnormal vasculature (Figure S1E);  
(III) uterine anteroposterior diameter ratio (Figure S1F); 
(IV) placental abnormal vasculature area in T2WI; and (V) 
intraplacental dark T2 bands area. 

In our analysis, we derived the area of abnormal placental 
vasculature through the multiplication of the length and 
width of the largest dimension observed in T2-weighted 
imaging (T2WI). Likewise, the area of intraplacental dark 
T2 bands was determined by measuring the length and 
width of the largest dimension evident in T2WI. Moreover, 
we calculated the ratio of the uterine anteroposterior 
diameters using a systematic approach: Firstly, a straight line 
was sketched on sagittal T2WI, connecting the endocervix 
to the highest point of the uterine fundus. Secondly, the 
anteroposterior diameter of both the upper and lower 
uterine segments was measured perpendicular to this line. 

Inclusion criteria:
• Pregnant women suspicious of placenta spectrum clinically
• Gestational age over 28 weeks

Cohort I: 155 participants from the local hospital I
Cohort II: 88 participants from the local hospital II

Cohort I: 85 participants from the local hospital I
Cohort II: 40 participants from the local hospital II

Exclusion criteria
• Incomplete clinicopathological diagnostic report (n=16)
• Images with low resolution, severe motion or other 

types of artifacts (n=39)
• Without underwent MRI before one week of cesarean 

operation (n=61)
• Not singleton pregnancies (n=2)

85 participants from Cohort I 
as internal dataset to train a 
machine learning framework

40 participants from Cohort II 
as external dataset to test the 
machine learning framework

Figure 1 Flow diagram. Initial numbers of participants in two local-hospitals data and the reasons for patient exclusion. MRI, magnetic 
resonance imaging.
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Figure 2 A quantitative analysis framework of placenta accreta spectrum: placenta subtype, intraoperative bleeding and hysterectomy risk 
evaluation based on MRI-anatomical-clinical features. MRI, magnetic resonance imaging.

Lastly, the ratio of the anteroposterior diameter of the 
upper segment to that of the lower segment was employed 
to evaluate the expansion of the lower uterine segment. 
MRI morphological findings and anatomical indicators 
were meticulously analyzed by 2 highly experienced 
radiologists, namely Doctor A and Doctor B, with 11 and 
12 years of expertise in the field of diagnostic imaging of 
obstetrical and gynecological conditions, respectively. It 
is important to note that they carried out the analysis in a 
blinded manner, devoid of any knowledge regarding the 
clinical, surgical, or pathologic information associated with 
the cases. In situations where morphological findings were 
absent, a value of 0 was assigned; if there was a possibility of 
their existence, a value of 1 was assigned; and if the findings 
were clearly evident, a value of 2 was assigned. In the event 
of any disagreement between the 2 radiologists, a thorough 
discussion ensued, and a final consensus was achieved in 
consultation with another esteemed radiologist, Doctor C, 
with 31 years of diagnostic experience. 

Furthermore, we incorporated the following clinical 
characteristics into our analysis: (I) maternal age; (II) 
gravidity; (III) parity; (IV) history of prior cesarean section; 
and (V) history of uterine surgeries such as abortion, 
dilatation and curettage (D&C), and myomectomy. In total, 
21 MRI-anatomical-clinical features were amalgamated as 
input into our framework, encompassing morphological 
findings, anatomical indicators, and clinical characteristics.

ML algorithm and model comparison

In accordance with the 2019 International Federation of 
Gynecology and Obstetrics (FIGO) classification (17), 
the included cases were stratified into 2 groups: non-
invasive placenta implantation (comprising normally 
adherent placenta and FIGO grade 1) and invasive 
placenta implantation (encompassing FIGO grades 2 
and 3). According to the guidelines from the American 
College of Obstetricians and Gynecologists (ACOG) (18), 
immediate initiation of transfusion therapy is recommended 
when maternal blood loss reaches or exceeds 1,500 mL. 
Therefore, we defined this threshold as the boundary for 
intraoperative massive bleeding. Different ML classification 
algorithms [such as logistic regression (LR), support vector 
machines (SVM), random forest (RF), and extreme gradient 
boosting (XGBoost)] (19) were adopted to predict the 
placenta subtype (invasive vs. non-invasive), intraoperative 
bleeding (≥1,500 vs. <1,500 mL) and hysterectomy risk 
(hysterectomy vs. non-hysterectomy). 

In addition, we conducted a comparative analysis 
to evaluate the predictive accuracy of placenta subtype 
(invasive vs. non-invasive) between the proposed model and 
4 experienced radiologists (Doctor 1: 31 years of diagnostic 
experience, Doctor 2: 22 years of diagnostic experience, 
Doctor 3: 13 years of diagnostic experience, Doctor 4: 9 years  
of diagnostic experience). It is noteworthy that the 
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radiologists employed a binary classification approach 
rather than assigning likelihood scores when assessing the 
placental subtypes. We conducted a comparative analysis of 
the model and 4 radiologists in terms of accuracy, sensitivity, 
and specificity in diagnosing different subtypes of PAS. 
A LR model with random effects (glmer) was utilized to 
evaluate the diagnostic performance of the 4 radiologists 
and the model on the same testing dataset.

Model explaining and statistical analysis

To assess the significance of the input features in the model’s 
prediction, we computed the SHAP value for each feature 
in relation to each sample (20). The SHAP values provide 
insights into the contribution of each feature towards 
influencing the predictive model. A higher SHAP value 
indicates that the corresponding feature has a substantial 
impact on the model’s decision-making process. 

We utilized the original Cohen’s kappa coefficient to 
assess inter-rater agreement among 2 radiologists for 11 
morphological findings. The uncertainty of the estimate 
such as accuracy, area under the receiver operating 
characteristic curve (AUROC) was quantified at a 95% 
confidence interval (CI). The McNemar test was utilized 
to evaluate the disparities between the diagnostic outcomes 
of the 4 radiology experts and the model. The receiver 
operating characteristic (ROC) test (Bootstrap method) was 
used for statistical comparison between several common-
used ML algorithms such as LR, SVM, RF, and XGBoost. 
All these statistical analyses and experiments were conducted 
in Python (v3.8; Python Software Foundation, Wilmington, 
DE, USA) and R (v3.6.3; R Foundation for Statistical 
Computing, Vienna, Austria). Statistical significance was 
considered when the P value was <0.05.

Results

Participant characteristics and readers agreement

A total of 125 cases were enrolled and divided into an internal 
cohort (n=85, a local hospital) and an external testing cohort 
(n=40, another local hospital). The cases in the internal 
cohort were stratified shuffle split into a training cohort (n=60, 
71%) and an internal validation cohort (n=25, 29%). The 
basic and clinical information of these participants are shown 
in Table 1. In this study, the overall prevalence of PAS was 
found to be 73.60%. The breakdown of the subtypes within 
PAS was as follows: without placenta accreta accounted for 
26.40%, placenta increta for 20.00%, placenta accreta for 

35.20%, and placenta percreta for 18.40%. The 2 radiologists 
(Doctor A and B) had high agreement on the interpretation 
of morphological findings (all Kappa values greater than 0.7 
in Table S3). 

The quantitative framework presents robust analytical 
capability

To verify the robust analytical capability of our algorithms, 
we compared the model performance trained by the LR, 
SVM, RF, and XGBoost algorithms, and found that the 
XGBoost algorithm had the best performance in all 3 
classification tasks. Figure 3 demonstrates that none of the 
alternative algorithms achieved a comparable AUROC 
to that of the XGBoost algorithm across all classification 
tasks, despite the lack of statistically significant differences 
observed in the comparisons with the XGBoost algorithm. 
Therefore, we selected the XGBoost algorithm as the 
prediction model for this study.

The diagnostic performance of each classification task in 
the internal and external cohorts are shown in Table 2. As 
shown in Figure 3A,3B, the AUROC was 0.93 (0.83–1.00) 
and 0.91 (95% CI: 0.82–1.00) for placenta subtype (invasive 
vs. non-invasive) classification in the internal validation set 
and external testing set, respectively. Figure 3C,3D shows 
that the AUROC was 0.88 (0.74–1.00) and 0.82 (95% CI: 
0.68–0.96) for intraoperative bleeding (<1,500 vs. ≥1,500 
mL) classification at the internal validation set and external 
testing set, respectively. As shown in Figure 3E,3F, the 
AUROC was 0.89 (0.77–1.00) and 0.82 (95% CI: 0.67–0.97) 
for hysterectomy risk (hysterectomy vs. non-hysterectomy) 
classification in the internal validation set and external 
testing set, respectively.

Diagnostic performance of the model versus radiologists

We conducted a comprehensive evaluation of the 
performance (accuracy, sensitivity, and specificity) 
in predicting the placenta subtype (invasive vs. non-
invasive) between our proposed model and 4 radiologists. 
Interestingly, none of the radiologists (0.80, 0.78, 0.75, and 
0.73) attained the level of accuracy demonstrated by our 
model (0.83) in the external testing set (Figure S2A). The 
sensitivity and specificity results of the 4 radiologists can be 
observed in Figure 3B and Figure S2B,S2C, respectively. 
Notably, none of the radiologists (0.77, 0.69, 0.86, and 
0.85) managed to match the impressive level of specificity 
demonstrated by our model (0.90) in the external testing 
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Table 1 Basic, clinical, and pathologic characteristics of included cases

Characteristics Internal cohort External cohort

Participants (n) 85 40

Maternal age (years), median [range] 35 [21–45] 34 [26–45]

Gravidity (n), median [range] 3 [1–8] 3 [2–7]

Parturition (n), median [range] 1[0–3] 1 [1–2]

Number of prior C-sections, median [range] 1 [0–3] 1 [0–2]

History of uterine surgery (n), median [range] 1 [0–4] 0 [0–2]

Fetal birth weight (g), median [range] 2,700 [1,250–4,000] 2,765 [1,400–3,820]

Gestational age (days), median [range] 253 [198–276] 254 [199–276]

Histologic or surgical outcomes, n (%)

Without placenta accreta 19 (22.35) 14 (35.00)

Placenta increta 19 (22.35) 6 (15.00)

Placenta accreta 32 (37.65) 12 (30.00)

Placenta percreta 15 (17.65) 8 (20.00)

Intraoperative bleeding, n (%)

Small (<1,500 mL) 33 (38.82) 24 (60.00)

Massive (≥1,500 mL) 52 (61.18) 16 (40.00)

Surgery risk, n (%)

Hysterectomy (partial or radical) 56 (65.88) 28 (70.00)

Non-hysterectomy 29 (34.12) 12 (30.00)

set (Figure S2B). Furthermore, in the external testing set, 
the 4 radiologists achieved sensitivities of 0.88, 1.00, 0.69, 
and 0.67, whereas our model exhibited a commendable 
sensitivity of 0.80 (Figure S2C).

In addition, a LR model with random effects was utilized 
to evaluate the diagnostic performance of the 4 radiologists 
and the model on the same testing dataset. The generalized 
linear mixed model demonstrated significant effects of 
the predictor variable on the outcome, with estimated 
coefficients of 3.2941 (P<0.01) for the Doctor 1 grouping, 
2.990 (P<0.01) for the Doctor 2 grouping, 3.5835 (P<0.01) 
for the Doctor 3 grouping, and 3.5835 (P<0.01) for the 
Doctor 4 grouping. Overall, the generalized linear mixed 
model revealed a significant effect of the predictor variable on 
the outcome, with estimated coefficients ranging from 2.990 
to 3.5835 (P<0.01), while accounting for the random effects of 
the Doctor 1, Doctor 2, Doctor 3, and Doctor 4 groupings.

Meaningful features contribution evaluation by SHAP 
values

 
To assess the impact of imaging features on the model’s 
prediction, the SHAP value was calculated to analyze the 
individual influences of each feature for every sample. The 
SHAP values of all the relevant features were presented 
in bar plots for each classification task. Positive SHAP 
values indicate a greater likelihood of the respective 
prediction. Irrespective of the classification tasks at hand, 
these influential features encompass various aspects, 
including subcategories of morphological findings, 
anatomical indicators, and clinical characteristics. Notably, 
all anatomical indicators played a substantial role in the 
decision-making process of each model. As shown in Figure 
4A, the area of intraplacental dark T2 bands, the diameter 
of placental abnormal vasculature, and the presence of 
intraplacental dark T2 bands emerged as pivotal factors 
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in distinguishing placenta subtype (invasive vs. non-
invasive). Figure 4B shows that parturition, bladder wall 
interruption, and cervical canal length exhibited significant 
contributions to the classification of intraoperative bleeding 
[≥1,500 vs. <1,500 mL (massive vs. small)]. Likewise, in 
the classification of hysterectomy risk (hysterectomy vs. 

non-hysterectomy), prior section history, maternal age, 
and the area of intraplacental dark T2 bands assumed an 
indispensable role in the decision-making process of the 
model (Figure 4C). 

To validate the importance of these significant features 
in the model’s decision, we eliminated features with SHAP 
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method) was used for statistical comparison between LR, LASSO, and SVM algorithms, respectively, with XGBoost algorithm. Plots show 
the ROC curves of LR, LASSO, SVM, and XGBoost algorithms, in placenta subtype (A,B), intraoperative bleeding (C,D) and hysterectomy 
risk (E,F) classification, respectively, in the internal and external cohort. AUROC, area under the receiver operating characteristic; LR, 
logistic regression; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; XGBoost, extreme gradient 
boosting; ROC, receiver operating characteristic; CI, confidence interval.
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Figure 4 Ranking of SHAP values for the explanation of machine learning making-decision. Bar-plots display the SHAP values for the 
training set. (A) SHAP values for placenta subtype predictions. (B) SHAP values for intraoperative bleeding predictions. (C) SHAP values 
for hysterectomy risk predictions. SHAP, SHapley Additive exPlanations.

Table 2 The diagnostic performance of placenta subtype, intraoperative bleeding, and hysterectomy risk in the internal and external cohorts

Classification task AUROC Sensitivity Specificity Cut-off value Accuracy

Placenta subtype

Internal 0.93 (0.83–1.00) 0.79 (0.71–0.87) 0.99 (0.97–1.00) 0.51 (0.41–0.61) 0.85 (0.78–0.92)

External 0.91 (0.82–1.00) 0.80 (0.72–0.88) 0.90 (0.83–0.95) 0.61 (0.51–0.91) 0.83 (0.76–0.90)

Intraoperative bleeding

Internal 0.88 (0.74–1.00) 0.90 (0.84–0.96) 0.81 (0.72–0.88) 0.25 (0.16–0.34) 0.85 (0.79–0.93)

External 0.82 (0.68–0.96) 0.81 (0.73–0.89) 0.75 (0.67–0.84) 0.392 (0.29–0.49) 0.78 (0.70–0.86)

Hysterectomy risk

Internal 0.89 (0.77–1.00) 0.89 (0.83–0.95) 0.88 (0.82–0.94) 0.39 (0.30–0.48) 0.85 (0.77–0.91)

External 0.82 (0.67–0.97) 0.67 (0.58–0.76) 0.93 (0.88–0.98) 0.52 (0.42–0.62) 0.83 (0.77–0.90)

Data are presented as the numerical values of model performance parameters and their 95% confidence intervals. AUROC, area under 
the receiver operating characteristic curve.
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values equal to zero and retrained the model. Remarkably, 
the retrained model achieved comparable performance to 
the proposed model in classifying placenta subtype (invasive 
vs. non-invasive), intraoperative bleeding (≥1,500 vs. 
<1,500 mL), and hysterectomy risk (hysterectomy vs. non-
hysterectomy). The corresponding AUROC values remained 
at 0.93, 0.88, and 0.90, respectively (Figure S3A-S3C).

Discussion

In this study, we developed an analysis framework 
utilizing MRI-anatomical-clinical features, employing 
ML techniques as a quantitative approach for predicting 
PAS during prenatal stages. To enhance visualization and 
facilitate clinical application and decision-making, we 
conducted a detailed quantitative analysis of the influence of 
MRI-anatomical-clinical features on the model’s decision-
making process using SHAP algorithms. Our analysis 
framework offers a more robust prediction of placenta 
subtype, intraoperative bleeding, and hysterectomy risk 
compared to traditional MRI radiomics and evaluation 
methods, which primarily rely on high-throughput feature 
extraction or morphological findings. 

In recent years, the integration of big data and artificial 
intelligence has led to the application of radiomics in 
clinical research (4,21). However, in the context of PAS, 
research on ML methods has primarily focused on using 
traditional radiomics to construct simple models for 
predicting the presence or absence of PAS (7-10). Radiomics 
involves the extraction of a large number of imaging 
features from medical images, enabling a more in-depth 
analysis of these images to assist doctors in making accurate  
diagnoses (22). Nevertheless, radiomics primarily emphasizes 
heterogeneous image texturing, particularly texture analysis, 
with limited emphasis on the anatomical structure of 
the lesion and surrounding tissues or organs (10). This 
approach is more suitable for identifying diseases with high 
heterogeneity, such as tumors, rather than diseases with 
low heterogeneity. Therefore, in our study, we opted to 
utilize MRI-anatomical-clinical features instead of radiomic 
features to predict the placenta subtype (invasive vs. non-
invasive), intraoperative bleeding (≥1,500 vs. <1,500 mL), 
and hysterectomy risk (hysterectomy vs. non-hysterectomy). 

In the realm of ML, many models exhibit weaknesses 
including a lack of interpretability, functioning as 
enigmatic “black boxes”. In an effort to address this issue, 
our study conducted a quantitative analysis, delving into 
the relationship between each feature and the model’s 

decision through the utilization of SHAP algorithms (20). 
Contrasted with alternative methods of interpretation, 
such as class activation diagrams (CAM) (23), SHAP values 
offer a comprehensive assessment of the impact that each 
feature has on individual cases and the overall dataset. This 
in-depth analysis proves instrumental in comprehending 
the model’s decisions and even identifying the underlying 
causes of misclassification. To ascertain the reliability of our 
findings, we selectively excluded features with SHAP values 
of zero and subsequently retrained the model. As depicted 
in Figure S3A-S3C, the performance of the retrained 
model, following feature selection, was tantamount to that 
of the original model across all classification tasks.

In this study, it became apparent that all anatomical 
indicators assumed a significant role in the model’s decision-
making process. This suggests that these anatomical indices 
possess a potentially greater importance as markers for 
determining the placenta subtype, intraoperative bleeding, 
and hysterectomy risk associated with PAS, surpassing 
the significance of morphological findings. As is widely 
acknowledged, the presence of intraplacental dark T2 bands 
serves as a direct indication of myometrial invasion by the 
placenta, with the extent of placental accretion directly 
proportional to the size of the area covered by intraplacental 
dark T2 bands (24-26). Our findings further validate the 
indispensability of features related to intraplacental dark 
T2 bands, such as the presence, area, and location of these 
bands, in accurately predicting the placenta subtype (invasive 
vs. non-invasive).

As shown in the Figure 4B, the cervical canal length and 
uterine anteroposterior diameter ratio played a vital role 
in the model decision of intraoperative bleeding (≥1,500 
vs. <1,500 mL) classification. Placental intrusion into the 
cervical canal commonly induces cervical canal shortening, 
resulting in a widened lower uterine segment and restricted 
surgical visibility, thereby exacerbating the surgical 
complexity (27-29). This aspect could potentially contribute 
to the undesirable consequence of significant intraoperative 
bleeding and serves as a noteworthy anatomical parameter 
for capturing the presence of lower segment bulging. In a 
typical healthy pregnancy, the uterine morphology exhibits 
a characteristic pear-shaped contour, whereas diffuse lower 
segment distension signifies the occurrence of placental 
implantation (26). 

In terms of  assessing the r isk of  hysterectomy 
(hysterectomy vs. non-hysterectomy), it was found that 
prior section history and maternal age played the most 
significant roles in the model’s decision-making process. 

https://cdn.amegroups.cn/static/public/QIMS-23-142-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-142-Supplementary.pdf
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These factors are likely influenced by a pregnant woman’s 
individual inclination to mitigate risks and her preference 
to preserve her uterus. The presence of bladder wall 
interruption serves as a direct indication of placental percreta 
and the invasion of placental tissue into surrounding tissues 
and organs (26). When placental tissue penetrates the 
uterine wall and reaches the bladder or abdominal wall, the 
separation becomes exceedingly challenging, thus increasing 
the risks of substantial bleeding and a higher likelihood of 
hysterectomy. In our study, the presence of bladder wall 
interruption emerged as a crucial contributing factor in 
both the classification of intraoperative bleeding (≥1,500 
vs. <1,500 mL) and the classification of hysterectomy risk 
(hysterectomy vs. non-hysterectomy).

The diagnosis of PAS using MRI is known to exhibit 
significant variability among different readers. The 
incorporation of quantitative ML techniques would have 
enhanced the strength of the analysis results. In comparison 
to the prediction accuracy of 4 radiologists in differentiating 
placental subtypes (invasive and non-invasive), our model 
demonstrated significantly higher accuracy in the external 
testing cohort. Consequently, our proposed model exhibited 
superior accuracy when compared to the radiologists. 
These findings hold considerable significance in guiding the 
prediction and diagnosis of placenta accreta prior to surgical 
intervention.

In practical application scenarios, a reliable model should 
not only demonstrate adaptability to various data sets but 
also provide interpretable results (30). Both the internal 
training cohort and the external test cohort encompassed 
a heterogeneous range of cases, which enhanced the 
generalizability and interpretability of our model. Even 
in cases where the “over-fit” phenomenon was observed, 
the external testing cohort for placenta subtype (invasive 
vs. non-invasive), intraoperative bleeding (≥1,500 vs. 
<1,500 mL), and hysterectomy risk (hysterectomy vs. non-
hysterectomy) prediction models still achieved impressive 
AUROC values of 0.91, 0.82, and 0.82, respectively. Hence, 
our framework can be readily applied to new data sets with 
varying structures. 

This study had several limitations. Firstly, the study 
population consisted of pregnant women with suspected 
PAS, excluding those without suspicion of PAS in prenatal 
examinations. This exclusion of cases where placenta accreta 
was not detected during prenatal assessments may have led 
to underestimation of the predictive performance of the 
model due to sampling bias. Secondly, the selection of total 
hysterectomy is contingent upon the technical expertise 

available at the hospital and the individual preferences of 
the patient, thus our model can only serve as a reference 
in such scenarios. Thirdly, it is important to acknowledge 
that the inherent subjectivity and inter-reader variability 
in assessing MRI features cannot be entirely eradicated, 
representing a potential confounding factor. Lastly, the 
practicality of this framework in clinical settings and its 
potential to improve patient outcomes remain unknown as 
this is an exploratory study based on retrospective medical 
records. The generalizability of this framework and its value 
in practical clinical applications need to be further validated 
through subsequent prospective cohort studies.

Conclusions

Our quantitative analysis framework, which incorporates 
MRI-anatomical-clinical features, demonstrated strong 
predictive performance in determining the placenta subtype 
(invasive vs. non-invasive), intraoperative bleeding (≥1,500 
vs. <1,500 mL), and hysterectomy risk (hysterectomy vs. 
non-hysterectomy) associated with PAS. This research 
not only offers a promising adjunctive method for clinical 
management and decision-making in PAS pregnancies but 
also establishes a foundation for future anatomy-based 
clinical approaches in similar diseases.
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